Add fermionic transitions to the pool of configurations¶
Here we demonstrate the functionalities to augment the pool of electronic configurations obtained by the action of transition operators on each electronic configuration.
We demonstrate how to add single-electron hops of the type:
for \(p, q = 1, ..., N_\textrm{orb}\) and \(\sigma \in \{ \uparrow, \downarrow\}\), and for all \(|\textbf{x} \rangle\) in the batch of electronic configurations.
Let’s begin by generating a batch of random electronic configurations
[1]:
import numpy as np
n_qubits = 8
n_orb = n_qubits // 2
rand_seed = 22
np.random.seed(rand_seed)
# Generate some random bitstrings for testing
def random_bitstrings(n_samples, n_qubits):
return np.round(np.random.rand(n_samples, n_qubits)).astype("int").astype("bool")
bitstring_matrix = random_bitstrings(100, n_qubits)
The excitation operators are specified inside a numpy array whose length is equal to the number of fermionic nodes (or qubits). Each element of the array must be a string that can take values:
'I'
: Identity'+'
: Creation operator'-'
: Annihilation operator
Let’s generate all possible single-electron transitions (amongst same spin species).
[2]:
transitions_single = np.array(
[["I" for i in range(2 * n_orb)] for j in range(4 * (n_orb**2 - n_orb) // 2 + 1)]
)
count = 1
for i in range(n_orb):
for j in range(i + 1, n_orb):
# spin up
transitions_single[count, i] = "+"
transitions_single[count, j] = "-"
count += 1
transitions_single[count, i] = "-"
transitions_single[count, j] = "+"
count += 1
# spin down
transitions_single[count, i + n_orb] = "+"
transitions_single[count, j + n_orb] = "-"
count += 1
transitions_single[count, i + n_orb] = "-"
transitions_single[count, j + n_orb] = "+"
count += 1
print(transitions_single)
[['I' 'I' 'I' 'I' 'I' 'I' 'I' 'I']
['+' '-' 'I' 'I' 'I' 'I' 'I' 'I']
['-' '+' 'I' 'I' 'I' 'I' 'I' 'I']
['I' 'I' 'I' 'I' '+' '-' 'I' 'I']
['I' 'I' 'I' 'I' '-' '+' 'I' 'I']
['+' 'I' '-' 'I' 'I' 'I' 'I' 'I']
['-' 'I' '+' 'I' 'I' 'I' 'I' 'I']
['I' 'I' 'I' 'I' '+' 'I' '-' 'I']
['I' 'I' 'I' 'I' '-' 'I' '+' 'I']
['+' 'I' 'I' '-' 'I' 'I' 'I' 'I']
['-' 'I' 'I' '+' 'I' 'I' 'I' 'I']
['I' 'I' 'I' 'I' '+' 'I' 'I' '-']
['I' 'I' 'I' 'I' '-' 'I' 'I' '+']
['I' '+' '-' 'I' 'I' 'I' 'I' 'I']
['I' '-' '+' 'I' 'I' 'I' 'I' 'I']
['I' 'I' 'I' 'I' 'I' '+' '-' 'I']
['I' 'I' 'I' 'I' 'I' '-' '+' 'I']
['I' '+' 'I' '-' 'I' 'I' 'I' 'I']
['I' '-' 'I' '+' 'I' 'I' 'I' 'I']
['I' 'I' 'I' 'I' 'I' '+' 'I' '-']
['I' 'I' 'I' 'I' 'I' '-' 'I' '+']
['I' 'I' '+' '-' 'I' 'I' 'I' 'I']
['I' 'I' '-' '+' 'I' 'I' 'I' 'I']
['I' 'I' 'I' 'I' 'I' 'I' '+' '-']
['I' 'I' 'I' 'I' 'I' 'I' '-' '+']]
Let’s now apply the transition operators to the configurations in bitstring_matrix
[3]:
from qiskit_addon_sqd.fermion import enlarge_batch_from_transitions
bitstring_matrix_aug = enlarge_batch_from_transitions(bitstring_matrix, transitions_single)
print(bitstring_matrix_aug.shape)
print(bitstring_matrix_aug)
(723, 8)
[[False False False ... False False True]
[False True False ... True False False]
[ True True True ... True False True]
...
[ True False True ... False False True]
[ True True True ... True False True]
[False False False ... False False True]]