Primitives examples
The examples in this section illustrate some common ways to use primitives. Before running these examples, follow the instructions in Install and set up.
To ensure faster and more efficient results, as of 1 March 2024, circuits and observables need to be transformed to only use instructions supported by the QPU (quantum processing unit) before being submitted to the Qiskit Runtime primitives. These are referred to as instruction set architecture (ISA) circuits and observables. See the transpilation documentation for instructions to transform circuits. Due to this change, the primitives will no longer perform layout or routing operations. Consequently, transpilation options referring to those tasks will no longer have any effect. By default, all V1 primitives optimize the input circuits. To bypass all optimization when using a V1 primitive, set optimization_level=0
.
Exception: When you initialize the Qiskit Runtime Service with the Q-CTRL channel strategy (example below), abstract circuits are still supported.
service = QiskitRuntimeService(channel="ibm_cloud", channel_strategy="q-ctrl")
These examples all use the primitives from Qiskit Runtime, but you could use the base primitives instead.
Estimator examples
Efficiently calculate and interpret expectation values of the quantum operators required for many algorithms with Estimator. Explore uses in molecular modeling, machine learning, and complex optimization problems.
Run a single experiment
Use Estimator to determine the expectation value of a single circuit-observable pair.
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.quantum_info import SparsePauliOp, random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, EstimatorV2 as Estimator
n_qubits = 127
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=n_qubits)
mat = np.real(random_hermitian(n_qubits, seed=1234))
circuit = IQP(mat)
observable = SparsePauliOp("Z" * n_qubits)
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(circuit)
isa_observable = observable.apply_layout(isa_circuit.layout)
estimator = Estimator(backend)
job = estimator.run([(isa_circuit, isa_observable)])
result = job.result()
print(f" > Expectation value: {result[0].data.evs}")
print(f" > Metadata: {result[0].metadata}")
Output:
> Expectation value: 0.123046875
> Metadata: {'target_precision': 0.015625}
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.quantum_info import SparsePauliOp, random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, Estimator
n_qubits = 127
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=n_qubits)
mat = np.real(random_hermitian(n_qubits, seed=1234))
circuit = IQP(mat)
observable = SparsePauliOp("Z" * n_qubits)
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(circuit)
isa_observable = observable.apply_layout(isa_circuit.layout)
estimator = Estimator(backend)
job = estimator.run(isa_circuit, isa_observable)
result = job.result()
print(f" > Observable: {observable.paulis}")
print(f" > Expectation value: {result.values}")
print(f" > Metadata: {result.metadata}")
Run multiple experiments in a single job
Use Estimator to determine the expectation values of multiple circuit-observable pairs.
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.quantum_info import SparsePauliOp, random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, EstimatorV2 as Estimator
n_qubits = 127
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=n_qubits)
rng = np.random.default_rng()
mats = [np.real(random_hermitian(n_qubits, seed=rng)) for _ in range(3)]
pubs = []
circuits = [IQP(mat) for mat in mats]
observables = [
SparsePauliOp("X" * n_qubits),
SparsePauliOp("Y" * n_qubits),
SparsePauliOp("Z" * n_qubits),
]
# Get ISA circuits
pm = generate_preset_pass_manager(optimization_level=1, backend=backend)
for qc, obs in zip(circuits, observables):
isa_circuit = pm.run(qc)
isa_obs = obs.apply_layout(isa_circuit.layout)
pubs.append((isa_circuit, isa_obs))
estimator = Estimator(backend)
job = estimator.run(pubs)
job_result = job.result()
for idx in range(len(pubs)):
pub_result = job_result[idx]
print(f">>> Expectation values for PUB {idx}: {pub_result.data.evs}")
print(f">>> Standard errors for PUB {idx}: {pub_result.data.stds}")
Output:
>>> Expectation values for PUB 0: -0.0263671875
>>> Standard errors for PUB 0: 0.015619567582387688
>>> Expectation values for PUB 1: -0.017578125
>>> Standard errors for PUB 1: 0.015622585825382946
>>> Expectation values for PUB 2: 0.33349609375
>>> Standard errors for PUB 2: 0.014730491894982241
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.quantum_info import SparsePauliOp, random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, Estimator
n_qubits = 127
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=n_qubits)
rng = np.random.default_rng()
mats = [np.real(random_hermitian(n_qubits, seed=rng)) for _ in range(3)]
circuits = [IQP(mat) for mat in mats]
observables = [
SparsePauliOp("X" * n_qubits),
SparsePauliOp("Y" * n_qubits),
SparsePauliOp("Z" * n_qubits),
]
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuits = pm.run(circuits)
isa_observables = [ob.apply_layout(isa_circuits[0].layout) for ob in observables]
estimator = Estimator(backend)
job = estimator.run(isa_circuits, isa_observables)
result = job.result()
print(f" > Expectation values: {result.values}")
Run parameterized circuits
Use Estimator to run three experiments in a single job, leveraging parameter values to increase circuit reusability.
import numpy as np
from qiskit.circuit import QuantumCircuit, Parameter
from qiskit.quantum_info import SparsePauliOp
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_ibm_runtime import QiskitRuntimeService, EstimatorV2 as Estimator
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False)
# Step 1: Map classical inputs to a quantum problem
theta = Parameter("θ")
chsh_circuit = QuantumCircuit(2)
chsh_circuit.h(0)
chsh_circuit.cx(0, 1)
chsh_circuit.ry(theta, 0)
number_of_phases = 21
phases = np.linspace(0, 2 * np.pi, number_of_phases)
individual_phases = [[ph] for ph in phases]
ZZ = SparsePauliOp.from_list([("ZZ", 1)])
ZX = SparsePauliOp.from_list([("ZX", 1)])
XZ = SparsePauliOp.from_list([("XZ", 1)])
XX = SparsePauliOp.from_list([("XX", 1)])
ops = [ZZ, ZX, XZ, XX]
# Step 2: Optimize problem for quantum execution.
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
chsh_isa_circuit = pm.run(chsh_circuit)
isa_observables = [operator.apply_layout(chsh_isa_circuit.layout) for operator in ops]
# Step 3: Execute using Qiskit primitives.
# Reshape observable array for broadcasting
reshaped_ops = np.fromiter(isa_observables, dtype=object)
reshaped_ops = reshaped_ops.reshape((4, 1))
estimator = Estimator(backend, options={"default_shots": int(1e4)})
job = estimator.run([(chsh_isa_circuit, reshaped_ops, individual_phases)])
# Get results for the first (and only) PUB
pub_result = job.result()[0]
print(f">>> Expectation values: {pub_result.data.evs}")
print(f">>> Standard errors: {pub_result.data.stds}")
print(f">>> Metadata: {pub_result.metadata}")
Output
Output
>>> Expectation values: [[ 0.88525391 0.83837891 0.70458984 0.52880859 0.29150391 -0.00146484
-0.28271484 -0.52587891 -0.71777344 -0.83300781 -0.88916016 -0.83935547
-0.71826172 -0.53613281 -0.24560547 -0.00830078 0.28320312 0.515625
0.72460938 0.83935547 0.89013672]
[-0.00390625 0.25683594 0.515625 0.71337891 0.83691406 0.87548828
0.83105469 0.70605469 0.54150391 0.28222656 0.01269531 -0.27636719
-0.52539062 -0.73388672 -0.83203125 -0.88134766 -0.83984375 -0.71386719
-0.50390625 -0.25292969 0.02001953]
[-0.01464844 -0.26660156 -0.51757812 -0.72216797 -0.83398438 -0.89013672
-0.84472656 -0.72070312 -0.52001953 -0.26660156 0.00244141 0.26074219
0.51123047 0.7109375 0.83886719 0.86865234 0.86669922 0.71435547
0.52587891 0.27636719 -0.01025391]
[ 0.88525391 0.85986328 0.72509766 0.54101562 0.28125 0.00878906
-0.27539062 -0.52636719 -0.71533203 -0.84130859 -0.8828125 -0.83740234
-0.72998047 -0.51513672 -0.26171875 0.00537109 0.26660156 0.52636719
0.69677734 0.84521484 0.87353516]]
>>> Standard errors: [[0.00726731 0.008517 0.01108773 0.01326158 0.0149464 0.01562498
0.01498756 0.01328999 0.01087932 0.00864471 0.00714994 0.00849348
0.01087145 0.01318959 0.0151464 0.01562446 0.01498531 0.01338772
0.01076812 0.00849348 0.00712021]
[0.01562488 0.01510086 0.01338772 0.01094966 0.0085521 0.00755061
0.00869048 0.01106496 0.01313591 0.01498981 0.01562374 0.01501644
0.01329471 0.01061362 0.00866764 0.00738232 0.00848169 0.01094189
0.01349622 0.01511695 0.01562187]
[0.01562332 0.01505948 0.01336931 0.01080809 0.00862169 0.00712021
0.00836247 0.01083193 0.01334616 0.01505948 0.01562495 0.01508451
0.01342881 0.01098836 0.00850525 0.00774097 0.00779424 0.01093411
0.01328999 0.01501644 0.01562418]
[0.00726731 0.00797694 0.01076009 0.01314082 0.01499429 0.0156244
0.01502082 0.01328527 0.01091851 0.00844617 0.00733946 0.00854042
0.01067919 0.01339231 0.01508038 0.01562477 0.01505948 0.01328527
0.01120762 0.00835042 0.00760564]]
>>> Metadata: {'target_precision': 0.015625}
import numpy as np
from qiskit.circuit.library import RealAmplitudes
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.quantum_info import SparsePauliOp
from qiskit_ibm_runtime import QiskitRuntimeService, Estimator
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=127)
circuit = RealAmplitudes(num_qubits=127, reps=2)
# Define three sets of parameters for the circuit
rng = np.random.default_rng(1234)
parameter_values = [
rng.uniform(-np.pi, np.pi, size=circuit.num_parameters) for _ in range(3)
]
observable = SparsePauliOp("Z" * 127)
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(circuit)
isa_observable = observable.apply_layout(isa_circuit.layout)
estimator = Estimator(backend)
job = estimator.run([isa_circuit] * 3, [isa_observable] * 3, parameter_values)
result = job.result()
print(f" > Expectation values: {result.values}")
Use sessions and advanced options
Explore sessions and advanced options to optimize circuit performance on QPUs.
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.quantum_info import SparsePauliOp, random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, Session, EstimatorV2 as Estimator
n_qubits = 127
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=n_qubits)
rng = np.random.default_rng(1234)
mat = np.real(random_hermitian(n_qubits, seed=rng))
circuit = IQP(mat)
mat = np.real(random_hermitian(n_qubits, seed=rng))
another_circuit = IQP(mat)
observable = SparsePauliOp("X" * n_qubits)
another_observable = SparsePauliOp("Y" * n_qubits)
pm = generate_preset_pass_manager(optimization_level=1, backend=backend)
isa_circuit = pm.run(circuit)
another_isa_circuit = pm.run(another_circuit)
isa_observable = observable.apply_layout(isa_circuit.layout)
another_isa_observable = another_observable.apply_layout(another_isa_circuit.layout)
with Session(service=service, backend=backend) as session:
estimator = Estimator(mode=session)
estimator.options.resilience_level = 1
job = estimator.run([(isa_circuit, isa_observable)])
another_job = estimator.run([(another_isa_circuit, another_isa_observable)])
result = job.result()
another_result = another_job.result()
# first job
print(f" > Expectation value: {result[0].data.evs}")
print(f" > Metadata: {result[0].metadata}")
# second job
print(f" > Another Expectation value: {another_result[0].data.evs}")
print(f" > More Metadata: {another_result[0].metadata}")
Output:
> Expectation value: 0.0048828125
> Metadata: {'target_precision': 0.015625}
> Another Expectation value: -0.03857421875
> More Metadata: {'target_precision': 0.015625}
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.quantum_info import SparsePauliOp, random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, Session, Estimator, Options
n_qubits = 127
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=n_qubits)
rng = np.random.default_rng(1234)
mat = np.real(random_hermitian(n_qubits, seed=rng))
circuit = IQP(mat)
mat = np.real(random_hermitian(n_qubits, seed=rng))
another_circuit = IQP(mat)
observable = SparsePauliOp("X" * n_qubits)
another_observable = SparsePauliOp("Y" * n_qubits)
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(circuit)
another_isa_circuit = pm.run(another_circuit)
isa_observable = observable.apply_layout(isa_circuit.layout)
another_isa_observable = another_observable.apply_layout(another_isa_circuit.layout)
options = Options()
options.optimization_level = 2
options.resilience_level = 2
with Session(service=service, backend=backend) as session:
estimator = Estimator(session=session, options=options)
job = estimator.run(isa_circuit, isa_observable)
another_job = estimator.run(another_isa_circuit, another_isa_observable)
result = job.result()
another_result = another_job.result()
# first job
print(f" > Expectation values job 1: {result.values}")
# second job
print(f" > Expectation values job 2: {another_result.values}")
Sampler examples
Generate entire error-mitigated quasi-probability distributions sampled from quantum circuit outputs. Leverage Sampler’s capabilities for search and classification algorithms like Grover’s and QVSM.
Run a single experiment
Use Sampler to return the measurement outcome as a quasi-probability distribution (V1) or as bitstrings or counts (V2) of a single circuit.
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.quantum_info import random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, SamplerV2 as Sampler
n_qubits = 127
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=n_qubits)
mat = np.real(random_hermitian(n_qubits, seed=1234))
circuit = IQP(mat)
circuit.measure_all()
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(circuit)
sampler = Sampler(backend)
job = sampler.run([isa_circuit])
result = job.result()
# Get results for the first (and only) PUB
pub_result = result[0]
print(f" > Counts: {pub_result.data.meas.get_counts()}")
Output
> Counts: {'0101': 103, '0100': 195, '0011': 142, '0000': 237, '1010': 26, '0001': 92, '0110': 18, '1111': 19, '0010': 36, '1100': 5, '0111': 42, '1110': 31, '1011': 27, '1101': 18, '1001': 13, '1000': 20}
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.quantum_info import random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, Sampler
n_qubits = 127
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=n_qubits)
mat = np.real(random_hermitian(n_qubits, seed=1234))
circuit = IQP(mat)
circuit.measure_all()
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(circuit)
sampler = Sampler(backend)
job = sampler.run(isa_circuit)
result = job.result()
print(f" > Quasi-probability distribution: {result.quasi_dists}")
print(f" > Metadata: {result.metadata}")
Run multiple experiments in a single job
Use Sampler to return the measurement outcome as a quasi-probability distribution (V1) or as bitstrings or counts (V2) of multiple circuits in one job.
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.quantum_info import random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, SamplerV2 as Sampler
n_qubits = 127
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=n_qubits)
rng = np.random.default_rng()
mats = [np.real(random_hermitian(n_qubits, seed=rng)) for _ in range(3)]
circuits = [IQP(mat) for mat in mats]
for circuit in circuits:
circuit.measure_all()
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuits = pm.run(circuits)
sampler = Sampler(backend)
job = sampler.run(isa_circuits)
result = job.result()
for idx, pub_result in enumerate(result):
print(f" > Counts for pub {idx}: {pub_result.data.meas.get_counts()}")
Output
> Counts for pub 0: {'0001': 120, '0000': 671, '0101': 21, '0011': 18, '0010': 91, '1001': 7, '1000': 23, '0100': 29, '1110': 2, '0110': 28, '1010': 3, '1111': 2, '1100': 4, '1011': 3, '0111': 2}
> Counts for pub 1: {'1001': 31, '1100': 122, '0100': 263, '0101': 86, '1101': 69, '1000': 96, '0001': 51, '1011': 7, '0110': 21, '0000': 163, '0011': 17, '1010': 26, '0010': 48, '1110': 13, '0111': 10, '1111': 1}
> Counts for pub 2: {'0000': 694, '0010': 78, '0100': 61, '0011': 21, '0001': 58, '0111': 6, '1000': 26, '0110': 50, '1001': 9, '1010': 3, '1100': 10, '1011': 2, '0101': 4, '1110': 1, '1111': 1}
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.quantum_info import random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, Sampler
n_qubits = 127
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=n_qubits)
rng = np.random.default_rng()
mats = [np.real(random_hermitian(n_qubits, seed=rng)) for _ in range(3)]
circuits = [IQP(mat) for mat in mats]
for circuit in circuits:
circuit.measure_all()
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuits = pm.run(circuits)
sampler = Sampler(backend)
job = sampler.run(isa_circuits)
result = job.result()
print(f" > Quasi-probability distribution: {result.quasi_dists}")
Run parameterized circuits
Run several experiments in a single job, leveraging parameter values to increase circuit reusability.
import numpy as np
from qiskit.circuit.library import RealAmplitudes
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_ibm_runtime import QiskitRuntimeService, SamplerV2 as Sampler
n_qubits = 127
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=n_qubits)
# Step 1: Map classical inputs to a quantum problem
circuit = RealAmplitudes(num_qubits=n_qubits, reps=2)
circuit.measure_all()
# Define three sets of parameters for the circuit
rng = np.random.default_rng(1234)
parameter_values = [
rng.uniform(-np.pi, np.pi, size=circuit.num_parameters) for _ in range(3)
]
# Step 2: Optimize problem for quantum execution.
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(circuit)
# Step 3: Execute using Qiskit primitives.
sampler = Sampler(backend)
job = sampler.run([(isa_circuit, parameter_values)])
result = job.result()
# Get results for the first (and only) PUB
pub_result = result[0]
# Get counts from the classical register "meas".
print(f" >> Counts for the meas output register: {pub_result.data.meas.get_counts()}")
Output
>> Counts for the meas output register: {'1000': 449, '0100': 183, '0110': 475, '1110': 249, '0101': 167, '0111': 116, '1100': 227, '0011': 111, '1101': 123, '1001': 252, '1010': 229, '0001': 37, '0010': 123, '1011': 120, '1111': 156, '0000': 55}
import numpy as np
from qiskit.circuit.library import RealAmplitudes
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_ibm_runtime import QiskitRuntimeService, Sampler
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=127)
circuit = RealAmplitudes(num_qubits=127, reps=2)
circuit.measure_all()
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(circuit)
# Define three sets of parameters for the circuit
rng = np.random.default_rng(1234)
parameter_values = [
rng.uniform(-np.pi, np.pi, size=circuit.num_parameters) for _ in range(3)
]
sampler = Sampler(backend)
job = sampler.run([isa_circuit] * 3, parameter_values)
result = job.result()
print(f" > Quasi-probability distribution: {result.quasi_dists}")
Use sessions and advanced options
Explore sessions and advanced options to optimize circuit performance on QPUs.
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.quantum_info import random_hermitian
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_ibm_runtime import Session, SamplerV2 as Sampler
from qiskit_ibm_runtime import QiskitRuntimeService
n_qubits = 127
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=n_qubits)
rng = np.random.default_rng(1234)
mat = np.real(random_hermitian(n_qubits, seed=rng))
circuit = IQP(mat)
circuit.measure_all()
mat = np.real(random_hermitian(n_qubits, seed=rng))
another_circuit = IQP(mat)
another_circuit.measure_all()
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(circuit)
another_isa_circuit = pm.run(another_circuit)
with Session(backend=backend) as session:
sampler = Sampler(mode=session)
job = sampler.run([isa_circuit])
another_job = sampler.run([another_isa_circuit])
result = job.result()
another_result = another_job.result()
# first job
print(f" > Counts for job 1: {result[0].data.meas.get_counts()}")
Output
> Counts for job 1: {'1110': 39, '0100': 164, '0000': 274, '0010': 40, '0001': 101, '0011': 138, '1101': 20, '1010': 26, '1100': 7, '0101': 83, '0111': 43, '1011': 15, '1001': 14, '1000': 34, '0110': 12, '1111': 14}
# second job
print(f" > Counts for job 2: {another_result[0].data.meas.get_counts()}")
Output
> Counts for job 2: {'0000': 285, '0100': 128, '0111': 29, '0110': 147, '0011': 15, '0010': 277, '1110': 10, '1010': 25, '1011': 15, '1000': 32, '0001': 21, '1111': 6, '1100': 10, '1101': 5, '1001': 15, '0101': 4}
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.quantum_info import random_hermitian
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session, Options
n_qubits = 127
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=n_qubits)
rng = np.random.default_rng(1234)
mat = np.real(random_hermitian(n_qubits, seed=rng))
circuit = IQP(mat)
circuit.measure_all()
mat = np.real(random_hermitian(n_qubits, seed=rng))
another_circuit = IQP(mat)
another_circuit.measure_all()
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(circuit)
another_isa_circuit = pm.run(another_circuit)
options = Options()
options.optimization_level = 2
options.resilience_level = 0
with Session(service=service, backend=backend) as session:
sampler = Sampler(session=session, options=options)
job = sampler.run(isa_circuit)
another_job = sampler.run(another_isa_circuit)
result = job.result()
another_result = another_job.result()
# first job
print(f" > Quasi-probability distribution job 1: {result.quasi_dists}")
# second job
print(f" > Quasi-probability distribution job 2: {another_result.quasi_dists}")
Next steps
- Read Migrate to V2 primitives.
- Specify advanced runtime options.
- Practice with primitives by working through the Cost function lesson(opens in a new tab) in IBM Quantum Learning.
- Learn how to transpile locally in the Transpile section.
- Try the Submit pre-transpiled circuits(opens in a new tab) tutorial.