Migrate to the Qiskit Runtime V2 primitives
The original primitives (referred to as the V1 primitives), V1 Sampler and V1 Estimator, have been deprecated in qiskit-ibm-runtime
0.23.
Their support will be removed on 15 August 2024.
With the deprecation of the V1 primitives, all code should be migrated to use the V2 interfaces. This guide describes what changed in the Qiskit Runtime V2 primitives (available with qiskit-ibm-runtime 0.21.0) and why, describes each new primitive in detail, and gives examples to help you migrate code from using the legacy primitives to the V2 primitives. The examples in the guide all use the Qiskit Runtime primitives, but in general, the same changes apply to the other primitive implementations. The functions unique to Qiskit Runtime such as error mitigation remain unique to Qiskit Runtime.
For information about the changes to the Qiskit reference primitives (now called statevector primitives), see the qiskit.primitives section in the Qiskit 1.0 feature changes page. See StatevectorSampler and StatevectorEstimator for V2 primitive reference implementations.
Overview
Version 2 of the primitives is introduced with a new base class for both Sampler and Estimator (BaseSamplerV2 and BaseEstimatorV2), along with new types for their inputs and outputs.
The new interface lets you specify a single circuit and multiple observables (if using Estimator) and parameter value sets for that circuit, so that sweeps over parameter value sets and observables can be efficiently specified. Previously, you had to specify the same circuit multiple times to match the size of the data to be combined. Also, while you can still use resilience_level
(if using Estimator) as the simple knob, V2 primitives give you the flexibility to turn on or off individual error mitigation / suppression methods to customize them for your needs.
To reduce the total job execution time, V2 primitives only accept circuits and observables that use instructions supported by the target QPU (quantum processing unit). Such circuits and observables are referred to as instruction set architecture (ISA) circuits and observables. V2 primitives do not perform layout, routing, and translation operations. See the transpilation documentation for instructions to transform circuits.
Sampler V2 is simplified to focus on its core task of sampling the output register from execution of quantum circuits. It returns the samples, whose type is defined by the program, without weights. The output data is also separated by the output register names defined by the program. This change enables future support for circuits with classical control flow.
See the EstimatorV2 API reference and SamplerV2 API reference for full details.
Major changes
Import
For backward compatibility, you must explicity import the V2 primitives. Specifying import <primitive>V2 as <primitive>
is not required, but makes it easier to transition code to V2.
After the V1 primitives are no longer supported, import <primitive>
will import the V2 version of the specified primitive.
from qiskit_ibm_runtime import EstimatorV2 as Estimator
from qiskit_ibm_runtime import Estimator
from qiskit_ibm_runtime import SamplerV2 as Sampler
from qiskit_ibm_runtime import Sampler
Input and output
Input
Both SamplerV2
and EstimatorV2
take one or more primitive unified blocs (PUBs) as the input. Each PUB is a tuple that contains one circuit and the data broadcasted to that circuit, which can be multiple observables and parameters. Each PUB returns a result.
- Sampler V2 PUB format: (
<circuit>
,<parameter values>
,<shots>
), where<parameter values>
and<shots>
are optional. - Estimator V2 PUB format: (
<circuit>
,<observables>
,<parameter values>
,<precision>
), where<parameter values>
and<precision>
are optional. Numpy broadcasting rules(opens in a new tab) are used when combining observables and parameter values.
Additionally, the following changes have been made:
- Estimator V2 has gained a
precision
argument in therun()
method that specifies the targeted precision of the expectation value estimates. - Sampler V2 has the
shots
argument in itsrun()
method.
Examples
Estimator V2 example that uses precision in run()
:
# Estimate expectation values for two PUBs, both with 0.05 precision.
estimator.run([(circuit1, obs_array1), (circuit2, obs_array_2)], precision=0.05)
Sampler V2 example that uses shots in run()
:
# Sample two circuits at 128 shots each.
sampler.run([circuit1, circuit2], shots=128)
# Sample two circuits at different amounts of shots.
# The "None"s are necessary as placeholders
# for the lack of parameter values in this example.
sampler.run([
(circuit1, None, 123),
(circuit2, None, 456),
])
Output
The output is now in the PubResult
format. A PubResult
is the data and metadata resulting from a single PUB’s execution.
-
Estimator V2 continues to return expectation values.
-
The
data
portion of a Estimator V2 PubResult contains both expectation values and standard errors (stds
). V1 returned variance in metadata. -
Sampler V2 returns per-shot measurements in the form of bitstrings, instead of the quasi-probability distributions from the V1 interface. The bitstrings show the measurement outcomes, preserving the shot order in which they were measured.
-
Sampler V2 has convenience methods like
get_counts()
to help with migration. -
The Sampler V2 result objects organize data in terms of their input circuits' classical register names, for compatibility with dynamic circuits. By default, the classical register name is
meas
, as shown in the following example. When defining your circuit, if you create one or more classical registers with a non-default name, use that name to get the results. You can find the classical register name by running<circuit_name>.cregs
. For example,qc.cregs
.# Define a quantum circuit with 2 qubits circuit = QuantumCircuit(2) circuit.h(0) circuit.cx(0, 1) circuit.measure_all() circuit.draw()
┌───┐ ░ ┌─┐ q_0: ┤ H ├──■───░─┤M├─── └───┘┌─┴─┐ ░ └╥┘┌─┐ q_1: ─────┤ X ├─░──╫─┤M├ └───┘ ░ ║ └╥┘ meas: 2/══════════════╩══╩═ 0 1
Estimator examples (input and output)
# Estimator V1: Execute 1 circuit with 4 observables
job = estimator_v1.run([circuit] * 4, [obs1, obs2, obs3, obs4])
evs = job.result().values
# Estimator V2: Execute 1 circuit with 4 observables
job = estimator_v2.run([(circuit, [obs1, obs2, obs3, obs4])])
evs = job.result()[0].data.evs
# Estimator V1: Execute 1 circuit with 4 observables and 2 parameter sets
job = estimator_v1.run([circuit] * 8, [obs1, obs2, obs3, obs4] * 2, [vals1, vals2] * 4)
evs = job.result().values
# Estimator V2: Execute 1 circuit with 4 observables and 2 parameter sets
job = estimator_v2.run([(circuit, [[obs1], [obs2], [obs3], [obs4]], [[vals1], [vals2]])])
evs = job.result()[0].data.evs
# Estimator V1: Cannot execute 2 circuits with different observables
# Estimator V2: Execute 2 circuits with 2 different observables. There are
# two PUBs because each PUB can have only one circuit.
job = estimator_v2.run([(circuit1, obs1), (circuit2, obs2)])
evs1 = job.result()[0].data.evs # result for pub 1 (circuit 1)
evs2 = job.result()[1].data.evs # result for pub 2 (circuit 2)
Sampler examples (input and output)
# Sampler V1: Execute 1 circuit with 3 parameter sets
job = sampler_v1.run([circuit] * 3, [vals1, vals2, vals3])
dists = job.result().quasi_dists
# Sampler V2: Executing 1 circuit with 3 parameter sets
job = sampler_v2.run([(circuit, [vals1, vals2, vals3])])
counts = job.result()[0].data.meas.get_counts()
# Sampler V1: Execute 2 circuits with 1 parameter set
job = sampler_v1.run([circuit1, circuit2], [vals1] * 2)
dists = job.result().quasi_dists
# Sampler V2: Execute 2 circuits with 1 parameter set
job = sampler_v2.run([(circuit1, vals1), (circuit2, vals1)])
counts1 = job.result()[0].data.meas.get_counts() # result for pub 1 (circuit 1)
counts2 = job.result()[1].data.meas.get_counts() # result for pub 2 (circuit 2)
Example that uses different output registers
from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_ibm_runtime import QiskitRuntimeService, SamplerV2 as Sampler
alpha = ClassicalRegister(5, "alpha")
beta = ClassicalRegister(7, "beta")
qreg = QuantumRegister(12)
circuit = QuantumCircuit(qreg, alpha, beta)
circuit.h(0)
circuit.measure(qreg[:5], alpha)
circuit.measure(qreg[5:], beta)
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=12)
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(circuit)
sampler = Sampler(backend)
job = sampler.run([isa_circuit])
result = job.result()
# Get results for the first (and only) PUB
pub_result = result[0]
print(f" >> Counts for the alpha output register: {pub_result.data.alpha.get_counts()}")
print(f" >> Counts for the beta output register: {pub_result.data.beta.get_counts()}")
Options
Options are specified differently in the V2 primitives in these ways:
SamplerV2
andEstimatorV2
now have separate options classes. You can see the available options and update option values during or after primitive initialization.- Instead of the
set_options()
method, V2 primitive options have theupdate()
method that applies changes to theoptions
attribute. - If you do not specify a value for an option, it is given a special value of
Unset
and the server defaults are used. - For V2 primitives, the
options
attribute is thedataclass
Python type. You can use the built-inasdict
method to convert it to a dictionary.
See the API reference for the list of available options.
from dataclasses import asdict
from qiskit_ibm_runtime import QiskitRuntimeService
from qiskit_ibm_runtime import EstimatorV2 as Estimator
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False)
# Setting options during primitive initialization
estimator = Estimator(backend, options={"resilience_level": 2})
# Setting options after primitive initialization
# This uses auto complete.
estimator.options.default_shots = 4000
# This does bulk update.
estimator.options.update(default_shots=4000, resilience_level=2)
# Print the dictionary format.
# Server defaults are used for unset options.
print(asdict(estimator.options))
from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Options
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False)
# Setting options during primitive initialization
options = Options()
# This uses auto complete.
options.resilience_level = 2
estimator = Estimator(backend=backend, options=options)
# Setting options after primitive initialization.
# This does bulk update.
estimator.set_options(shots=4000)
from dataclasses import asdict
from qiskit_ibm_runtime import QiskitRuntimeService
from qiskit_ibm_runtime import SamplerV2 as Sampler
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False)
# Setting options during primitive initialization
sampler = Sampler(backend, options={"default_shots": 4096})
# Setting options after primitive initialization
# This uses auto complete.
sampler.options.dynamical_decoupling.enable = True
# Turn on gate twirling. Requires qiskit_ibm_runtime 0.23.0 or later.
sampler.options.twirling.enable_gates = True
# This does bulk update. The value for default_shots is overridden if you specify shots with run() or in the PUB.
sampler.options.update(default_shots=1024, dynamical_decoupling={"sequence_type": "XpXm"})
# Print the dictionary format.
# Server defaults are used for unset options.
print(asdict(sampler.options))
from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Options
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False)
# Setting options during primitive initialization
options = Options()
# This uses auto complete.
options.resilience_level = 2
sampler = Sampler(backend=backend, options=options)
# Setting options after primitive initialization.
# This does bulk update.
sampler.set_options(shots=2000)
Error mitigation and suppression
-
Because Sampler V2 returns samples without postprocessing, it does not support resilience levels.
-
Sampler V2 does not support
optimization_level
. -
Estimator V2 will drop support for
optimization_level
on or around 30 September 2024. -
Estimator V2 does not support resilience level 3. This is because resilience level 3 in V1 Estimator uses Probabilistic Error Cancellation (PEC), which is proven to give unbiased results at the cost of exponential processing time. Level 3 was removed to draw attention to that tradeoff. You can, however, still use PEC as the error mitigation method by specifying the
pec_mitigation
option. -
Estimator V2 supports
resilience_level
0-2, as described in the following table. These options are more advanced than their V1 counterparts. You can also explicitly turn on / off individual error mitigation / suppression methods.Level 1 Level 2 Measurement twirling Measurement twirling Readout error mitigation Readout error mitigation ZNE
from dataclasses import asdict
from qiskit_ibm_runtime import QiskitRuntimeService
from qiskit_ibm_runtime import EstimatorV2 as Estimator
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False)
# Setting options during primitive initialization
estimator = Estimator(backend)
# Set resilience_level to 0
estimator.options.resilience_level = 0
# Turn on measurement error mitigation
estimator.options.resilience.measure_mitigation = True
from qiskit_ibm_runtime import Estimator, Options
estimator = Estimator(backend, options=options)
options = Options()
options.resilience_level = 2
from qiskit_ibm_runtime import SamplerV2 as Sampler
sampler = Sampler(backend)
# Turn on dynamical decoupling with sequence XpXm.
sampler.options.dynamical_decoupling.enable = True
sampler.options.dynamical_decoupling.sequence_type = "XpXm"
print(f">> dynamical decoupling sequence to use: {sampler.options.dynamical_decoupling.sequence_type}")
from qiskit_ibm_runtime import Sampler, Options
sampler = Sampler(backend, options=options)
options = Options()
options.resilience_level = 2
Transpilation
V2 primitives support only circuits that adhere to the Instruction Set Architecture (ISA) of a particular backend. Because the primitives do not perform layout, routing, and translation operations, the corresponding transpilation options from V1 are not supported.
Job status
The V2 primitives have a new RuntimeJobV2
class, which inherits from BasePrimitiveJob
. The status()
method of this new class returns a string instead of a JobStatus enum from Qiskit. See the RuntimeJobV2 API reference for details.
job = estimator.run(...)
# check if a job is still running
print(f"Job {job.job_id()} is still running: {job.status() == "RUNNING"}")
from qiskit.providers.jobstatus import JobStatus
job = estimator.run(...)
#check if a job is still running
print(f"Job {job.job_id()} is still running: {job.status() is JobStatus.RUNNING}")
Steps to migrate to Estimator V2
-
Replace
from qiskit_ibm_runtime import Estimator
withfrom qiskit_ibm_runtime import EstimatorV2 as Estimator
. -
Remove any
from qiskit_ibm_runtime import Options
statements, since theOptions
class is not used by V2 primitives. You can instead pass options as a dictionary when initializing theEstimator
class (for exampleestimator = Estimator(backend, options={“dynamical_decoupling”: {“enable”: True}})
), or set them after initialization:estimator = Estimator(backend) estimator.options.dynamical_decoupling.enable = True
-
Review all the supported options and make updates accordingly.
-
Group each circuit you want to run with the observables and parameter values you want to apply to the circuit in a tuple (a PUB). For example, use
(circuit1, observable1, parameter_set1)
if you want to runcircuit1
withobservable1
andparameter_set1
. -
You might need to reshape your arrays of observables or parameter sets if you want to apply their outer product. For example, an array of observables of shape (4, 1) and an array of parameter sets of shape (1, 6) will give you a result of (4, 6) expectation values. See the Numpy broadcasting rules(opens in a new tab) for more details.
-
You can optionally specify the precision you want for that specific PUB.
-
Update the estimator
run()
method to pass in the list of PUBs. For example,run([(circuit1, observable1, parameter_set1)])
. You can optionally specify aprecision
here, which would apply to all PUBs. -
Estimator V2 job results are grouped by PUBs. You can see the expectation value and standard error for each PUB by indexing to it. For example:
pub_result = job.result()[0]
print(f">>> Expectation values: {pub_result.data.evs}")
print(f">>> Standard errors: {pub_result.data.stds}")
Estimator full examples
Run a single experiment
Use Estimator to determine the expectation value of a single circuit-observable pair.
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.quantum_info import SparsePauliOp, random_hermitian
from qiskit_ibm_runtime import EstimatorV2 as Estimator, QiskitRuntimeService
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=127)
estimator = Estimator(backend)
n_qubits = 127
mat = np.real(random_hermitian(n_qubits, seed=1234))
circuit = IQP(mat)
observable = SparsePauliOp("Z" * n_qubits)
pm = generate_preset_pass_manager(optimization_level=1, backend=backend)
isa_circuit = pm.run(circuit)
isa_observable = observable.apply_layout(isa_circuit.layout)
job = estimator.run([(isa_circuit, isa_observable)])
result = job.result()
print(f" > Expectation value: {result[0].data.evs}")
print(f" > Metadata: {result[0].metadata}")
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.quantum_info import SparsePauliOp, random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, Estimator
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=127)
n_qubits = 127
mat = np.real(random_hermitian(n_qubits, seed=1234))
circuit = IQP(mat)
observable = SparsePauliOp("Z" * n_qubits)
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(circuit)
isa_observable = observable.apply_layout(isa_circuit.layout)
estimator = Estimator(backend)
job = estimator.run(isa_circuit, isa_observable)
result = job.result()
print(f" > Observable: {observable.paulis}")
print(f" > Expectation value: {result.values}")
print(f" > Metadata: {result.metadata}")
Run multiple experiments in a single job
Use Estimator to determine the expectation values of multiple circuit-observable pairs.
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False)
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
n_qubits = 3
rng = np.random.default_rng()
mats = [np.real(random_hermitian(n_qubits, seed=rng)) for _ in range(3)]
circuits = [IQP(mat) for mat in mats]
observables = [
SparsePauliOp("X" * n_qubits),
SparsePauliOp("Y" * n_qubits),
SparsePauliOp("Z" * n_qubits),
]
isa_circuits = pm.run(circuits)
isa_observables = [ob.apply_layout(isa_circuits[0].layout) for ob in observables]
estimator = Estimator(backend)
job = estimator.run([(isa_circuits[0], isa_observables[0]),(isa_circuits[1], isa_observables[1]),(isa_circuits[2], isa_observables[2])])
job_result = job.result()
for idx in range(len(job_result)):
pub_result = job_result[idx]
print(f">>> Expectation values for PUB {idx}: {pub_result.data.evs}")
print(f">>> Standard errors for PUB {idx}: {pub_result.data.stds}")
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.quantum_info import SparsePauliOp, random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, Estimator
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=127)
n_qubits = 127
rng = np.random.default_rng()
mats = [np.real(random_hermitian(n_qubits, seed=rng)) for _ in range(3)]
circuits = [IQP(mat) for mat in mats]
observables = [
SparsePauliOp("X" * n_qubits),
SparsePauliOp("Y" * n_qubits),
SparsePauliOp("Z" * n_qubits),
]
# Get ISA circuits
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuits = pm.run(circuits)
isa_observables = [ob.apply_layout(isa_circuits[0].layout) for ob in observables]
estimator = Estimator(backend)
job = estimator.run(isa_circuits, isa_observables)
result = job.result()
print(f" > Expectation values: {result.values}")
Run parameterized circuits
Use Estimator to run multiple experiments in a single job, leveraging parameter values to increase circuit reusability. In the following example, notice that steps 1 and 2 are the same for V1 and V2.
import numpy as np
from qiskit.circuit import QuantumCircuit, Parameter
from qiskit.quantum_info import SparsePauliOp
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_ibm_runtime import QiskitRuntimeService
# Step 1: Map classical inputs to a quantum problem
theta = Parameter("θ")
chsh_circuit = QuantumCircuit(2)
chsh_circuit.h(0)
chsh_circuit.cx(0, 1)
chsh_circuit.ry(theta, 0)
number_of_phases = 21
phases = np.linspace(0, 2 * np.pi, number_of_phases)
individual_phases = [[ph] for ph in phases]
ZZ = SparsePauliOp.from_list([("ZZ", 1)])
ZX = SparsePauliOp.from_list([("ZX", 1)])
XZ = SparsePauliOp.from_list([("XZ", 1)])
XX = SparsePauliOp.from_list([("XX", 1)])
ops = [ZZ, ZX, XZ, XX]
# Step 2: Optimize problem for quantum execution.
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False)
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
chsh_isa_circuit = pm.run(chsh_circuit)
isa_observables = [operator.apply_layout(chsh_isa_circuit.layout) for operator in ops]
from qiskit_ibm_runtime import EstimatorV2 as Estimator
# Step 3: Execute using Qiskit primitives.
# Reshape observable array for broadcasting
reshaped_ops = np.fromiter(isa_observables, dtype=object)
reshaped_ops = reshaped_ops.reshape((4, 1))
estimator = Estimator(backend, options={"default_shots": int(1e4)})
job = estimator.run([(chsh_isa_circuit, reshaped_ops, individual_phases)])
# Get results for the first (and only) PUB
pub_result = job.result()[0]
print(f">>> Expectation values: {pub_result.data.evs}")
print(f">>> Standard errors: {pub_result.data.stds}")
print(f">>> Metadata: {pub_result.metadata}")
import numpy as np
from qiskit.circuit import QuantumCircuit, Parameter
from qiskit.quantum_info import SparsePauliOp
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_ibm_runtime import QiskitRuntimeService
# Step 1: Map classical inputs to a quantum problem
theta = Parameter("θ")
chsh_circuit = QuantumCircuit(2)
chsh_circuit.h(0)
chsh_circuit.cx(0, 1)
chsh_circuit.ry(theta, 0)
number_of_phases = 21
phases = np.linspace(0, 2 * np.pi, number_of_phases)
individual_phases = [[ph] for ph in phases]
ZZ = SparsePauliOp.from_list([("ZZ", 1)])
ZX = SparsePauliOp.from_list([("ZX", 1)])
XZ = SparsePauliOp.from_list([("XZ", 1)])
XX = SparsePauliOp.from_list([("XX", 1)])
ops = [ZZ, ZX, XZ, XX]
# Step 2: Optimize problem for quantum execution.
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False)
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
chsh_isa_circuit = pm.run(chsh_circuit)
isa_observables = [operator.apply_layout(chsh_isa_circuit.layout) for operator in ops]
from qiskit_ibm_runtime import Estimator
# Step 3: Execute using Qiskit Primitives.
num_ops = len(isa_observables)
batch_circuits = [chsh_isa_circuit] * number_of_phases * num_ops
batch_ops = [op for op in isa_observables for _ in individual_phases]
batch_phases = individual_phases * num_ops
estimator = Estimator(backend, options={"shots": int(1e4)})
job = estimator.run(batch_circuits, batch_ops, batch_phases)
expvals = job.result().values
Use sessions and advanced options
Explore sessions and advanced options to optimize circuit performance on QPUs.
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.quantum_info import SparsePauliOp, random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, Session, EstimatorV2 as Estimator
n_qubits = 127
rng = np.random.default_rng(1234)
mat = np.real(random_hermitian(n_qubits, seed=rng))
circuit = IQP(mat)
mat = np.real(random_hermitian(n_qubits, seed=rng))
another_circuit = IQP(mat)
observable = SparsePauliOp("X" * n_qubits)
another_observable = SparsePauliOp("Y" * n_qubits)
pm = generate_preset_pass_manager(optimization_level=1, backend=backend)
isa_circuit = pm.run(circuit)
another_isa_circuit = pm.run(another_circuit)
isa_observable = observable.apply_layout(isa_circuit.layout)
another_isa_observable = another_observable.apply_layout(another_isa_circuit.layout)
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=127)
with Session(service=service, backend=backend) as session:
estimator = Estimator()
estimator.options.resilience_level = 1
job = estimator.run([(isa_circuit, isa_observable)])
another_job = estimator.run([(another_isa_circuit, another_isa_observable)])
result = job.result()
another_result = another_job.result()
# first job
print(f" > Expectation value: {result[0].data.evs}")
print(f" > Metadata: {result[0].metadata}")
# second job
print(f" > Another Expectation value: {another_result[0].data.evs}")
print(f" > More Metadata: {another_result[0].metadata}")
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.quantum_info import SparsePauliOp, random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, Session, Estimator, Options
n_qubits = 127
rng = np.random.default_rng(1234)
mat = np.real(random_hermitian(n_qubits, seed=rng))
circuit = IQP(mat)
mat = np.real(random_hermitian(n_qubits, seed=rng))
another_circuit = IQP(mat)
observable = SparsePauliOp("X" * n_qubits)
another_observable = SparsePauliOp("Y" * n_qubits)
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(circuit)
another_isa_circuit = pm.run(another_circuit)
isa_observable = observable.apply_layout(isa_circuit.layout)
another_isa_observable = another_observable.apply_layout(another_isa_circuit.layout)
options = Options()
options.optimization_level = 2
options.resilience_level = 2
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=127)
with Session(service=service, backend=backend) as session:
estimator = Estimator(options=options)
job = estimator.run(isa_circuit, isa_observable)
another_job = estimator.run(another_isa_circuit, another_isa_observable)
result = job.result()
another_result = another_job.result()
# first job
print(f" > Expectation values job 1: {result.values}")
# second job
print(f" > Expectation values job 2: {another_result.values}")
Steps to migrate to Sampler V2
- Replace
from qiskit_ibm_runtime import Sampler
withfrom qiskit_ibm_runtime import SamplerV2 as Sampler
. - Remove any
from qiskit_ibm_runtime import Options
statements, since theOptions
class is not used by V2 primitives. You can instead pass options as a dictionary when initializing theSampler
class (for examplesampler = Sampler(backend, options={“default_shots”: 1024})
), or set them after initialization:sampler = Sampler(backend) sampler.options.default_shots = 1024
- Review all the supported options and make updates accordingly.
- Group each circuit you want to run with the observables and parameter values you want to apply to the circuit in a tuple (a PUB). For example, use
(circuit1, parameter_set1)
if you want to runcircuit1
withparameter_set1
. You can optionally specify the shots you want for that specific PUB. - Update the sampler
run()
method to pass in the list of PUBs. For example,run([(circuit1, parameter_set1)])
. You can optionally specifyshots
here, which would apply to all PUBs. - Sampler V2 job results are grouped by PUBs. You can see the output data for each PUB by indexing to it. While Sampler V2 returns unweighted samples, the result class has a convenience method to get counts instead. For example:
pub_result = job.result()[0]
print(f">>> Counts: {pub_result.data.meas.get_counts()}")
print(f">>> Per-shot measurement: {pub_result.data.meas.get_counts()}")
You need the classical register name to get the results. By default, it is named meas
when you use measure_all()
. When defining your circuit, if you create one or more classical registers with a non-default name, use that name to get the results. You can find the classical register name by running <circuit_name>.cregs
. For example, qc.cregs
.
Sampler full examples
Run a single experiment
Use Sampler to determine the counts or quasi-probability distribution of a single circuit.
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.quantum_info import random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, SamplerV2 as Sampler
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=127)
n_qubits = 127
mat = np.real(random_hermitian(n_qubits, seed=1234))
circuit = IQP(mat)
circuit.measure_all()
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(circuit)
sampler = Sampler(backend)
job = sampler.run([isa_circuit])
result = job.result()
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.quantum_info import random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, Sampler
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=127)
n_qubits = 127
mat = np.real(random_hermitian(n_qubits, seed=1234))
circuit = IQP(mat)
circuit.measure_all()
sampler = Sampler(backend)
job = sampler.run(circuit)
result = job.result()
print(f" > Quasi-probability distribution: {result.quasi_dists}")
print(f" > Metadata: {result.metadata}")
Run multiple experiments in a single job
Use Sampler to determine the counts or quasi-probability distributions of multiple circuits in one job.
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.quantum_info import random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, SamplerV2 as Sampler
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=127)
n_qubits = 127
rng = np.random.default_rng()
mats = [np.real(random_hermitian(n_qubits, seed=rng)) for _ in range(3)]
circuits = [IQP(mat) for mat in mats]
for circuit in circuits:
circuit.measure_all()
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuits = pm.run(circuits)
sampler = Sampler(backend)
job = sampler.run(isa_circuits)
result = job.result()
for idx, pub_result in enumerate(result):
print(f" > Counts for pub {idx}: {pub_result.data.meas.get_counts()}")
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.quantum_info import random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, Sampler
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=127)
n_qubits = 127
rng = np.random.default_rng()
mats = [np.real(random_hermitian(n_qubits, seed=rng)) for _ in range(3)]
circuits = [IQP(mat) for mat in mats]
for circuit in circuits:
circuit.measure_all()
sampler = Sampler(backend)
job = sampler.run(circuits)
result = job.result()
print(f" > Quasi-probability distribution: {result.quasi_dists}")
Run parameterized circuits
Run several experiments in a single job, leveraging parameter values to increase circuit reusability.
import numpy as np
from qiskit.circuit.library import RealAmplitudes
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_ibm_runtime import QiskitRuntimeService
# Step 1: Map classical inputs to a quantum problem
num_qubits = 127
circuit = RealAmplitudes(num_qubits=num_qubits, reps=2)
circuit.measure_all()
# Define three sets of parameters for the circuit
rng = np.random.default_rng(1234)
parameter_values = [
rng.uniform(-np.pi, np.pi, size=circuit.num_parameters) for _ in range(3)
]
# Step 2: Optimize problem for quantum execution.
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=num_qubits)
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(circuit)
# Step 3: Execute using Qiskit primitives.
from qiskit_ibm_runtime import SamplerV2 as Sampler
sampler = Sampler(backend)
job = sampler.run([(isa_circuit, parameter_values)])
result = job.result()
# Get results for the first (and only) PUB
pub_result = result[0]
# Get counts from the classical register "meas".
print(f" >> Counts for the meas output register: {pub_result.data.meas.get_counts()}")
import numpy as np
from qiskit.circuit.library import RealAmplitudes
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_ibm_runtime import QiskitRuntimeService
# Step 1: Map classical inputs to a quantum problem
num_qubits = 5
circuit = RealAmplitudes(num_qubits=num_qubits, reps=2)
circuit.measure_all()
# Define three sets of parameters for the circuit
rng = np.random.default_rng(1234)
parameter_values = [
rng.uniform(-np.pi, np.pi, size=circuit.num_parameters) for _ in range(3)
]
# Step 2: Optimize problem for quantum execution.
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=num_qubits)
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(circuit)
# Step 3: Execute using Qiskit primitives.
from qiskit_ibm_runtime import Sampler
sampler = Sampler(backend)
job = sampler.run([isa_circuit] * 3, parameter_values)
result = job.result()
print(f" > Quasi-probability distribution: {result.quasi_dists}")
print(f" > Metadata: {result.metadata}")
Use sessions and advanced options
Explore sessions and advanced options to optimize circuit performance on QPUs.
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.quantum_info import random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, SamplerV2 as Sampler, Session
n_qubits = 127
rng = np.random.default_rng(1234)
mat = np.real(random_hermitian(n_qubits, seed=rng))
circuit = IQP(mat)
circuit.measure_all()
mat = np.real(random_hermitian(n_qubits, seed=rng))
another_circuit = IQP(mat)
another_circuit.measure_all()
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(circuit)
another_isa_circuit = pm.run(another_circuit)
service = QiskitRuntimeService()
# Turn on dynamical decoupling with sequence XpXm.
sampler.options.dynamical_decoupling.enable = True
sampler.options.dynamical_decoupling.sequence_type = "XpXm"
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=127)
with Session(service=service, backend=backend) as session:
sampler = Sampler()
job = sampler.run([isa_circuit])
another_job = sampler.run([another_isa_circuit])
result = job.result()
another_result = another_job.result()
# first job
print(f" > Counts for job 1: {result[0].data.meas.get_counts()}")
# second job
print(f" > Counts for job 2: {another_result[0].data.meas.get_counts()}")
import numpy as np
from qiskit.circuit.library import IQP
from qiskit.quantum_info import random_hermitian
from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session, Options
n_qubits = 127
rng = np.random.default_rng(1234)
mat = np.real(random_hermitian(n_qubits, seed=rng))
circuit = IQP(mat)
circuit.measure_all()
mat = np.real(random_hermitian(n_qubits, seed=rng))
another_circuit = IQP(mat)
another_circuit.measure_all()
options = Options()
options.optimization_level = 2
options.resilience_level = 0
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False, min_num_qubits=127)
with Session(service=service, backend=backend) as session:
sampler = Sampler(options=options)
job = sampler.run(circuit)
another_job = sampler.run(another_circuit)
result = job.result()
another_result = another_job.result()
# first job
print(f" > Quasi-probability distribution job 1: {result.quasi_dists}")
# second job
print(f" > Quasi-probability distribution job 2: {another_result.quasi_dists}")