Source code for qiskit_addon_cutting.qpd.decompositions

# This code is a Qiskit project.

# (C) Copyright IBM 2024.

# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Instruction to :class:`.QPDBasis` decompositions."""

from __future__ import annotations

from collections.abc import Sequence, Callable

import numpy as np
from qiskit.circuit import (
    Gate,
    ControlledGate,
    Instruction,
    Reset,
)
from qiskit.circuit.library import UnitaryGate
from qiskit.circuit.library.standard_gates import (
    XGate,
    YGate,
    ZGate,
    HGate,
    SGate,
    SdgGate,
    SXGate,
    SXdgGate,
    TGate,
    TdgGate,
    RXGate,
    RYGate,
    RZGate,
    PhaseGate,
    CXGate,
    CYGate,
    CZGate,
    CHGate,
    CSGate,
    CSdgGate,
    CSXGate,
    RXXGate,
    RYYGate,
    RZZGate,
    CRXGate,
    CRYGate,
    CRZGate,
    ECRGate,
    CPhaseGate,
    SwapGate,
    iSwapGate,
    DCXGate,
)
from qiskit.synthesis import TwoQubitWeylDecomposition

from .qpd_basis import QPDBasis
from .instructions import QPDMeasure
from ..instructions import Move
from ..utils.iteration import unique_by_id


_qpdbasis_from_instruction_funcs: dict[str, Callable[[Instruction], QPDBasis]] = {}


def _register_qpdbasis_from_instruction(*args):
    def g(f):
        for name in args:
            _qpdbasis_from_instruction_funcs[name] = f
        return f

    return g


[docs] def qpdbasis_from_instruction(gate: Instruction, /) -> QPDBasis: """Generate a :class:`.QPDBasis` object, given a supported operation. All two-qubit gates which implement the :meth:`~qiskit.circuit.Gate.to_matrix` method are supported. This should include the vast majority of gates with no unbound parameters, but there are some special cases (see, e.g., `qiskit issue #10396 <https://github.com/Qiskit/qiskit/issues/10396>`__). The :class:`.Move` operation, which can be used to specify a wire cut, is also supported. Returns: The newly-instantiated :class:`QPDBasis` object Raises: ValueError: Instruction not supported. ValueError: Cannot decompose instruction with unbound parameters. ValueError: ``to_matrix`` conversion of two-qubit gate failed. """ try: f = _qpdbasis_from_instruction_funcs[gate.name] except KeyError: pass else: return f(gate) if isinstance(gate, Gate) and gate.num_qubits == 2: try: mat = gate.to_matrix() except Exception as ex: raise ValueError( f"`to_matrix` conversion of two-qubit gate ({gate.name}) failed. " "Often, this can be caused by unbound parameters." ) from ex d = TwoQubitWeylDecomposition(mat) u = _u_from_thetavec([d.a, d.b, d.c]) retval = _nonlocal_qpd_basis_from_u(u) for operations in unique_by_id(m[0] for m in retval.maps): operations.insert(0, UnitaryGate(d.K2r)) operations.append(UnitaryGate(d.K1r)) for operations in unique_by_id(m[1] for m in retval.maps): operations.insert(0, UnitaryGate(d.K2l)) operations.append(UnitaryGate(d.K1l)) return retval raise ValueError(f"Instruction not supported: {gate.name}")
def _explicitly_supported_instructions() -> set[str]: """Return a set of instruction names with explicit support for automatic decomposition. These instructions are *explicitly* supported by :func:`qpdbasis_from_instruction`. Other instructions may be supported too, via a KAK decomposition. Returns: Set of gate names supported for automatic decomposition. """ return set(_qpdbasis_from_instruction_funcs) def _copy_unique_sublists(lsts: tuple[list, ...], /) -> tuple[list, ...]: """Copy each list in a sequence of lists while preserving uniqueness. This is useful to ensure that the two sets of ``maps`` in a :class:`QPDBasis` will be independent of each other. This enables one to subsequently edit the ``maps`` independently of each other (e.g., to apply single-qubit pre- or post-rotations. """ copy_by_id: dict[int, list] = {} for lst in lsts: if id(lst) not in copy_by_id: copy_by_id[id(lst)] = lst.copy() return tuple(copy_by_id[id(lst)] for lst in lsts) def _u_from_thetavec( theta: np.typing.NDArray[np.float64] | Sequence[float], / ) -> np.typing.NDArray[np.complex128]: r"""Exponentiate the non-local portion of a KAK decomposition. This implements Eq. (6) of https://arxiv.org/abs/2006.11174v2: .. math:: \exp [ i ( \sum_\alpha^3 \theta_\alpha \, \sigma_\alpha \otimes \sigma_\alpha ) ] = \sum_{\alpha=0}^3 u_\alpha \, \sigma_\alpha \otimes \sigma_\alpha where each :math:`\theta_\alpha` is assumed to be real, and :math:`u_\alpha` is complex in general. """ theta = np.asarray(theta) if theta.shape != (3,): raise ValueError( f"theta vector has wrong shape: {theta.shape} (1D vector of length 3 expected)" ) # First, we note that if we choose the basis vectors II, XX, YY, and ZZ, # then the following matrix represents one application of the summation in # the exponential: # # 0 θx θy θz # θx 0 -θz -θy # θy -θz 0 -θx # θz -θy -θx 0 # # This matrix is symmetric and can be exponentiated by diagonalizing it. # Its eigendecomposition is given by: eigvals = np.array( [ -np.sum(theta), -theta[0] + theta[1] + theta[2], -theta[1] + theta[2] + theta[0], -theta[2] + theta[0] + theta[1], ] ) eigvecs = np.ones([1, 1]) / 2 - np.eye(4) # Finally, we exponentiate the eigenvalues of the matrix in diagonal form. # We also project to the vector [1,0,0,0] on the right, since the # multiplicative identity is given by II. return np.transpose(eigvecs) @ (np.exp(1j * eigvals) * eigvecs[:, 0]) def _nonlocal_qpd_basis_from_u( u: np.typing.NDArray[np.complex128] | Sequence[complex], / ) -> QPDBasis: u = np.asarray(u) if u.shape != (4,): raise ValueError( f"u vector has wrong shape: {u.shape} (1D vector of length 4 expected)" ) # The following operations are described in Sec. 2.3 of # https://quantum-journal.org/papers/q-2021-01-28-388/ # # Projective measurements in each basis A0x = [HGate(), QPDMeasure(), HGate()] A0y = [SXGate(), QPDMeasure(), SXdgGate()] A0z = [QPDMeasure()] # Single qubit rotations that swap two axes. There are "plus" and "minus" # versions of these rotations. The "minus" rotations also flip the sign # along that axis. Axyp = [SGate(), YGate()] Axym = [ZGate()] + Axyp Ayzp = [SXGate(), ZGate()] Ayzm = [XGate()] + Ayzp Azxp = [HGate()] Azxm = [YGate()] + Azxp # Single qubit rotations by ±pi/4 about each axis. B0xp = [SXGate()] B0xm = [SXdgGate()] B0yp = [RYGate(0.5 * np.pi)] B0ym = [RYGate(-0.5 * np.pi)] B0zp = [SGate()] B0zm = [SdgGate()] # Projective measurements, each followed by the proper flip. Bxy = A0z + [XGate()] Byz = A0x + [YGate()] Bzx = A0y + [ZGate()] # The following values occur repeatedly in the coefficients uu01 = u[0] * np.conj(u[1]) uu02 = u[0] * np.conj(u[2]) uu03 = u[0] * np.conj(u[3]) uu12 = u[1] * np.conj(u[2]) uu23 = u[2] * np.conj(u[3]) uu31 = u[3] * np.conj(u[1]) coeffs, maps1, maps2 = zip( # First line of Eq. (19) in # https://quantum-journal.org/papers/q-2021-01-28-388/ (np.abs(u[0]) ** 2, [], []), # Identity (np.abs(u[1]) ** 2, [XGate()], [XGate()]), (np.abs(u[2]) ** 2, [YGate()], [YGate()]), (np.abs(u[3]) ** 2, [ZGate()], [ZGate()]), # Second line (2 * np.real(uu01), A0x, A0x), (2 * np.real(uu02), A0y, A0y), (2 * np.real(uu03), A0z, A0z), (0.5 * np.real(uu12), Axyp, Axyp), (-0.5 * np.real(uu12), Axyp, Axym), (-0.5 * np.real(uu12), Axym, Axyp), (0.5 * np.real(uu12), Axym, Axym), (0.5 * np.real(uu23), Ayzp, Ayzp), (-0.5 * np.real(uu23), Ayzp, Ayzm), (-0.5 * np.real(uu23), Ayzm, Ayzp), (0.5 * np.real(uu23), Ayzm, Ayzm), (0.5 * np.real(uu31), Azxp, Azxp), (-0.5 * np.real(uu31), Azxp, Azxm), (-0.5 * np.real(uu31), Azxm, Azxp), (0.5 * np.real(uu31), Azxm, Azxm), (-0.5 * np.real(uu01), B0xp, B0xp), (0.5 * np.real(uu01), B0xp, B0xm), (0.5 * np.real(uu01), B0xm, B0xp), (-0.5 * np.real(uu01), B0xm, B0xm), (-0.5 * np.real(uu02), B0yp, B0yp), (0.5 * np.real(uu02), B0yp, B0ym), (0.5 * np.real(uu02), B0ym, B0yp), (-0.5 * np.real(uu02), B0ym, B0ym), (-0.5 * np.real(uu03), B0zp, B0zp), (0.5 * np.real(uu03), B0zp, B0zm), (0.5 * np.real(uu03), B0zm, B0zp), (-0.5 * np.real(uu03), B0zm, B0zm), (-2 * np.real(uu12), Bxy, Bxy), (-2 * np.real(uu23), Byz, Byz), (-2 * np.real(uu31), Bzx, Bzx), # Third line (np.imag(uu01), A0x, B0xp), (-np.imag(uu01), A0x, B0xm), (np.imag(uu01), B0xp, A0x), (-np.imag(uu01), B0xm, A0x), (np.imag(uu02), A0y, B0yp), (-np.imag(uu02), A0y, B0ym), (np.imag(uu02), B0yp, A0y), (-np.imag(uu02), B0ym, A0y), (np.imag(uu03), A0z, B0zp), (-np.imag(uu03), A0z, B0zm), (np.imag(uu03), B0zp, A0z), (-np.imag(uu03), B0zm, A0z), (np.imag(uu12), Axyp, Bxy), (-np.imag(uu12), Axym, Bxy), (np.imag(uu12), Bxy, Axyp), (-np.imag(uu12), Bxy, Axym), (np.imag(uu23), Ayzp, Byz), (-np.imag(uu23), Ayzm, Byz), (np.imag(uu23), Byz, Ayzp), (-np.imag(uu23), Byz, Ayzm), (np.imag(uu31), Azxp, Bzx), (-np.imag(uu31), Azxm, Bzx), (np.imag(uu31), Bzx, Azxp), (-np.imag(uu31), Bzx, Azxm), ) maps = list(zip(maps1, _copy_unique_sublists(maps2))) return QPDBasis(maps, coeffs) @_register_qpdbasis_from_instruction("swap") def _(unused_gate: SwapGate): return _nonlocal_qpd_basis_from_u([(1 + 1j) / np.sqrt(8)] * 4) @_register_qpdbasis_from_instruction("iswap") def _(unused_gate: iSwapGate): return _nonlocal_qpd_basis_from_u([0.5, 0.5j, 0.5j, 0.5]) @_register_qpdbasis_from_instruction("dcx") def _(unused_gate: DCXGate): retval = qpdbasis_from_instruction(iSwapGate()) # Modify basis according to DCXGate definition in Qiskit circuit library # https://github.com/Qiskit/qiskit/blob/e9f8b7c50968501e019d0cb426676ac606eb5a10/qiskit/circuit/library/standard_gates/equivalence_library.py#L938-L944 for operations in unique_by_id(m[0] for m in retval.maps): operations.insert(0, SdgGate()) operations.insert(0, HGate()) for operations in unique_by_id(m[1] for m in retval.maps): operations.insert(0, SdgGate()) operations.append(HGate()) return retval @_register_qpdbasis_from_instruction("rxx", "ryy", "rzz", "crx", "cry", "crz") def _(gate: RXXGate | RYYGate | RZZGate | CRXGate | CRYGate | CRZGate): # Constructing a virtual two-qubit gate by sampling single-qubit operations - Mitarai et al # https://iopscience.iop.org/article/10.1088/1367-2630/abd7bc/pdf if gate.name in ("rxx", "crx"): pauli = XGate() r_plus = SXGate() # x basis measurement (and back again) measurement_0 = [HGate(), QPDMeasure(), HGate()] elif gate.name in ("ryy", "cry"): pauli = YGate() r_plus = RYGate(0.5 * np.pi) # y basis measurement (and back again) measurement_0 = [SXGate(), QPDMeasure(), SXdgGate()] else: assert gate.name in ("rzz", "crz") pauli = ZGate() r_plus = SGate() # z basis measurement measurement_0 = [QPDMeasure()] r_minus = r_plus.inverse() measurement_1 = measurement_0.copy() # Specify the operations to be inserted for systems 1 and 2 maps = [ ([], []), # Identity ([pauli], [pauli]), (measurement_0, [r_plus]), (measurement_0, [r_minus]), ([r_plus], measurement_1), ([r_minus], measurement_1), ] theta = _theta_from_instruction(gate) if gate.name[0] == "c": # Following Eq. (C.4) of https://arxiv.org/abs/2205.00016v2, # which implements controlled single qubit rotations in terms of a # parametric two-qubit rotation. theta = -theta / 2 # Modify `maps` for operations in unique_by_id(m[0] for m in maps): if operations and gate.name != "crz": if gate.name == "cry": operations.insert(0, SGate()) operations.append(SdgGate()) operations.insert(0, HGate()) operations.append(HGate()) rot = {"x": RXGate, "y": RYGate, "z": RZGate}[gate.name[2]](-theta) for operations in unique_by_id(m[1] for m in maps): operations.append(rot) # Generate QPD coefficients for gates specified by Mitarai et al - # https://iopscience.iop.org/article/10.1088/1367-2630/abd7bc/pd theta_prime = -theta / 2 # theta as defined by Mitarai and Fujii cs_theta_prime = np.cos(theta_prime) * np.sin(theta_prime) coeffs = [ np.cos(theta_prime) ** 2, np.sin(theta_prime) ** 2, # Qiskit defines RZ(theta) = exp(-i*Z*theta/2), i.e., with a minus # sign in the exponential; hence r_plus really represents # exp(-i*Z*pi/4), and similar for RX and RY. Following Mitarai and # Fujii Eq. (6), the correct signs are therefore given by -cs_theta_prime, cs_theta_prime, -cs_theta_prime, cs_theta_prime, ] return QPDBasis(maps, coeffs) @_register_qpdbasis_from_instruction("cs", "csdg") def _(gate: CSGate | CSdgGate): theta = np.pi / 2 rot_gate = TGate() if gate.name == "csdg": theta *= -1 rot_gate = rot_gate.inverse() retval = qpdbasis_from_instruction(CRZGate(theta)) for operations in unique_by_id(m[0] for m in retval.maps): operations.insert(0, rot_gate) return retval @_register_qpdbasis_from_instruction("cp") def _(gate: CPhaseGate): theta = _theta_from_instruction(gate) retval = qpdbasis_from_instruction(CRZGate(theta)) for operations in unique_by_id(m[0] for m in retval.maps): operations.insert(0, PhaseGate(theta / 2)) return retval @_register_qpdbasis_from_instruction("csx") def _(unused_gate: CSXGate): retval = qpdbasis_from_instruction(CRXGate(np.pi / 2)) for operations in unique_by_id(m[0] for m in retval.maps): operations.insert(0, TGate()) return retval @_register_qpdbasis_from_instruction("csxdg") def _(unused_gate: ControlledGate): retval = qpdbasis_from_instruction(CRXGate(-np.pi / 2)) for operations in unique_by_id(m[0] for m in retval.maps): operations.insert(0, TdgGate()) return retval @_register_qpdbasis_from_instruction("cx", "cy", "cz", "ch") def _(gate: CXGate | CYGate | CZGate | CHGate): # Constructing a virtual two-qubit gate by sampling single-qubit operations - Mitarai et al # https://iopscience.iop.org/article/10.1088/1367-2630/abd7bc/pdf measurement_0 = [SdgGate(), QPDMeasure()] measurement_1 = measurement_0.copy() # Specify the operations to be inserted for systems 1 and 2 maps = [ ([SdgGate()], [SdgGate()]), ([SGate()], [SGate()]), # R-R+ simplifies to I (measurement_0, []), (measurement_0, [ZGate()]), # R-R+ simplifies to I ([], measurement_1), ([ZGate()], measurement_1), ] if gate.name != "cz": # Modify `maps` to sandwich the target operations inside of basis rotations for operations in unique_by_id(m[1] for m in maps): if operations: if gate.name in ("cx", "cy"): operations.insert(0, HGate()) operations.append(HGate()) if gate.name == "cy": operations.insert(0, SdgGate()) operations.append(SGate()) elif gate.name == "ch": operations.insert(0, RYGate(-np.pi / 4)) operations.append(RYGate(np.pi / 4)) coeffs = [0.5, 0.5, 0.5, -0.5, 0.5, -0.5] return QPDBasis(maps, coeffs) @_register_qpdbasis_from_instruction("ecr") def _(unused_gate: ECRGate): retval = qpdbasis_from_instruction(CXGate()) # Modify basis according to ECRGate definition in Qiskit circuit library # https://github.com/Qiskit/qiskit/blob/d9763523d45a747fd882a7e79cc44c02b5058916/qiskit/circuit/library/standard_gates/equivalence_library.py#L656-L663 for operations in unique_by_id(m[0] for m in retval.maps): operations.insert(0, SGate()) operations.append(XGate()) for operations in unique_by_id(m[1] for m in retval.maps): operations.insert(0, SXGate()) return retval def _theta_from_instruction(gate: Gate, /) -> float: param_gates = {"rxx", "ryy", "rzz", "crx", "cry", "crz", "cp"} # Internal function should only be called for supported gates assert gate.name in param_gates # If theta is a bound ParameterExpression, convert to float, else raise error. try: theta = float(gate.params[0]) except TypeError as err: raise ValueError( f"Cannot decompose ({gate.name}) instruction with unbound parameters." ) from err return theta @_register_qpdbasis_from_instruction("move") def _(unused_gate: Move): i_measurement = [Reset()] x_measurement = [HGate(), QPDMeasure(), Reset()] y_measurement = [SXGate(), QPDMeasure(), Reset()] z_measurement = [QPDMeasure(), Reset()] prep_0 = [Reset()] prep_1 = [Reset(), XGate()] prep_plus = [Reset(), HGate()] prep_minus = [Reset(), XGate(), HGate()] prep_iplus = [Reset(), SXdgGate()] prep_iminus = [Reset(), XGate(), SXdgGate()] # https://arxiv.org/abs/1904.00102v2 Eqs. (12)-(19) maps1, maps2, coeffs = zip( (i_measurement, prep_0, 0.5), (i_measurement, prep_1, 0.5), (x_measurement, prep_plus, 0.5), (x_measurement, prep_minus, -0.5), (y_measurement, prep_iplus, 0.5), (y_measurement, prep_iminus, -0.5), (z_measurement, prep_0, 0.5), (z_measurement, prep_1, -0.5), ) maps = list(zip(maps1, maps2)) return QPDBasis(maps, coeffs)