{ "cells": [ { "cell_type": "markdown", "id": "4f546a10", "metadata": {}, "source": [ "(samplex-io)=" ] }, { "cell_type": "markdown", "id": "2997d421", "metadata": {}, "source": [ "# Samplex Inputs and Outputs\n", "\n", "## Introduction\n", "\n", "{class}`~.Samplex` is the core type of the samplomatic library.\n", "A samplex represents a parametric probability distribution over the\n", "parameters of some template circuit, as well as other array-valued fields to use in\n", "post-processing data collected from executing the bound template circuit. Its central interface \n", "is the {meth}`~.Samplex.sample` method that draws from this distribution to produce a\n", "collection of arrays.\n", "\n", "This guide is about using the {meth}`~.Samplex.sample` interface, how to query and specify required inputs, and how to inspect expected outputs.\n", "The arrays supplied to and returned from {meth}`~.Samplex.sample` are strongly typed, in the\n", "sense that for any particular instance of a samplex, their names, types, and shapes are fixed and queryable before any sampling is performed.\n", "The various inputs and outputs present in a samplex depend on many factors, for example, whether measurement twirling is present or whether noise\n", "injection is required.\n", "For this reason, we can't generally expect two samplex instances to have the same inputs and outputs as each other.\n", "\n", "## Setup\n", "\n", "To begin, we construct a boxed-up circuit and build it into a samplex and template pair to use in the examples that follow.\n", "Note that while manually boxing up the circuit, we use the names `alpha`, `beta`, `ref1`, `ref2`, `mod_ref1`, `mod_ref2`, `mod_ref3`, and `conclude`, and moreover the circuit has four `Parameter`s.\n", "This guide shows how each of these play a role in the samplex inputs and outputs.\n", "See [the transpiler guide](./transpiler) for information about boxing up circuits automatically." ] }, { "cell_type": "code", "execution_count": 1, "id": "07d0b65e", "metadata": { "tags": [ "remove-input", "remove-output" ] }, "outputs": [], "source": [ "# Without this cell, plotly outputs do not appear in the docs. We hide this cell from itself being\n", "# rendered in the docs by editing its metadata to contain the tags [\"remove-input\", \"remove-output\"]\n", "import plotly.io as pio\n", "\n", "pio.renderers.default = \"sphinx_gallery\"" ] }, { "cell_type": "code", "execution_count": 2, "id": "0176921d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABBcAAAGwCAYAAADynY3AAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAf7NJREFUeJzt3Qd0lFX6x/HfTHog9B46SFMQpAiCYkOxi9ixov5x18IqgoruKnZFVxRdddfesIErdkCUjlQVUXqREnoJCSEkmfmfe2cnpExikmnJzPdzzpx35k67AzM37/u8z32uw+12uwUAAAAAAFBBzoo+EQAAAAAAwCC4AAAAAAAA/EJwAQAAAAAA+IXgAgAAAAAA8AvBBQAAAAAA4BeCCwAAAAAAwC8EFwAAAAAAgF8ILgAAAAAAAL8QXAAAAAAAAH4huAAAAAAAAPxCcAEAAAAAAPiF4AIAAAAAAPALwQUAAAAAAOAXggsAAAAAAMAvBBcAAAAAAIBfCC4AAAAAAAC/EFwAAAAAAAB+IbgAAAAAAAD8QnABAAAAAAD4heACAAAAAADwC8EFAAAAAADgF4ILAAAAAADALwQXAAAAAACAXwguAAAAAAAAvxBcAAAAAAAAfiG4AAAAAAAA/EJwAQAAAAAA+IXgAgAAAAAA8Eusf08HAAAAAGnhwoVlfuyuXbs0adIkXXTRRapXr16Zn9ezZ88K9g5AsJG5AAAAACCkTHDh1VdftVsAkYHgAgAAAAAA8AvTIqKce/NWuebMk/vHRXLv3CVlHjSt4e4WEDhOp1S9uhzNUuU4obecfXrJUatmuHuFSsLtdksbNso1e75cCxZLe/ZKWVmMg4gsMbFStWQ5WreUs29vOY7vIUf16uHuFVBpuHfvkWvej3LPXSD3lq1SZqbkcoW7W0DgOJxScrIcDevL0bun529B40YKNIILUcqdeVB5jz0t97Ll4e4KEGR59oDRbS4//yrXK6/JefaZct54rRwm8ICo5d67T7kPPSGtXR/urgDBlZsnZWfbcTBv0VIpNkbOSwcr5vLB4e4ZEFbuPJfyXvy33N/9YKLN4e4OEER50v79cpvLqjVyvT1Bju5dFXP3HXIkJgbsXdizjtbAwoOPEVhAdHK55friG7lefk1uzkpEd2DhvjEEFhCdcvPkev8j5b3/cbh7giiWkpKigQMH2m3YAgvjXpR72vcEFhCV3It/Ut7DT8p96FDAXtPhtjmhiCa5o8fI/etv4e4GEHbOSwcp5qrLw90NhJg7L0+5t4+UNm0Jd1eAsHMOG6qYc84MdzcQhatFVFSgVovI+8+bcn3+dUBeC6jKHD2OU+w/7g7IazEtIsq4/9hUPLBQvZqc/fvJ0b2bVLMGqeKIKO7cXGnHTrnmL5R77o9SXl7+fa5vpsl5xSVyxMSEtY8ILZu1VTSwULuWnCefKEfXznKYs2gOR7i6BwScOydHStsm19wfbY2lglxfTSG4gLDIzs7Wjh071KBBAyUkJIT0vd3Zh+UyGQsFxcbK0a+PnMf3kOrVlSOWwyREDrcrT9q3X+6FS+WaOVs6mHXkvkVL5N6xU44G9f1+H341UcYULSskpbpin3xIjqap4eoSEFT2ELH9UXKeeILdsc574p9H7kw/YINtjmM7h7GHCDX3nCLjYP16nnGwXt1wdQkI/jjYoZ2cp5ykvK++levl14/cuWmz3H9slqN50zD2ENFo/fr1uuaaa/T222+rQ4cOIX1v95KfpKwCqeAOh2LuGyln964h7QcQKvmnTHp2l3Pg6cq994FCvwHXnPmKGXSe3+/DKeoo45q/oNBts6NBYAHRwnnC8VKbVoXa3POCn8KJysVksRTkPPsMAguIGs6BA6S6dUrdNwCi7e+A45iOBBYQNRytW8rRt0+hNneR30RFkbkQbXbuLnTTToUogSnHkZuVraokNilBDtKZUQpnj+PkKlDEz71rV1j7g9ByHz4s7U8v1OZkHEQUMVMfTYVw95TpRxrNUtRANCnynfe1P2zG/7wCUymrqpiYGP4moBhnj27KKzA1yB2gvwMEF6LNwYOFbjpq1SjxoWaH+r02V6kqGbL2XcUlB245FUSgmkW+85mFfxOIcL7+v4t+JwpgHEQkctSsqYLVvN1F9g2AaFg5rehvoigTWJg4caKqusGDByuW+hEoqlaR73yA/g4wLSLaFF0chEJ2iDZFv/MsmAPGQUSbmCK7fy7GQUSbovvDHBIhyjidQdkfJowFAAAAIKRMEccFC6j3AUQSwnQAAAAAAMAvBBcAAAAAhNTGjRs1dOhQuwUQGQguAAAAAAiprKws/frrr3YLIDIQXAAAAAAAAH6hoCMCrlGfozVw0phCbTmZWUpfl6a1n8zU7699JXeeK2z9A4BgYxwEAADRhuACgmbdpFnaPH2J5HAoqX4ttb2kv3qNuU41j0rVvJGvhLt7ABB0jIMAACBaEFxA0Oxetl7rJs7Kv73yzW81aNZzanflaVryxARl704Pa/8AINgYBwHAt8aNG2vMmDF2CyAyUHMBIZObla2dS1bL4XSqRouG4e4OAIQc4yAAeNSsWVNnnXWW3QKIDAQXQmTKlCkaOHCg6tatq+TkZHXu3FmPP/64Dh8+rGiS0tKzM529LyPcXQGAsGAcBABp7969+vjjj+02muTl5WnTpk1atmyZli5dalfM2LJli1yustfhMc/77LPPgtpPoCKYFhECzzzzjO666y57vUWLFmrevLkdSEaPHq0vvvhC06ZNU1JSkiJNbFK8Euqk5M81bn/NGarbubU9a2eKmgFApGMcBADftm/frrFjx9oTbrVr11Yk2717t6ZPn24DChs2bPB5cjExMVGtWrVSly5ddMopp6hWrVolBhbMsUVubq4NSAwaNCgEnwAoG4ILQbZgwQKNHDlSDodDb7zxhq699lrbvnbtWpvJMHfuXN17770aN26cIk23UZfbS0EbvpyvH+99NWx9AoBQYhwEgOi1ceNGffLJJ1q8ePGfZiYcOnRIv//+u72Y5/Tu3VuDBw9WkyZNfAYWvK9vXtfpJBkdlQPBhSB7+OGH5Xa7NXTo0PzAgtGmTRu99tpr6t+/v1566SWbxdCgQQNFkpXvTNGGz+fJGRer2h2a65hbLlS1xnWVl30kWuuMj9V5U8Zq/aez9Mtzk/Lb+427RYn1a2nakEcVKXYfkj77Q5q9XTqQIyXESB1rSYNbSh2YbghEJMbBwrYdlCZtlH7cKR3MlZJipS61pYtbSS2rh7t3ABAY5uD/v//9rz799FM7DaIgs7/funVrNWzYUHFxccrJydHWrVu1bt06m+FgmOfMmTPHnqS8/PLLbW2Kn3/+uVBgwQQfbrvtNgILqFQILpTTrl279NRTT2nSpEnavHmz6tevr4suukiPPfaYbr/9dr3++usaP368br31Vh04cMDWWjBuuummYq910kknqV27dlq1apUmT56sG2+8UZEkfd02pc1aZq9vmb5U2xes0NmfPaw+Tw7TjL88a9tdh3M1+/bxGvjpQ9o0dbH2/rZRzQf2VNMBPfTZqXcqEuS6pOd+kz5eL+W6C9+3Yr/06UapWx3pke5Sw8ibHQNENcZBj0O50uO/SF9vloqeu/ttn/TBeqlfQ+nBblKt+DB1EgACYN++ffZYwQQLvMy0j1NPPdVeTP210qaKfPfdd/r+++/tcYQJPLzzzjv64YcflJaWViywEBMTE5LPBJQVoa5y+Omnn+y8MDM/bNu2berUqZP90T///PO67LLLbBqT0bVr1/zUJTOnKiEhQT169PD5mv369bPb+fPnK9LtXLRSaz+ZqVYX9lX9Hu3z23f/sk7LX5qsE5+/TcmN66jP2Jv14+hXlbW96hf4yXNL9y6SJqwrHlgoaOkeaegsz1k9AJErGsfBQ3nSbfOlL30EFgoyWV03zZb2RVedYyBqmQLnxx9/vN1Gij179ujBBx/MDyyYrAJzEtKceLzkkktKDSwYJpvhyiuvtI832QpmWrVhCkASWEBVQHChHBkL5513ng0qjBgxwkYPlyxZYm8/+eST+vLLL7Vw4UI7CJhCLIbJSPAWcYyN9Z0kYqZHFHxspPv52U/kys1Tt5GXFW4fN1GuvDydP3Wsts35Ves/m6NI8Noq6fttZXvs9kPSnQskdylBCABVX7SNg//81RNALYv1GdI/lgS7RwAqA1Pg3BxEm20kyMrKspnM5tjAqFevnh599FFdeumlJR4HlMQUdzTTqa+44opC7dWrV9fNN99MYAGVFsGFMjJTHsw0CDPd4emnn1ZKSkr+faNGjdKxxx5rI4otW7ZUjRo1bLt3aZ3SKuB674uWZXgObNhmd5ibnNRFDY7vmN/uzs3TzoUrlVi3ptZ8+L0iQXae9OH68j1nVbq0cFewegSgMoimcXBftvT5pvI9Z+4OaW16sHoEoLIwdQUyMjKK1SSoqt577z17rOCtq2AyGMzqDxVlMqA/+uijQm3m34slKFGZEVwoAzPd4cMPP7QRyMcff9znY7p37263JshQsOqrER9f8gRSM2XCG+0saP369Tr//PNtEMMEIK655pr8Ii9V3S/Pec7OFTxrZ3aw2152in5/7Sv1euh6xSRW/Um3U7dK+yuQ3mtqMwCIbNEyDv73Dymn7Eu35/tkQzB6A6AyWb16ta1BYLZVnVli0iwt7923NyvBmeOGiiq6KoSZlu0t3GiCC2bVOaAyoqBjGUyYMMEu8zJkyBCbjuRLUlJSseCCSWkyfK1l65WdnV3o+YYp4GLWt61Tp459bxN4MNkR5557rq0cW9GqsKbuw7wmnmkYXnZQP1Q4sOEV53bqAfUq9/tsm7dcbza+uMT796/eorebHtmhjk1OtFXRFz/6nla89a3O+vQhHXfvlVr4wJvlfu92R7VTjqMCe7JBUOPKp5Tc78pyP2/a6l1qepGnbgcC78p6jfRo8yO/gwULftSlTZuGtU8InXqxcVrYpfC4Znba9uV5duCKYhz0T62/vKnEzqeX+3nvz/5N488+Iyh9gvS3xs00vPGRVPQvvvhCt45/Jqx9QmS4+OKSx72iduzYYbdff/21XaqxrAYNGiR/fdnhWHVKPrJPf9ttt+uzvTsLPcacHCzppGJBZlU4s9y8l6mZ0Lhx44AFFrw1FszKE2aJSnNM8vbbb2vMmDFlej1TPL60YxFEp67J1fVphyPHrRkZmer8v/3hRo0aadGiRRV6XYILZTB9+nS7NQf8JfGmQRUMLpRlyoOvqRP//ve/tWXLFs2cOTN/HlrTpk11wgkn2FUlLrzwwgp9DjsHrEhwYcf2HdqS4Tv/NN4RIzVU0PV88Bpl/LFDK978xt6ePfwFnT/taf3x9Y/aPt9TJLOstqZt1WF35Uivi3c5VJESRY74ZPv/j+DYF5soFZjemZ19mH/vKJKbkCh5yuLkMzV09uT43vFiHPRPNcXKE2YvH1dsIr/LIDpQrZZU4NjHnMTg3xuBkJmZWebHerN2zbY8zwvEdzWnTadCt/fu3VPsdb3ZxX9m+fLldilJ46ijjtKAAQMCHlgwNRbM/v/cuXPte61cuVIbN260dd3+jHm892Qm4JVaq47UIf+m3G5XQH5bBBfKwPx4jZJ+wGYAMBkFRYMLJlLofb55jK9iLt60Ju9jvWcQzCoSBQvc9OnTx66J+/nnn1c4uGCiUEU1aNhA+2seqR9R9IxdqaW9AyD11G5qdX5ffXbaiPy2Axu327N3fZ+9RZNPHaHcrLIPiE0aN6k0Z+wSHRXbuXdnZyo1NTXg/YFHrVq1Ct1OSIjn3zvKMheKMmeYkkrJXGAcrLg4d8XOljlzsvhdBlFKjcJ/9032JP/eCIRq1aqV+bHegIL5/pXneYH4rsbFFf5bULt2HaWq8H5badOaC/IuO2+cffbZFc4wLi2wYJjjiIEDB9pl742pU6eWaRn7Jk2akLmAYuoXyNwxHA5n/m/L1zFjWTncJpcHpTLTE0yGgYkWmoN8XwVcrrrqKlsfYf/+/fnLxpjpDWa+lflBz5s3zw4SRbVv396uFGGyFW666ab8ZWjMcjUvvPBCoceaGgw7d+60r1VROecXrk4e+8LTcjRv5vuxBw/pvTZXqSoZsvZdxSVX5DxZ4E3ZIo0ue5ZfvjNTpUc9JTwQBHlfT5XrpVfzbzs6dVDsE2VLLUTV5967T7nXDivUFvvuq3IUOdjyYhz0z/trpX8uL//zhrSW7jgmGD2Ckff+R3J9MDH/tqNvb8XefUdY+4TIYFZOK6sVK1bYmmImxb9DhwKnUP9Ez5495a+c4aOk9Z6Th0bMnbfKefKJhR5jDvInTjzyO/HFPOa6666z25o1a+rFF18s98oQZQkseB08eFB//etfbV03c9xhjh+8xx0lGTx4cIX6hMjmWrFKeaP+fqQhKVFxH77l9+tS0LEMvNEbs/RkUSadduTIkfa6WYKy4A/c/Oi9qVH/+c9/ij3XTHswgQUTGb3gggvy200go+jZVW+Qw6yfi6rhlMZS3bJl1BVySctg9AYAQu/cZlJCBfY0BjMOAhGvbdu2+vbbb+22qtq0aVOhoovBDCwYycnJ9sSk9yRmpBR7R+QguFAGp5/uKUb15JNP2mBAweisqcOwa5dn7cCuXYsX4bv//vttwMEUennrrbcKTYe44YYb7PVhw4bZJWsQWeKc0pWty/ecLrWlY+sEq0cAEFo14qWLWpY/MNvcd+1kABHEHIibmmNV+az6unXr8q9XZNnJ8gQWfL1PwfcHKgOCC2VgVmqoW7eujU4effTRNjJpCrb06tXL1kEwKy4UrbfgZQaJJ554wlaSNWlTLVu2VLdu3Wz615o1a3T88cfb+wsyA+2+ffuKvZbJWjDZC6g6rm4rnVPGhQiaVZPG9jRznoLdKwAIneGdpBPKGD/vWFN6gMVygKhgiqGPGDEivyh6VWSLpf9PwVppwQosFH2f7du3l7vPQDARXCgDs1LDrFmzdM4559jlJTds2GAP8l955RV9+eWX+dkMvoIL3uDEN998Y6dImJoMZo6ZKeD46KOPasaMGTbFqaCOHTvqt99+K/Y6ps3ch6rD6ZAe6Cbd1E5KLuFvhYklnNRIer2fVLdyTJMGgICJdUr/7CVd3qrkKRIxDumsptIrfaXqxWtuAohAGRkZdv/abKsqUyftmGOOsfv1vqY0l8QcO1QksGCYYxAzNcKc7DQnP4HKpOrmIYWYOag3qzgUZQZEE2wwlWHN4FKSM888017K4txzz9Xo0aNtJNcENowff/zRTqUYO3asH58C4QowDOsgXdVW+nqTNGu7NMeztLP16WlS07IXSQaAKhlguKuzdGN76Ys/pB93SvMKLCn/+elSg6Rw9hAAKjZ12jt9ujxMJrPJhv7555/LFVgwTPbzmDEUokblRHDBT2ZtWzPlwUQsi2YgVNT//d//afz48bbIoxk8TEVYk/1gpmEULPxY1dXrdpROGDtMMYnxOpi2W7NuG6+D2yK3YGW1WOniVp5Lr8me1e3MSTwCC0DkSmnVSCc+d5sS6qQo58BBzR7+gvatKpwCXL1pffV77lbVOaalMv7YockDPEWCI1GteE+g1VwKjoMEFgBEE1PM3UwJMZnNJjO6rIEFoLJjWoSfli1bVuqUiIqoUaOGpk+fbtdev/zyy+0atieccILNnKjo2rmVjsOhk168XQv+8YY+7Xe7Nn+3VL0euj7cvQKAgDrhqWFa9e5UO84te+G/NohQ1OGMLC15coJm/vW5sPQRABCeAINZZp7AAiIJmQuVMLhgtGnTxuc0jKroxBeHq2abJnLGxSpz6y7NvfMlJTepK3eeS9vmehZAX/nOFB139+WKSYhTXnZOuLsMAH5LrFtDdY9toymXP2xvb/xyvno/doNSWjbSgQ1HioAd3pehHQtWqFGfo8PYWwAIrfr162v48OF2CyAyEFyopMGFSGKyE7J3p9vrnW+9UF3vulRbZ/6sjM1HJtzmZh6yZ++SGta2acEAUNVVS62nrO17bSDVK2PLLtteMLgAANHIFCMcMmRIuLsBIIAILvjJTF9A6VoP6qc2F/e3WQnmkr3ngA0uAAAAIDqlp6drwYIFtqaYmRIMoOqLkAn8qKwa9OqgjjecrWlDHtVnp9yphQ++ZQMMGZt32SJmXrHVEhWfkmzP8gFAJMjcsstmYzlijvyprZ5az7YDQLTbunWrXR3NbAFEBoILCKr4mtWUm5Gl7L0ZtuZCu6sH2Pbdv6yTIzZGjU7wzDFuf/UZ2jR1EfUWAESMQ7vTtWfZerUZfJK93eKc3spM28OUCAAAEJGYFoGg2vL9T3bHetDs52yAYeusX1StUR3J7dasW59Xn6eG2UwGk7Ew87bnw91dAAiouaNeUb9xt6jz7RcpJyNLs//2om0/4embtWnKInuJSYrXRbPHKyYhVnEpybpk8StaO3GGljz2fri7DwAAUGYEFxBU7tw8zbj52UJtS5+YYLc7F6/S5NNGhKlnABB86Wu36qvz7ivWPveul/Ov52Ud1sfdh4W4ZwAAAIHFtAgAAAAAIZWQkKD27dvbLYDIQOYCAAAAgJBq1aqV3nnnnXB3A0AAkbkAAAAAAAD8QnABAAAAQEitXLlSffv2tVsAkYHgAgAAAICQcrvdysnJsVsAkYGaCyhRbFKChqx9V1WtzwAQKIyDABCdYmJiNHjw4IC/7thXPtSBzEylVKumkcMuK7EtkJ8DCBWCCyiRw+FQXHJiuLsBAGHDOAgA0Tv+x8YG/lDJ5Gm43J6t9/V9tQFVEdMiAAAAAACAXwiNAQAAAAipli1basKECUpNTQ13VwAECMEFAAAAACGVmJioNm3ahLsbAAKIaREAAAAAQiotLU2PPPKI3QKIDAQXAAAAAITU/v37NXnyZLsFEBkILgAAAAAAAL8QXAAAAAAAAH4huAAAAAAAAPxCcAEAAABASNWpU0fXXnut3QKIDAQXAAAAAISU0+lUXFyc3QKIDPyaAQAAAITUrl279Oqrr9otgMgQG+4OAEC4udPT5f5xsdxp26TMTMntDneXEEixsVK1anIc1UZq2TzcvQEqJffuPXItWCzt2CkdPMg4GGni4jzjYMf2cnQ5Wo6YmHD3CEAEIrgAIKq5N/6h3GuGSS5XuLuCUEhKDHcPgErHvWy5cof+lYBCtEhJkaNPT8VccYkcdal3ACBwmBYBILplHiSwEE2yDoW7B0Dlk36AwEI0OXBA7inTlXv/QzZjBQACheACAAAAEG22pHkCDHv2huXtU1JSNHDgQLsFEBmYFgEgqrhLOjsXHy9H185ymCWxYpmLGknchw9Lm7bIvWIVZ2cB85vIzfV9R3KSHMd2lqNWTYk5+ZHD7faMg+s3yr1mXeH7tqTJ9fnXirn2ypB3KzU1VQ899FDI3xdA8BBcABBdtm0v1uQ8a4Cc118lRyLz8SOZe9du5T70hLThj8LtublyhK1XQBiY4rVFOC8fLOfFF8oRHx+WLiE03Fu2Kvfhp6Stafltrjnz5bzmCjkcoR0Js7OztWPHDjVo0EAJCQkhfW8AwcG0CABRxb12feGGhHg5b76BwEIUcNSrq5jbby7W7l72W1j6A4SL+48thRtq1lDMlZcSWIgCjtQmihlxW/Gg+7oifxtDYP369Ro8eLDdAogMZC6g1PTx3KxsVSWxSQkhj7yjitm5s3jV7BK+M3YKRXbV+g0ogd9AaRx16xZrc5sd2/59fT6ecRARqegc+3rFfxdejIORx9G2tdSwgbR9R36be/U6Odq0Dmu/ULmY335eXp6qupiYGMaDECK4gBKZHer32lylqmTI2ncVl8wZaJQi+3Dh26WlYmZnK/fSa1WVxH70lkQWRvlXDCkB4yAikpl/X1BSUsmPZRyMOOZAy9G0idwFgwuZmWHtEyofE1iYOHGiqjqTHRMbyyFvqDAtAkB0KbrsJNFslFTcDohU7iLjoJNxMOoUnQKTwzgIwH8EFwAAAAAAgF/IEQEAAAAQUh06dNCCBQvC3Q0AAUTmAgAAAAAA8AvBBQAAAAAhtXHjRg0dOtRuAUQGggsAAAAAQiorK0u//vqr3QKIDAQXAAAAAACAXyjoiIBr1OdoDZw0plBbTmaW0telae0nM/X7a1/JnVdkGSwAiCCMgwAAINoQXEDQrJs0S5unL5EcDiXVr6W2l/RXrzHXqeZRqZo38pVwdw8Ago5xEAAARAuCCwia3cvWa93EWfm3V775rQbNek7trjxNS56YoOzd6WHtHwAEG+MgAPjWuHFjjRkzxm4BRAZqLoTIlClTNHDgQNWtW1fJycnq3LmzHn/8cR0+fFjRIjcrWzuXrJbD6VSNFg3D3R0ACDnGQQDwqFmzps466yy7Bcrr999/D3cX4AOZCyHwzDPP6K677rLXW7RooebNm9vquKNHj9YXX3yhadOmKSkpSdEgpaVnZzp7X0a4uwIAYcE4CADS3r177T7w6aefrtq1a4e7Owiy7OxsLVu2TGvXrtX69eu1detW5eTkyOFw2BOv5viodevWateunY466ijbXpKPP/5YEydO1GWXXaZBgwaF9HOgdAQXgmzBggUaOXKk/YG88cYbuvbaa227+WGZTIa5c+fq3nvv1bhx4xRpYpPilVAnJX+ucftrzlDdzq3tWTtT1AwAIh3jIAD4tn37do0dO9Zm8xJciFxpaWmaOnWqZsyYoczMTJ+P2bNnjzZv3myPi4zU1FQNGDBAJ510kg08+AosGB9++KG6dOmiNm3ahOCToCwILgTZww8/LLfbraFDh+YHFgzzI3jttdfUv39/vfTSSzaLoUGDBook3UZdbi8Fbfhyvn6891VFq+1Z0rwdkvt/t83W7bbHHVHhcJ40Z4eUdlAydfIbJkonNpQSI3wkmrFrhwbM+0FPdOqiO9t08PmY+M8/0tkNGuu/x5+oSLbvsDR7m7T3sBTnlFpWl3rVl5wR+htgHCxuU4a0YFfhcTCaZOVKs7ZLOw555qY2SZb6NvT8HiIZ4+ARuw55/hbuPywlxEjtakhd60TPvgCig5n6bQIBJkvbHAsVZbK2vZnb6enpys3Nzb9vy5YtevPNN/Xpp5/qhhtuUK9evYoFFoxrrrmGwEIlE+G79IG3a9cuPfXUU5o0aZKNsNWvX18XXXSRHnvsMd1+++16/fXXNX78eN166606cOCArbVg3HTTTcVey0TjTOrPqlWrNHnyZN14442KJCvfmaINn8+TMy5WtTs01zG3XKhqjesqL/tInQlnfKzOmzJW6z+dpV+em5Tf3m/cLUqsX0vThjyqSPDrXumt1dLM7VJegfHVXB0yQ7q8tXRes8jdsTiQI729RvrvRs9BZUEpcZ7Pft1RUp2EcPUQwbYxQ3pztTRli5RdZAXG1GTpkpae30FshB1gMQ4esXCnZxyYt7NwuxkHh86ShrSRTmuiiD6gfGuN9PkfUsaRfWirboJ0YQvp6jZS9bhw9RDBtmK/Zxz8Pq3wvoDROkW6rJU0qEXkBlsRPcy0hxdeeMEGCbzi4uLUp08f9ejRQ61atVK9evXypz6YwII5rjKZ3bNnz86vp7B//37985//tM8zx1zmeKlgYOHss88Ow6dDaQgulMNPP/1kC89s27ZN1apVU6dOnex8oeeff97+GExKj9G1a1e7Xbp0qY3aJSQk2B+SL/369bPBhfnz50dccCF93TalzVpmr2+ZvlTbF6zQ2Z89rD5PDtOMvzxr212HczX79vEa+OlD2jR1sfb+tlHNB/ZU0wE99NmpdyoSmIOpfyyRcks4PbcqXXroJ+mnPdJ9x0oxEbZTsSNLunW+tO5AyYGH99dJM7ZJL/SWmlUPdQ8RbEt3S3f8WPyAymvLQWncb56Dzqd7SkkR9JeJcdDjo/XS2GUlZyn8slf6ZZF0bVvp1o6RF2jdkCHdOk/aluX7/t3Z0murpJnbpPG9pXqJoe4hgs38jbt3kXS4SHDVy/yNfPwXafFu6aFukRdoRfQwgYEnn3xShw4dsrdjYmJ04YUX2ungKSkpPp8TGxurli1b2stpp52mP/74w055WLx4sb1/3rx5hR5PYKHyYugqR8bCeeedZwMLI0aMsPOHlixZYm+bH9CXX36phQsX2gicmftjmKCBt4ij+dH44k3l8T42ku1ctFJrP5mpVhf2Vf0e7fPbd/+yTstfmqwTn79NyY3rqM/Ym/Xj6FeVtX2vIuFM3d9LCSwUNPkP6fnlirj03+E/lhxYKHqAedt8T9o8Isf6A6UHFgr6cad03xLPVKFIFY3joAmwPlVKYKEgc2b/3bWKKHuzpdtKCSwUtDpd+tuP0qG8UPQMofLzHumeUgILvn4v0cDMpT/++OOLzalH1bV69Wo98cQT+YEFk6Fgbl9yySUlBhZ8McUdTTF8kwluMh4KuvzyywksVGIEF8rITHkw6TrmS/70008X+oGMGjVKxx57rE3pMRG3GjVq5FfBNUorUuO9z/vYSPfzs5/IlZunbiMvK9w+bqJceXk6f+pYbZvzq9Z/NkeRYPzvxVMfSzNhnaceQaT4YpNnZ7msNh+UPtmgiHUwL0+7srN9XiLVf1aVLbDgZc7cLtmtiBZN46AZ/577rXzP+fdKKSNHEeOD9VJaGQILBVPnv9msiBWN4+CLv0s5ZQgseE3aKG0oQ1C+qjMHkGYqsdmi6svIyLBTGMyqEN5M7jFjxqhZs2YVej1zwtaczDUrShRkjsdQeRFcKGN6j0nNMXODHn/8cZ+P6d69u92aIIOXN2oXHx9f4mubKRNGVtaRPQ9vEMMULzH3l7YUS1VzYMM2u8Pc5KQuanB8x/x2d26edi5cqcS6NbXmw+8VCZbvlX7bV77nuP63UxEJzNnnjysQKPh0g5Rbjp2wquShlcvVZMpnPi+ROsd8+tbyPy+SA0zRNg7O3u4pZFseWXnSlxGy72gOKE2tmfIyY2ekZvBE2zi4Nr1iAdOJEbIvUJq8vDx7QGq2qPrefvvt/JOlHTt21J133lnqMdCfKVq80ftapibDokWLAtBjBAPBhTKYMGGCXC6XhgwZourVfU8I91Y7LRhcSEz0TJo0dRdK4o3ueZ9vrFmzxv6YGjVqpJ49eyrS/PKc5+xcwbN2Zge77WWn6PfXvlKvh65XTGLFB6PK4tsjNWzKxaRERoK1B8o2HaKo7Yc8KaSR6MbmrfV17/4+L5Hoh7SyTQkqanqaZ2WRSMY4+CfPi5DgwuJdnnoK5bVyv/SH7xXbqrxoGwenViDAGkm/gT9LoT/11FPtFlXbL7/8opkzZ+Yf05iTpIEMLJgaCwVr0/3nP//JP4mLyiWCymYFz/Tp0+32lFNOKfEx3hSdgsGFskx58DV1wqwiYdKAjAcffFBz5gQmNdYUlZzXpPByLXZQP+T7tFKc26kH5Fn6pTy2zVuuNxtfXOL9+1dv0dtNj+xQxyYn2qroix99Tyve+lZnffqQjrv3Si184M1yv3e7o9opx1E5TnvXvO55JfW6qNzP27QnU02bHpmLXVXFt++rOsM/rNBzLxt6sw4t+ULBsLBzT9WLO/IHb/XqVTqjaVOfj01yOvVb1z4Be++21avrtPoNFUxmBZosV+X4DVQ/5057qUgqfdvOx8mVviPgfaoXG6eFXQqPax98+KHuGfuYz8czDvqn9u0fKKFDv3I/b8nKDWp6RfmfV9kk9hykWtePr9BzTz7nIuWsXaBgWNm1j+KdR84vzZk9R1cxDgZFjSueUPKJV5X7ebsPudS0WYugpbD8q1V7nVW7Xv7tp58eq/F3Dff7dS++uORxr6gdOzxj/Ndff51fuK8sBg0aJH992eFYdUo+csLwtttu12d7iyxlEySDrv+bqlWvobRtaWr6v9+dr7ZwM8GBkjK2izK157yuvvpq1a1bN6CBBVNjwSxnaQrgm5p3ZhUJk8Fw+umnl2k8KO1Eb7Tqmlxdn3Y4ctyakZGpzv/77pkT3BXNDiG4UAYbN27ML8zoi6m14A0AFAwumC+z9/nmMb6KOppVJgo+1nAW+IMfSKb4pIoEF3Zs36EtGb4nxcc7YqTg/v23ej54jTL+2KEVb35jb88e/oLOn/a0/vj6R22f71mKpqy2pm3VYXflOOUZeyBdR/JRys6Ve7jQ0j1VVfWaaapTwefu3rld+4L0b+A62jOFySsnJ7fEf+/kmBjJs/hLlWFWsDFzmiuDRnt3q6KLf2zdvFF5BwKfwpKbkCh5au7mO3jwYInfAcZB/yRlZaoiK8zmZJf8f1KV1G61Q7Uq+Nyd27YqM1j/Bl3dxbIoGQeDw5m+TxUqV+jK05Ygzi0/1LjwPm16+oGA/OYyM8uecuOdEmy25XleIPqZ06ZTodt79+4J2Zhjsta8W+97+moLN+/U7bIcX/z888/2eoMGDXTyyScHPLBgmGnil156qQ0uGFOmTLErS/zZ9HEzHngzxXFEaq06Uocjt91uV0C+ewQXysA74BWsi1CQqcdgVpMwRR5NVVSvbt262aif+UKb6E/v3r2LPddE3QxTLTfYTBSqqAYNG2h/zZQSz9jZIgBBlHpqN7U6v68+O21EftuBjdvt2bu+z96iyaeOUG5W2QeEJo2bVJozdgmZ2yv0PNeujUpNTVVV59RBuV0uOcoRLDNRafNHomZuuqoF6d+gaPAuLi62xH9vc8auqmnSpEmlOWOXeKhilRldB3arUc1qUo2KhOf+PHOhKFOpvKTvAOOgf2L3e7LwysuxZ1NEjIOxufsLjW1l5c7LVR3nIdUK2r+Bo9hBBONgcCQerNjZ8Lyd64P6G/BO3fWqUSMlIO9nlmov7/61SaMvz/MC0c+iKxDUrl1HqQpNQMppAnb/23o/i6+2cCvrtIYffvgh/7rJJKjoSdLSAgtepnD+UUcdZafSmOUq161bl7/yXmnjAZkLxdUvkLljOBzO/O+er2PGsiK4UAbmH9hMXzCRsj59CqcGmukLI0eOtNfNEpQFdx5MsGHAgAE2VcjMDSoaXDBzk8wSlObHe8EFFwT9c5gAR875lxWb8uFo7ruKa87BQ3qvTflT+crDrPv+fodri7Wbs3feM3jlsWr1KsUlV44Fwnceks6dWr7VIowxF3TVoNsjY7KlWVLNFHQrK7uUa23p9YXfBa1POVffJO0/kq1z1FHttHmq7ykY7kOHlHtp8e9nZWbGFEeRncZwMXUTzpkq7S3n3/TrutXV7Zv+CEqf3Hv3KffaYYXaLr/sMl01/K8+H8846J9V+6UrZ5T/eS/ddKZO/HvVHwdNRvvVM80KEOUrzHxq01iN/f2noPUr56IrpdwjB1J9+/XV5h++9flYxkH/mOWVz55StmUoCxp1ejtdOSx4v4Hcx5+Re96RaTd33TVSd18+2O/XNcuyl9WKFStsXbOzzjpLHToUOIX6J8aNGyd/5QwfJa0/UjVz/Pjn9eLJJyoUHnvxPaVnZKpxo8b506p9tYWbyboueLBfkoI1M/r16xe0wIJX375989/TbP8suGDGA1/Z49HOtWKV8kb9Pf929erVAvLdq3rh6DDwzud58skn7Re04ABq6jCYrAXvkitF3X///faA6Y033tBbb71VaDrEDTfcYK8PGzbMphEhstRPlE4uZ+Cveqw0sHIErAPi4paheQ4qp/gY6YJyrjBmDsEu8j0DDVVQu5rSseWcH9U4STohBFNRQsGcb6jImHYJ42DEqBUvnVHOv+sJTunciq3eV6W0bdtW3377rd2iajJZWevXr8+vH1enTp2gBhaMgt8X73uj8iC4UAajRo2yhUk2bdqko48+Wp07d7YpOWapyNatW9uiiEXrLXiZbIUnnnjC/viuu+46m85jpkuYCK1ZFcJMhzD3IzLd1VlqmFT2H+OY46SkCAqu9m0gXViOg8vTGksDK0cdIwTI0HZSh5plf/wdR0tNy54diyrg712lGsVno/gU75QePk6KiZwVmHVec+mkRuULLPQ8UmcPEWB4J6lpOQov/KObVKPqLxbzp8zZZHNAylnlqsucYDV1i4yCU8ODFVgwmjdvnj/1wlsXD5UHwYUyMFVbZ82apXPOOcfOUduwYYONzL3yyit2yoM3m8FXcMEbnPjmm2/sFAlT3dSkgZkCjo8++qhmzJhh5/sicrMXXjlBal7tz3eoH+sh9a/4FKdKe9buni7S4DKciT4z1XNQ4Yyggwqv/vUa6PB5l+rONiWnfZr7/3t8aFIyQyk5Vnqhj+x0l9KY//a/HS1dWXp2I6qgltWll07wjIelqRYrjTte6lrxIuOVkgmUPNbdEzz9M5e38gSly1GeocqI5nGwdoL0cl+pje8SV/liHdKYbp6/h9HApGCPGDGi0kwDQPkVrEdXq1atoAcWDDOd3Fujo6R6eAgfQoVl1LFjR33xRfF52RkZGTbYYCJoxxxzTInPP/PMM+0F0cechX3/ZGnqFunjDdJv+47cVzfBkwJ+YYuyZzhUNbFOT4DBpHiaz2/W/M4pMPf09CaetOHudSNzhxqetOB/95VmbZc+Xi8t8Mwky3dFa08AquWf7Hij6mpfU/r4FOnrzZ5xYN2BI/c1SfaMg2YKjTkIi0SJMdITPaRFuzyff8a2wvV4zmsmDW4pHV2LcTBSNUqS3j5J+m6r9MkG6Zciq5Rff5Q0qIXn9xAtzD60OXl30003hbsrqCBTLPFf//qXLZhY1tUljLy8PJvBXd7AgtdDDz2kmJiYcr0nQoPggp+WL19upzyYTIRAZiB88skndvvbb78Vum2mVfTo0UOR4OT/jFCDHu2V3KiO3m9/jQ6ne9KqInXH0qTGmsvuQ9KBXE9bvQTPwXekMzvLnet4LibQ0P8ryexXm31os8ONyGe+56c09lz2H5ZO/+bId2BEyXHZKi+lVSOd+NxtSqiTopwDB+0Sk/tWFT5LV71pffV77lbVOaalXY5y8gBPkeBIUz1OuqSVJ5i4K1vKzPFkttRNjKxpEKWNgz3rey4ZOdIpXx/5DTzQLdy9QygkxEhnN/Nc9mZLZ3x75DtwS8dw9w4oPzOlpSJ1FkxgwGStPPPMMzbzuzyBBaNx4zKkgiEsCC74admyZaVOiaioSy65xOfta6+9Vm+++aYiwcq3p2j+Pf/R5b++rmhidqQjLOu3XMzBhNmR8u5QIfrUjI+e78AJTw3Tqnenas1HP6jFOb1tEOGLs+4p9JjDGVla8uQExack67h7rlA0HGSbKRJ/Nk0ikplAS7T8BuCbydLhO4BoZqY33H333RVeuhKVE8GFShpcMNkQkeLEF4erZpsmcsbFKnPrLs298yVl7dyntFmefzsAiESJdWuo7rFtNOXyh+3tjV/OV+/HblBKy0Y6sGFb/uMO78vQjgUr1KjP0WHsLQAAoUVgIfIQXKikwYVIsuAfbyh7d7q93vnWC9X1rks17+5/h7tbABBU1VLrKWv7XrnzjhQZydiyy7YXDC4AQDSqX7++hg8fbrcAIgPBBT9Nnz493F2o9FoP6qc2F/dXTEKcvWTvKVDJCwAAAFHHLPM+ZMiQcHcDQACRi4KgatCrgzrecLamDXlUn51ypxY++JYNMABApMvcsktJDWvLEXPkT2311Hq2HQCiXXp6uqZNm2a3ACIDwQUEVXzNasrNyFL23gxbc6Hd1QPC3SUACIlDu9O1Z9l6tRl8kr1tCjpmpu1hSgQASNq6datGjx5ttwAiA9MiEFRbvv/J7lgPmv2cDTBsnfWLqjXyLFlz2jv3qk6nlvb6BT88qwPrt+mbwQ+EuccAEDhzR72ifuNuUefbL1JORpZm/+1F237C0zdr05RF9hKTFK+LZo9XTEKs4lKSdcniV7R24gwteez9cHcfAACgzAguIKjcuXmacfOzhdqWPjHBbr+7+vEw9QoAQiN97VZ9dd59xdrn3vVy/vW8rMP6uPuwEPcMAAAgsJgWAQAAAAAA/EJwAQAAAEBIJSQkqH379nYLIDIwLQIAAABASLVq1UrvvPNOuLsBIIDIXAAAAAAAAH4huAAAAAAgpFauXKm+ffvaLYDIQHABAAAAQEi53W7l5OTYLYDIQM0FlCg2KUFD1r6rqtZnIGASEhT70VuqUiiMFVCMg4h6jINAVIqJidHgwYOD8tpjX/lQBzIzlVKtmkYOu6zY7UB/DoQOwQWUyOFwKC45MdzdAML6G1Aiv4FoxjiIaMc4CETvbz82NjiHiiZXxeX2bM17FL2NqotpEQAAAAAAwC+EhgAAAACEVMuWLTVhwgSlpqaGuysAAoTgAgAAAICQSkxMVJs2bcLdDQABxLQIAAAAACGVlpamRx55xG4BRAaCCwAAAABCav/+/Zo8ebLdAogMBBcAAAAAAIBfCC4AAAAAAAC/EFwAAAAAAAB+IbgAAAAAIKScTqe6detmtwAiA79mAAAAACHlcrm0dOlSuwUQGQguAAAAAAAAvxBcAAAAAAAAfiG4AAAAAAAA/EJwAQAAAEBIpaSkaODAgXYLIDLEhrsDAAAAAKJLamqqHnrooXB3A0AAkbkAAAAAIKSys7O1adMmuwUQGQguAAAAAAip9evXa/DgwXYLIDIwLQIlcrvdys2qWtHk2KQEORyOcHcDQIRgHAQAIHr3AfLy8lTVxcTEhGy/gOACSmR2qN9rc5WqkiFr31VccmK4uwEgQjAOAgAQnUxgYeLEiarqBg8erNjY0Bz2My0CAAAAAAD4heACAAAAAADwC9MiAAAAAIRUhw4dtGDBgnB3A0AAkbkAAAAAAAD8QnABAAAAQEht3LhRQ4cOtVsAkYHgAgAAAICQysrK0q+//mq3ACIDwQUAAAAAAOAXCjoi4Br1OVoDJ40p1JaTmaX0dWla+8lM/f7aV3LnucLWPwAINsZBAAAQbQguIGjWTZqlzdOXSA6HkurXUttL+qvXmOtU86hUzRv5Sri7BwBBxzgIAACiBcEFBM3uZeu1buKs/Nsr3/xWg2Y9p3ZXnqYlT0xQ9u70sPYPAIKNcRAAfGvcuLHGjBljtwAiAzUXQmTKlCkaOHCg6tatq+TkZHXu3FmPP/64Dh8+rGiRm5WtnUtWy+F0qkaLhuHuDgCEHOMgAHjUrFlTZ511lt0CKB+Xq3JOrSRzIQSeeeYZ3XXXXfZ6ixYt1Lx5c1sdd/To0friiy80bdo0JSUlKRqktPTsTGfvywh3VwAgLBgHAUDau3ev3Qc+/fTTVbt27XB3BwiJzMxMrV+/3i7Baq6bIEFcXJwaNWqk1q1bq2HDhnI6Sz//b05OP/vss2rXrp0GDRqkyoTgQpAtWLBAI0eOlMPh0BtvvKFrr73Wtq9du9ZmMsydO1f33nuvxo0bp0gTmxSvhDop+XON219zhup2bm3P2pmiZgAQ6RgHAcC37du3a+zYsTabl+ACIllmZqZmzpyp6dOna9OmTaU+1mS49+rVS2eccYYNNpQUWFi6dKm9xMTE6Pzzz1dlQXAhyB5++GG53W4NHTo0P7BgtGnTRq+99pr69++vl156yWYxNGjQQJGk26jL7aWgDV/O14/3vhq2PiH83G7J7b0e5r4gPPKi6DvAOAhfXFH0G4BvuS6+A0Cky87O1kcffWQzdMz1sjh48KB++OEHe2nbtq2uv/56e9xYNLBgJCQk6KijjlJlQnChnHbt2qWnnnpKkyZN0ubNm1W/fn1ddNFFeuyxx3T77bfr9ddf1/jx43XrrbfqwIEDttaCcdNNNxV7rZNOOsmms6xatUqTJ0/WjTfeqEiy8p0p2vD5PDnjYlW7Q3Mdc8uFqta4rvKyj9SZcMbH6rwpY7X+01n65blJ+e39xt2ixPq1NG3Io2HqPQJtY4Y0cYP0+abCO1RP/CJd3FJqWyPMHUTQg0pL90gfr5empxX+Dry6UrqwhVQvURGHcRAFrdovfbxB+mZz4d/AuOXS4BZSs+ph7iCCHlSav9MzDs7ZXvg78O4a6bzmUs34MHcSQED8/vvvevnll22GTkEmG8EEDczWZOyYKRCHDh3SH3/8oXXr1um3335TVlaWfeyaNWt0//3328wEc3nhhRcKBRbuuecedezYUZUJwYVy+Omnn2zhmW3btqlatWrq1KmTtm7dqueff95Oc9izZ499XNeuXe3W/OebCJP5z+/Ro4fP1+zXr58NLsyfPz/iggvp67YpbdYye33L9KXavmCFzv7sYfV5cphm/OVZ2+46nKvZt4/XwE8f0qapi7X3t41qPrCnmg7ooc9OvTPMnwCBOqh8ZaX06irf93+ywXO5rJV05zFSjCPUPUSwHcyV7lsszSr89zXfy//7ftzfVTq3mSIK4yC8Z6nHLpMmbvR9/7trPZebO0g3HGVn0SDC7MuWRiyUfvbsKhYz7jfP38rHe0j9qPUKVGlTpkyx0+FN9rphaiqccsopGjBggJo1872j07NnT7s1gYY5c+bo66+/tieyzWt89tlnmjp1qs1qqMyBBYPVIsqRsXDeeefZwMKIESOUlpamJUuW2NtPPvmkvvzySy1cuNDWVujSpYt9jgkaeIs4xsb6juN401y8j41kOxet1NpPZqrVhX1Vv0f7/Pbdv6zT8pcm68Tnb1Ny4zrqM/Zm/Tj6VWVt3xvW/iIwxv9ecmChoA/XS4//7AlGIHIczpPu+LHkwIJXrlt6cKn0xR+KaIyD0ceMaQ//VHJgoaCXV3gOMBFZMnKkv8wrObDglZUn3blAmv0n42WkMHPLjz/+eLsFIsXXX39tM9m9gQWTpW6OFc0U+ZICCwUlJibqtNNO0xNPPKHLLrssv7ijN7AQHx9faQMLBsGFMjJTHkz0yEx3ePrpp5WSkpJ/36hRo3TssccqNzdXLVu2VI0aNfKr4BqlFanx3ud9bKT7+dlP5MrNU7eRlxVuHzdRrrw8nT91rLbN+VXrP5sTtj4icBbtkt5eU/bH//cPT8o8Iof5/1+8u+yPf/hnaYcnGzBiMQ5Gl2+3SF9uLvvjTTD2zw5CUbW88Lu0Or3sUydMpldmriKeWT3NTCU2WyBSCvm/9dZb+bfNVIYHH3xQTZo0KfdrmRPT55xzTrGaCo0bN1b79kdOTlQ2BBfKOGfmww8/VL169fT444/7fEz37t3t1gQZvExaizfCVBKT1mJ459YYn3zyiQYPHmwzHkw0t0OHDrrvvvuUkVH1ly07sGGb3WFuclIXNTj+SMTNnZunnQtXKrFuTa358Puw9hGBY+aVlvs5G4LRE4QrFbwsZ2uLFnv8tJzPqWoYB6NLRca0ioydqJxM1sKXpReHL8YEFr4uR0CqqsrLy7P7tmYLVHXp6el69dUjxZrNEpFXXnnlny4rWRJv8caVKwuns5klLL/55htVVgQXymDChAl2DdIhQ4aoenXf1ZaSkpKKBRdMWov3y1ESb+VQ7/MNkxlhlhUxRSJNas1f/vIXu6KEWbrS9KOq++U5z9m5gmftzA5228tO0e+vfaVeD12vmEQqGlV1uw9JP2yrWLbDhqofR4M8qb07PTHWcjHBBXP2LpIxDkaHNekVy0KYttUzRx9V3zdbPNMdymtSFATaV69erVNPPdVugarO1FhIT/ekKJlae5deemmFX8vXqhAFVx384IMP7BT9yoiCjmVg1iQ1TCGOkpgpE0WDC2WZ8uBr6sTnn39uV6HwMstVmtsmuDF79my7ykRFmC/6vCaeGg9edlA/5DsHOc7t1APqVe732TZvud5sfHGJ9+9fvUVvNz2yQx2bnGiroi9+9D2teOtbnfXpQzru3iu18IE3y/3e7Y5qpxxH1Q/ARIK4Nr1Ud8SRyvflcdplNyj7528VDAs791S9uCMHbatXr9IZTZsG5b2iXbUzb1XKBfeU+3m7sqUW7Y+R++C+gPepXmycFnYpPK598OGHumfsYz4fzzgIfyQed65q3fhyuZ9napB0O+085Wzw7FgG2squfRRf4GzanNlzdBXjYFCkXPqwqp18fbmft3LPYTVtWnyN+0D5V6v2Oqt2vfzbTz89VuPvGu736158ccnjXlE7duywW3MibfHixWV+njkj7K8vOxyrTslHThjedtvt+mzvToXCoOv/pmrVayhtW5qa/u9356stkhX9vJX185vs85Ky1gvasGGD5s2bZ6+bE9GmSL+pwxeowIK3xoKp9fftt9/ax3z66af661//WqbXNHUfip7s7ppcXZ92OHLcmpGRqc7/+7dv1KiRFi1aVKH+E1woA5N+YphpCr6YWgumqmfR4IL5j/Q+3zzGV1FHs8pEwccaBQMLXt7VJrZs2VLhz2G+kCoSXNixfYe2ZPieCBjviJFCULG454PXKOOPHVrxpifFZ/bwF3T+tKf1x9c/avv838v1WlvTtuqwm/S6yiClXrrqVvC5e9MztNeP73ppXEd7pjB55eTk+vW7QskaZ2XrSHWa8tm+e49y9gQ+Kp+bkCh5au7mM0WSSvoOMA7CH3WOylStCj531979ygjW2NTVXSyLknEwOJpn56haBZ7niI3Xlq1bg1bl+FDjwvu06ekHAvIdyMzMLPNjvVOCzbY8zwtEP3PadCp0e+/ePSH7DZisNe/W+56+2iJZ0c9bWT+/d/r6nzErORQMsNWqVSvggQXjiiuusCeaze/FBDOuvvrqQnUAS2JWN/Rmy3ul1qojdThy2+12BeTfnuBCGXgHvIJ1EQoy9RjMahLmP7dVq1b57d26dbMRL/OfaaI/vXv3LvZc8wUxTLXc0nz/vWf+rT+VQU0UqqgGDRtof82UEs/YKcgnv1JP7aZW5/fVZ6eNyG87sHG7PXvX99lbNPnUEcrNKntuaJPGTThjV0nEJnrOiplqueWN3taKl5JTU4PSr6Jz3+LiYpUapPeKdsnOilUkc7vy1CAlSUpKDUrmQlGmtk1J3wHGQfgjvvjX7U95x8w6STGqGbSxqfCYbHZgGQeDI8ldsfktroy9Sq1AEbiy8k7d9apRIyUg3wGzVHt596/N1ODyPC8Q/TRLAxZUu3YdpSo0QVlnTEz+1vtZfLVFsqKft7J+/tLq5hU8QeE9nktMTLQZ58EILBR8/a+++ko5OTn64Ycf7GqGf8YUlCyauVC/QOaO4XA48//tfR0zlpXD7V0nAyXq1KmTLer4wgsv6JZbbil0n5nvYoo5mm3fvn3zv1xe5557rl2m0iw/8tprrxW6b+bMmfYLYr64mzZtUoMGDXy+v4kimUCFeR+TOuaPnPMLVyePfeFpOZr7XhYl5+AhvdfmKlUlQ9a+q7jkwn8wER5mzvzg6dKmsp+MsOrES18MkOI9f2cCLufqm6T9BbJ1mqYq7l//DM6bRbltWdL5U8t/bH5SI+mf5Z+JUCbuvfuUe+2wQm2O0/ordrjv1ELGQfjjUJ50zhRpf075ntequvTRKWZnLzj9yrnoSim3wIFUl6MV98g/gvNmUW7FPumqmeV/3qAW0n1HkmEDLvfxZ+SetyD/tvPKSxVz+WC/X9csy15WK1as0DXXXKO3337bFi8vq549e8pfOcNHSeuPVA+OufNWOU8+UaHw2IvvKT0jUzWqV9PoW4aU2BbJin7eyvr5Teb5xIkTS32MCQaYpSaN0047TTfddFNQAgsFjwtHjPCcjOjcubMt+v9nzEIBRTPoXStWKW/U3480JCUq7sMjK11UFAUdy+D000+3W/PFWbVqVaEB1NRhMFkLRteuXYs99/7777dnIEyRj4JLk5jpEDfccIO9PmzYsBIDC6aK7gUXXGADEGbNVKCqcDqkwS3L/7wLWgQvsIDQapTkCRSU1yUV+N4AlVFijHR+BVbZu7hV8AILCK0OtaRjSl6RPKrHwbZt29r542YLVFXr1x9Z3qdjBTLMyxNY8GYh1KxZM/+9K1ueAMGFMhg1apTq1q1rswuOPvpoGyUya4726tVLrVu3tkURi9Zb8DJTIZ544gn7H3/dddepZcuWNgvBRGjXrFljp0OY+30x0zBMqov54kyZMsWuawpUJRc0l5qVY7Jp/UTpsiMzixABbmwnJZTjL02PetLxxcvOAFXW5a2lOmWbtmu1rC6d6zuhEFXUXzp4Au5ldUaq1M5z7BDRzJlUU9DcV00yoCoGF1q3bh3UwIJhTlp7p+Gbk9A7d4amEGlZEVwoA1O1dNasWTrnnHPsXBdTEbROnTp65ZVX7JQHbzaDr+CCNzhh1iMdMGCA9u/fb9PATAHHRx99VDNmzLDzfYsy82hMQRBTq8FMhTBTM4CqJiVOev54qfGRlVZLVDfB89h6ZHNH3Fm7J3tK8WX4a3N0LWlsz/LthAOVXcMkz9hmasn8mdRk6fneUjWOtSKKCZj+o2vZxrY+9aUHiifCRiSz0ppJ7/auuAZURQVXBWxUjloFFQkseBU84VzaqoThwJ+vMjL/0V988UWxdhMxMsEGUyTumGOOKfH5Z555pr2UhcvlsstOfvfdd7Zgh8mQAKqqZtWlN06UXlkpfb3ZMwe5IHPQOaCJNKyD1KR4nA0RoF9D6bV+0r9XSrO3S0UT+MxB14XNPVkOifxVQoQG2d404+AKaVqalFOkEElSjHR2U884WJ4sB1QdJhvFTBV7bZW00DObtpAGiZ6phNe2lWKj5NSf2Yc2J+8qMkcdqCxMnQVzgtnUZ3AWKRpems8//7xCgQWjS5cu9jlm2rzJrq9M2I3z0/Lly+2UB5OJ4CsDoSJM0ciPP/7YfsnMa86fPz//vjZt2vhcqhKozEw2gilMNbyTNHWrlHbQc4BpdqZMYKEWO9MRr2Mt6dnjpa0Hpelbpb2HPYGlFtWlUxpLCdTZQIRrWk16uLt0R7ZnHNx1yLNmgwmqnt5Eql6BlSVQtZhpX+ay/oA0Y5t0IMcz9h1VQzqxYfQEFYBIYurvVcR5551ns99NRnt5AguGmWJvLpURwQU/LVu2rNQpERXhXRHC1GIoWo/BFIY0tRuquqSGtdVv3C2q3rS+8g7nKn19mubd/W9l7y5QxR8Rx+w8mwrYiF7mQOqqKKrdldKqkU587jYl1ElRzoGDmj38Be1bVTgF2IyD/Z67VXWOaamMP3Zo8oCRYesvgs9kJlBbJrq1SvFcAESv+Ph4Oy3IrP7graEQCQguVMLggplmEenceS79/Own2rFghb3d4+9Xq+ffr9bsv70Y7q4BQMCc8NQwrXp3qtZ89INanNPbBhG+OOueQo85nJGlJU9OUHxKso6754qw9RUAAIQ2wNAqggILBglYlTC4EGlOfHG4zv3mSZ3/3TM67Z17lVS/lg7t2p8fWDB2Llmt6s18L8cJAFVRYt0aqntsG62d6FnkfuOX81WtSV2ltCxc8Onwvgw7HuYezA5TTwEg9Mw03+HDhzPdF4ggZC74afr06eHuQqW34B9v5E936Hzrhep616V2CoSXw+lUx6Fn6Y9vF4axlwAQWNVS6ylr+16bqeWVsWWXbT+wYVtY+wYA4WYK0ZkC5gAiB8EFBF3rQf3U5uL+ikmIs5fsPQcK3d/7iRuVvT9Dv/3ny7D1EQAAAKGTnp6uBQsW2FXRatSoEe7uAAgApkUgqBr06qCON5ytaUMe1Wen3KmFD75lAwxexz8yVNWa1NOMYc9K7qIL1AFA1ZW5ZZctXuuIOfKntnpqPdsOANFu69atGj16tN0CiAwEFxBU8TWrKTcjS9l7M+SMi1W7qwfk39fr4aFKadVY04c+JVdOblj7CQCBdmh3uvYsW682g0+yt01Bx8y0PUyJAAAAEYlpEQiqLd//ZHesB81+zgYYts76RdUa1VGDnu3V6caztW/1Zp375eP2sQc27dD3Q8eGu8sAEDBzR71il93tfPtFysnIyl8R54Snb9amKYvsJSYpXhfNHq+YhFjFpSTrksWvaO3EGVry2Pvh7j4AAECZEVxAULlz8zTj5mcLtS19YoLdvtn44jD1CgBCI33tVn113n3F2ufe9XL+9bysw/q4+7AQ9wwAACCwmBYBAAAAIKQSEhLUvn17uwUQGchcAAAAABBSrVq10jvvvBPubgAIIDIXAAAAAACAXwguAAAAAAiplStXqm/fvnYLIDIQXAAQXZxFhj23O1w9QWURywxBRBlHkXHQxTgYdXJyCt+OjQl5F9xut3Jycuw21BwxRT4vS6Ij2seAmMCMAexRoUSxSQkasvZdVbU+A6WKjy98+/DhcPUElUVycol3MQ4iIsXHFd6xPHQonL1BiJmDeXfatsKN1aspqlQr/HmL/XsA9ng7RoMHDw7464595UMdyMxUSrVqGjnssmK3g/E5iik2BlQPyHsRXECJHA6H4pITw90NILDq1pG27zhy+8CBcPYGIebet79Ym6N50xIfzziIiFSrppR58Mjt3XvC2RuE2h+bpC1phZocLVsomjhatZD752X5t13zfpTz6svtmA94me9DbBCyG93/SxgzW/P6RW+HgmvugkK3HS2bB+R1mRYBIKo42rQu3HAoW3nvfSR3Xl64uoQQcR88qLxXXivW7ji2c1j6A4SLo1mRgNrefcr74hu5Xa5wdQkhDLDmjvtX4cZ6deVo11bRxNG3d+GGLWlyvf6O3LlMj0Bkc7tcyvv8a7mX/FSo3dm3T0Ben8wFANGlSaNiTa4PJ8r1zVQ5ehwnh8lsCMPcUwSJmct7OEfuzVvkXvJz8TmGZiez6FQZINKlNi7W5Pr3G3JNmixn965SrVpSDOefImoczD4s94Y/PGfriwTTnSccL0fRekQh0LJlS02YMEGpqakhf28bTKlfT9q5K7/N9dmXck2f4dkXqF83ePV4sv6XNZR1UHkffFJyWyQr+nn5/Cp0OxjyXNK+fXItWlo8Wy0uTo6exwXkbQguAIgqZgfKZ+mo/elyf/eD7/sAIII44uJ8j3W7dsv17Xeh7xDCp15dOc87KyxvnZiYqDZt2oQt3T3mmiuV98/xhQs7H8iQ+/uZwd0X6NFXSkiUDmbJ9f60ktsiWdHPy+dXOD+/8/LBciQnBea1AvIqAAAAAKqOenUV+8g/5GjYICxvn5aWpkceecRuw8HZv69i/naLiTSE5f2BysB55aWKuWRQ4F4vYK8EAFVRIpX1o0oYUn+BSi8pMGesUEXEx8nRu6cnsOBjqmCo7N+/X5MnT7bbcHGecqJi7r5DjqPCk0EBhE2zpnLefINiLg/sahhMiwAQ1RytWylm+F/kmvuj3GnbpcxMiaJmkSU2Vo7q1Tw7j+3bKe+WO8PdI6BScRx3rGKuuFiueQvkNnPQMzILp4ojMgIK1arL0am9p6ZAgFKgI4GpOWEu7u077L6AtqbJnRHEfQHH/+r8xMfL0adXyW2RrOjn5fOr0O2gvKfDLjnrqF9Pzj7Hl7pSlj8ILgCIeo7GjRQz+IJwdwMh4N67L9xdAColR/NmimneLNzdAMLGTA+JGXRe8N/oxfc8AbyUFMXecnPJbZGs6Ofl8ytSPj/5oQAAAAAAwC8EFwAAAACElNPpVLdu3ewWQGTg1wwAAAAgpFwul5YuXWq3ACIDwQUAAAAAAOAXCjoCAAAAiFrunFy5f1nmWS1iS5rcwVw5qkkbKTZO2rdPOd7Vi3y1BZgjIcEWDHR07Sxn395yNKgflPdBdCO4AAAAACDquN1uuT75r1yffu6p1h8KDVt6Agl5edKmLSW3BZh3cVn30p/leuNdOdofpZgRt8nRqGFQ3g/RiWkRAAAAAEIqJSVFAwcOtNuwBRbe/1iudz4IXWChEnGvXK3c0WPk3rY93F1BBCG4AAAAACCkUlNT9dBDD9ltOLgmTZbrw4mKart2ewIMe/eFuyeIEEyLAAAAABBS2dnZ2rFjhxo0aKAEUw8ghNx5eXJN+rxYu5kq4Di+hxz16kqxQTpMWvi7dDhXSqmumFF/K7kt0A5mybVyldzzFhTO1Ni1W65ZcxVz/tnBeV9EFYILAAAAAEJq/fr1uuaaa/T222+rQ4cOIX1v9y/LpQMHCrXF/PUmOQeeHvw3/3mdJ5AQnyBnvz4ltwWB84xT5b52iHLvf0ja8Ed+u3v2PIngAgKAaREAAAAAooZ73o+Fbjvatg5NYKEScNRIUczVVxRqc69YJffuPWHrEyIHmQsotdBNbla2qpLYpAQ5HI5wdwNAhGAcBIDI4966rdBtMxWi1Me73cozKzkEgBmdnQ7PNjc3t8Q2f8TExJT6d8DRtYsUHy8dPpzfZgo7OurW8fu9Ed0ILqBEZof6vTZXqSoZsvZdxSUnhrsbACIE4yAARB53ZuHVIWyNhVKYwMLEiYEp/ti6XqxUr6a97n1NX23+GDx4sGJLqRnhiIuVatWUduw80hiFK2Yg8JgWAQAAACB6uFyFb8fEKOoUDT4U/TcBKoDMBQAAAAAhZYo4LliwINzdABBAZC4AAAAAAAC/EFwAAAAAEFIbN27U0KFD7RZAZCC4AAAAACCksrKy9Ouvv9otgMhAcAEAAAAAAPiFgo4IuEZ9jtbASWMKteVkZil9XZrWfjJTv7/2ldx5VKQFELkYBwEAQLQhuICgWTdpljZPXyI5HEqqX0ttL+mvXmOuU82jUjVv5Cvh7h4ABB3jIAAAiBYEFxA0u5et17qJs/Jvr3zzWw2a9ZzaXXmaljwxQdm708PaPwAINsZBAPCtcePGGjNmjN0CiAzUXEDI5GZla+eS1XI4narRomG4uwMAIcc4CAAeNWvW1FlnnWW3ACIDwYUQmTJligYOHKi6desqOTlZnTt31uOPP67Dhw8rmqS09OxMZ+/LCHdXACAsGAcBQNq7d68+/vhju4022dnZ2rVrl7Zt22a35T0eWL9+vebNmxe0/gEVxbSIEHjmmWd011132estWrRQ8+bN7dI7o0eP1hdffKFp06YpKSlJkSY2KV4JdVLy5xq3v+YM1e3c2p61M0XNACDSMQ4CgG/bt2/X2LFj7Qm32rVrK5KZ4MH8+fPt/v+6deu0ZcsWud3u/PtjYmLUtGlTtWrVSscee6x69uyp2NjYEgMLjz76qDIzM+VyudS3b98QfhKgdAQXgmzBggUaOXKkHA6H3njjDV177bW2fe3atTaTYe7cubr33ns1btw4RZpuoy63l4I2fDlfP977atj6BAChxDgIANFr3759+vLLL/XDDz/owIEDJT4uLy9PGzdutBfz2Fq1aum0006z00aqV69eLLCQkeHJfDMnKPv06SOnk2R0VA4EF4Ls4YcftpHJoUOH5gcWjDZt2ui1115T//799dJLL9kshgYNGiiSrHxnijZ8Pk/OuFjV7tBcx9xyoao1rqu87COpX874WJ03ZazWfzpLvzw3Kb+937hblFi/lqYNeTRMvQcA/zEOAkD0Mfv+c+bMsScWTYZBQSZLoVmzZmrUqJHNTsjJyVFaWpo2bdqUn81gghITJ07Ud999pxtvvFE9evQoFlho3769Ro0aRWABlQrBhXIy86KeeuopTZo0SZs3b1b9+vV10UUX6bHHHtPtt9+u119/XePHj9ett95qI5Sm1oJx0003FXutk046Se3atdOqVas0efJkO3hEkvR125Q2a5m9vmX6Um1fsEJnf/aw+jw5TDP+8qxtdx3O1ezbx2vgpw9p09TF2vvbRjUf2FNNB/TQZ6feGeZPAAD+YRwEgOhy6NAh/etf/7LZy14miNC7d2+deuqpatu2reLj433WYVixYoUNKCxatMhOeTBBhqefflrHHXecPV4oGFi45557InJaNao2Ql3l8NNPP9l5YWZ+mCnA0qlTJxttfP7553XZZZfp999/t4/r2rWr3S5dutTOsUpISLARR1/69etnt2YeVqTbuWil1n4yU60u7Kv6Pdrnt+/+ZZ2WvzRZJz5/m5Ib11GfsTfrx9GvKmt79BX4ARDZGAcBwMMUOD/++OPtNlJkZWXZgu0FAwsnnHCCXnjhBXvi0Rw7+AosGOZ4wdRbuPPOO+2xRbdu3fLvW7JkCYEFVAkEF8qRsXDeeefZoMKIESNs+pL5oZvbTz75pJ1PtXDhQltboUuXLvY5JsLoLeJYUlEWMz2i4GMj3c/PfiJXbp66jbyscPu4iXLl5en8qWO1bc6vWv/ZnLD1EQCCiXEQAGQLnJtsX7ONBLm5uTbLYOXKlfa2Ofg3gQKT2WxqKJRHvXr17JSHiy++uFC7qb9g2gksoLIiuFBGZmAw0yBM1NEMHCkpKfn3mR+5iTSaQaVly5aqUaOGbfcurVNaBVzvfdGyDM+BDdvsDnOTk7qowfEd89vduXnauXClEuvW1JoPvw9rHwEgmBgHAcBTxNCcjTfbSPDf//5Xy5cvt9erVaumf/zjH+rVq1eFX2/Dhg365ptvCrWZf6/Zs2f73VcgWAgulIGZ7vDhhx/aKKJJdfKle/fudmuCDAXnXBklpT95U6C8aVRes2bN0umnn67GjRvb+83SNAWnXVR1vzznOTtX8Kyd2cFue9kp+v21r9TroesVk1jyvxkAVHWMgwCi3erVq20NArOt6kwg4NNPP7XXTYFFc+LRLCtZUUWLN6ampubf9/7779tlPIHKiOBCGUyYMMEWVRkyZEih5WAK8qYnFQwuJCYm2q2pu1ASU7yl4PO9WQymtoOZb2UKQpppFyYSapaaMdkTld22ecv1ZuOLtfzlyT7v3796i95uepm+vfhBezs2OdFWRV/86Hv68e9v6NDudB1375Uh7jUABA7jIABED7MCnDcD44ILLrB1ESrK16oQjzzyiD3x6D12ePvttwPUcyCwWC2iDKZPn263p5xySomP8R70FwwulGXKg6+pE+eff769FNSzZ087uJhlaYYPH16hz2GKSs5r4qnx4GUjxoeOZE0UFOd26gFVPJ2rrHo+eI0y/tihFW96Ur9mD39B5097Wn98/aO2zy9ftka7o9opx+EKUk8RCa6s10iPNj/yO1iw4Edd2rRpWPuE0KkXG6eFXQqPayaYuy8v1+fjGQcRif7WuJmGNz4yz/2LL77QreOfCWufEBmK1ggozY4dO+z266+/1uLFi8v8vEGDBslfX3Y4Vp2Sj5wwvO222/XZ3p0lPt5kIZeUvbx27dr87IsmTZpo8ODBAQ0seIs3mpOcpt7bnj177NZkLzRs2NDn65jV6Eo7uWlM73ScWiUeOblpVq2bsn+PQmHQ9X9Tteo1lLYtzWZoF70d6QZV8s9vlkk1K5ZUBMGFMti4cWN+YUZfTK0Fs5Zt0eCC+WF7n28e46uooxmQCj62JHXr1rXbkgpDloUpPqkiwYUd23doS0a6z8fHO2Ik32NWwKSe2k2tzu+rz04bkd92YON2e/au77O3aPKpI5Sb5cnuKIutaVt12B0Zc/cQHPtiE6UCtaOysw9ry5Yt4ewSQig3IVHy1NzNZwr07snxvRPGOIhIdKBaLanxkdtmaibjIAIhMzOzzI/1Tgk22/I8LxDf1Zw2nQrd3rt3T6mv653G7MvUqVPzr59zzjkV3lcvLbBgmO0ZZ5yhDz74QG63W9OmTbMBB1+2bt2anx1dktx2hf8YmqDFlm2hGQfMtEDv1vy7F70d6VwR/PkJLpSBd8ArWBehIFOPwawmYYo8FpxfZZaQMZFO8+M20R+zvm1R3qIsZimeokx6lZmOYYIT9957r40iXXrppRX+HOb5RTVo2ED7ax4pTln0jJ2CfPLLrPv+fodri7Wbs3feM3jl0aRxE87YoVRFKzYnJMQXmsuIyM9cKMrUt0kqJXOBcRCRJqVG4b/75qCFcRCBYAoZlnf/2nz/yvO8QHxX4+IK/y2oXbuOUlVyULak+mlmP927nLxZUrNv375BCSx4mSzqTz75JP/EZknBBZNB8WeZC0WDIHXq1FFqjELCGROTvzX/n0VvRzpnJf/8vo4Zy4rgQhn/gc30BZOCZOoeFD3jNXLkSHvdLEFplqL0MsGGAQMG2GUq//Of/xQLLsycOdMuQWkGLDM/q6j+/fvnZ0S0bdvWTs+oX79+hT+HCXDknF946TPzmo7mzXw+PufgIb3X5ipVJatWr1JcsqfWBeBL3tdT5Xrp1fzbvXodr83Ty38Ah6rJvXefcq8dVqht2bJlchQ52PJiHEQkynv/I7k+mJh/+9xzz9WFd38X1j4hMphl2cvKHCBfd911dn+5PGf7x40bJ3/lDB8lrfdkJhvjxz+vF08+sdS+mqnJRZmzzN4C7maKnbfeWjACC0bNmjVttvNvv/1mMw327dvnc5lLc3zxZ/+mOTf/zaS65d9+9dVX5ewT/GmAxmMvvqf0jEw1btTYTi0vejvSPRbBn5+CjmXgLaBiCiuaH2vBAdREEE3WgtG1a9diz73//vttwOGNN97QW2+9VWg6xA033GCvDxs2TA0aNPBZHMZEQ01BSbO8pUmF+uOPP4LyGQEAAIBQMQe/puaYP1N+w80EBrxat24d1MCCV8Es6YLvD1QGBBfKwCwnY2oebNq0SUcffbSNTB511FF27VozkJiiiEXrLXiZbIUnnnjCzo0y0dmWLVva6RIdOnTQmjVr7HQIc78vZoAx919++eX67rvvdODAAT311FNB/7wAAABAMJkztCNGjKjSZ2oLzo9v3rxAQacgBRYMcyzh6/2ByoDgQhmYqp2zZs2yRVpMupNZy9bMS3rllVfslAdvNoOv4II3OPHNN9/YKRL79+/XihUrbEqTGVBmzJhh52j9GZPyZKZGmIAEAAAAUJWZg2qzf+09uK6KzHFBvXr17HQFk2VcViYTuSKBBcO8j3k/M1W6pFoQQLhU3TykEOvYsaNdqqkoMyiYYIPT6dQxxxxT4vPPPPNMe6kos1zPypUrfRZ+BAAAABBaZlnMiiyNaU4amhOV5jiiPIEF78lMc4ITqIwILvhp+fLldsqDyUQoSwZCWVx11VU2S8HUcDCDj1k799lnn7Vz0u644w5FgtikBJ35yYOKSfBU683asVfzRv1bGZtLXmMYAKqalFaNdOJztymhTopyDhzU7OEvaN+qwinA1ZvWV7/nblWdY1oq448dmjzAUyQYABCZTPaBqctmlpW8+uqryxxYACo7ggt+MlXGS5sSURGmTsPbb7+t5557zlagbdasmS0cOXr0aLVo0UKRIPfQYX176RjlZnoq7Hb6v3PV6+Ghmn79k+HuGgAEzAlPDdOqd6dqzUc/qMU5vW0Q4Yuz7in0mMMZWVry5ATFpyTruHuuCFtfAQChDTD83//9X7i7AQQUwYVKGFy49dZb7SVSnPjicNVs00TOuFhlbt2luXe+pKyd+/IDC0ZcdROxdYe1nwAQSIl1a6jusW005fKH7e2NX85X78duUErLRjqwYVv+4w7vy9COBSvUqM/RYewtAISWqRkwfPhwv5ZZB1C5EFyohMGFSLPgH28oe3e6vd751gvV9a5LNe/uf9vbZ3z4D9Xu2FyHdqdr6hWPhLmnABA41VLrKWv7XrnzXPltGVt22faCwQUAiEZmJbYhQ4aEuxsAAojggp+mT58e7i5Ueq0H9VObi/vb+grmkr3nQP59Uy57SHI41OVvg9Vl+EWaf++rYe0rAAAAgi89PV0LFiywS7uXZ6UFAJUXS1EiqBr06qCON5ytaUMe1Wen3KmFD76VX8Qxn9ut1e9OswEIAIgUmVt2KalhbTlijvyprZ5az7YDQLTbunWrrSdmtgAiA8EFBFV8zWrKzchS9t4MW3Oh3dUDbHtS/Vr2Pq+WF5ygPb9tDGNPASCwzHSvPcvWq83gk+xtU9AxM20PUyIAAEBEYloEgmrL9z/ZHetBs5+zAYats35RtUZ17JzjPk8Ns2f0HA7pwMbtmnXr8+HuLgAE1NxRr6jfuFvU+faLlJORpdl/e9G2n/D0zdo0ZZG9xCTF66LZ4xWTEKu4lGRdsvgVrZ04Q0seez/c3QcAACgzggsIKndunmbc/GyhtqVPTLDbz89gLXcAkS197VZ9dd59xdrn3vVy/vW8rMP6uPuwEPcMAAAgsJgWAQAAACCkEhIS1L59e7sFEBnIXAAAAAAQUq1atdI777wT7m4ACCAyFwAAAAAAgF8ILgAAAAAIqZUrV6pv3752CyAyEFyINmZphoLyXOHqCRAeLr7zKILvBKL9O1903wAIAbfbrZycHLsNvSLf+Wj8O8A4gCAguBBtkhIL3XSnHwhbV4CwSE8vfDs5OVw9QTgkJxVvO8A4iChT9G+/r98FEMEcRb7z0bY/bAM6Rf/2MQ4gACjoGG3q1pUObs6/6V76s3TsMT4fGpuUoCFr31VVYvoMlMa99JdCtx11a4etLwiD+HipejUpIzO/ybXkZ8U0a+rz4YyDiMSDCvOdL8hRp07Y+gOERd3C33m7P3zhuSU+PCYmRoMHDw7IWz/w7Bv2d+hwODTmjutLbPOH6W9p3CtXS5kHC7U5ivybABVBcCHKOHt1l2vTkeCC6/uZcp5zphz16xV7rBng4pILZzoAVZnr51/lXrGqUJvj+J5h6w9Cz4xrjl495J4+I7/N9c1UOU85SY4aKT4fzziISOKeOUfasbNQm/P4HmHrDxAO5jufZ34L/+P++Ve5fl8pZ8f2Ph9v/hbExgbmsMnlNkE+z8QM72v6agsWd16eXBM/K9zYtInUpHFQ3xfRgeBClHH261N4QNm7T7mj/i7ngFPl6NFNjpo1TLgznF0EAsvM59yxS+55C+Sa9n3h+6pVk+PYzuHqGcI4DuYVCC5oS5py77pPzjNPk7NrFymluuRk1iAiyOEcudPS5Jr7o9zfFfjuG40bSa1bhqtniGItW7bUhAkTlJqaGvL3dvQ4ToqPs78Ny+VS3oOPyW32h3v3lKNeXXOUH6R399aYcMu9a3cpbYF8S7eUdUjuFSvl+m6G3L8XLqLp7NvHBlAAfxFciDatW8rRtrXca9Ydadu9R64PPpHMBYgizlNPkiOOYTDa2IBSg/qFz95u2y7XW+/bCxBNnGecykEFwiIxMVFt2rQJy3s7khLlOLGv3N/9cKQx65Bck7+SzCWYTjjVUzzR5Vbu0L+W3BYq8XFy9u8b2vdExOLUTJQxOxAx/7hHau57fjEQLRx9e8s59OpwdwNhYAJKsY/8XfIxHQyIJs6zz5TzovPD3Q1EqbS0ND3yyCN2Gw4xf73Rk8EQzeLjFHPfKDmahj57BJGJ4EIUctSqqdhH/iG1bB7urgBh4Tipr2Luul0OpgBFLUejhop99B9Swwbh7goQFs7zzpJz2PVkLSBs9u/fr8mTJ9ttODji4hRz7522Dk9USkywgQVnty7h7gkiCPnA0RxgGPekLW7nnjNfrvkLpd27PRVlgEgTGyM1TZXTZCuYeYWmcBGing0wvDxO7l9/84yDCxbbOjR2bioQaeLi5GjVwpO11be3HGZqEBDlTIAh9v6Rcv+xSa7Z8+WaM1/amibl5SkiVUu2UwNN7SFbay2RgsUILIILUczhdMrRqYPUqYNibrpObpdLOpRdoKgMEAFMdkJ8PGfn4JPJXrE1GI7trJi/3sQ4iMgUEytHQny4ewFUWo7mzRRzpblcYpeEVHa2LfIYFC+85wliO52K/eCNktsCLSGBjE0EHcEFFAo2KDkp3N0AgLBhHASA6GZPRoTojL4jOblMbUBVQc0FAAAAACFVp04dXXvttXYLIDKQuQAAAADAbz179izX488555yg9QVA6JG5AAAAAAAA/EJwAQAAAAAA+IXgAgAAAAAA8AvBBQAAAAAA4BeCCwAAAAAAwC8EFwAAAAAAgF8ILgAAAAAAAL8QXAAAAAAAAH4huAAAAAAAAPxCcAEAAAAAAPiF4AIAAAAAAPALwQUAAAAAAOAXggvI984776h79+6qXbu2kpKS1LFjR/3zn/+U2+0Od9cAAAAAlOCrr75S165dlZCQoJYtW9p9+Ggyc+ZMXXDBBWrRooUcDoceeeQRRYuxY8eqT58+9hiuVq1a6tevn7755puw9CU2LO+KSqlBgwb6+9//rvbt29uBadasWfrrX/+qmJgYDR8+PNzdAwAAAFDEokWL7IH1XXfdpQkTJujHH3/UzTffrOTkZLuNBhkZGerUqZOuvPJK/e1vf1M0mT59uoYOHaqePXva//NXX31V5557rmbMmKG+ffuGtC8EF5DvzDPPLHS7devW+u9//6sffviB4AIAAABQCZksBXNg+fjjj9vbJvt4+fLleuKJJ6ImuHD22Wfbi3H33Xcrmnz99deFbj/11FM2c2HSpEkhDy4wLQI+makQCxYs0Jw5c3TKKaeEuzsAAAAAfDD76wMHDizUZm5v3LhRmzdvDlu/EB4ul0vp6emqVq1ayN+bzAUUsn//fqWmpurw4cP2i/nAAw/o9ttvD3e3AAAAgCpl5oJftDltR6E2by0zs33/s2klthltWqTq+K4d//R90tLS1KhRo0Jt3tvmvqZNmyocNm/bqZk//lysPevQofyt+bxFb3vFx8XpggF9FRdXNQ9Z81wuTZ46R1mHsiv0+Y3exx2t1s0al+t9H3vsMe3bt0//93//p1Crmv9TCJqUlBT99NNPOnjwoObOnat7771XTZo00Q033BDurgEAAABVRse2zTV11kLl5Ob5vP+XFetKbEtKTNC5p/ZRVdakYT1lHTqs1Rt8Z0+Yf5eC/wZFb194Rr8qG1gwYpxOtWrWWB98Pl0V+fzNmzRQi9SGKo9//etfNrgwefLksASVmBaBQpxOp9q2basuXbrYOVqjRo3SfffdF+5uAQAAAFVK/Tq1dPYpvSv03EFn9FONlLKltTdu3Fjbtm0r1LZ9+/b8+8LF6XDo4rP720BJebVr1axMWRuVXddObXVsxzblfp4Jqlx67ik2QFFWTz/9tEaOHGkDC6effrrCgeACSmWmRhz6X6oOAAAAgLLr3a2T2rVqWu4D0i7lOCA1Rfu+/fbbQm2moJ9ZljFcUyK8aqZUsxkI5ZGcmGCDEmZJyUhwwYC+qlE9uVzPOffU3qpXu2aZH/+Pf/xDY8aMsUuShiuwoGgPLmzYsMF+ac1asIFy3XXX2dd88803VdWY+grTpk3TunXrtHLlSv3nP//Rk08+qWuvvTbcXQMAAACqHHNccPFZZT97bw7GzcFoedxxxx22ELvJNl6xYoXeeustjR8/Xvfcc48qA3Pmvjxn7wedeWK5D8bNUpRmare5mNpxJpPDXF+zZo3CLTkpUZecfXKZH9++dTP1OrbsWRtm6c2xY8fqnXfeUfv27e1nNxdTSy/Uojq4gMJMVVEzFeLoo49W79699fLLL9slbczyNgAAAADKz0xvMNMcysIchJZ3GoFZhtIsH//FF1/o2GOPtWexH3300Uq1DOUFZppH9T+f5tHt6Lbq3KF1uV9/0aJF6tatm72YIpYvvviivX7jjTeqMjiqVVP1Oe7oP31cclKCBp9VvqyN5557zmaaDxo0yE6D8V6GDx+uUKu6FTIQcM8++6y9AAAAAAgcM83htzUb9dNvJZ9Jj4+LVduWqRV6/XPOOcdeKisz1eGSc/rrtQ+/KjVr4/zTy5e14XXyySfnr7pRWZ118vFas2Gzdu7ZH9Csjcr0uclcQLm53G59/NUPWrV+c6X6MgMAAACVlZnuUNoZ6cSEeEWyo1o21Qndjynx/kvOKX/WRlUS/78ijabQpS/HHXOUOrcvf9ZGZUJwAeX22+oNWrxsld7771Qdyj4c7u4AAAAAlZ45cC794DkyChiW5qz+vewqGkX169FZbVtULGujKmnWuIFO7XtcsfZaNapXOGujMomo4MKvv/6qBx980FZMTU1NVXx8vBo0aKBzzz1XU6dOLddrmaiiN7I4adIk9evXTzVq1LCXU089tUyvZ5aA+ctf/mKrtCYkJKh169YaPXq0z9UX8vLy9Nlnn+mGG27QMccco9q1ayspKUlHHXWUbrvtNm3ZskWVJWvhuzlL7HUTeYzk6CIAAAAQSLExMcXaEuLjFC3MEouXmbP3ziOBlAZ1a+vM/j0VLU7p003NGtfPv+34X9ZGJGSuRFRwwVTKNEtwLF++3AYBunTpopiYGH355Zc644wzbLGL8ho3bpwGDx5sV08w1TdNwOL777+3r2cKHpZk06ZNOu644/Taa6+pfv36NsBgVqcwBRIvueSSYo83hUcuvPBCu8rE7t271apVKxuM2Lp1q1544QX7WqtXr1ZlyFpI27HbDoL9enYOd3cAAACAKsd7cN28SYOoCi4YTRvX12kndLfXY5xOXXbeKYqLjZ5SgDFOp50eERfrCTT17dlZbZo3USSIqOCCqYj6888/a9++ffr9999t1VBz0G6CAY0aNdJdd91lD/DLY9SoUXrsscfsch4LFy602QgmO8K4/fbbbSDDl4cfftgGBEzGwdKlS7V27Vrbj2rVqtlKrkUzH1JSUvTGG2/Y1zd9XrJkiX3tHTt26KGHHrLbv/71r6pMWQvVkhLD2h8AAACgKjLZv+ZMtTnIjIbpEEWd3KernSJwer/uSm1YT9Gmfp1aOvuU3mpYr7bOPClysjYc7iipyGcyCMxSJCZzwLvmqwk0mAyBFi1aFAs6eKdEmKqrJhhQ1IABAzRt2jRdf/31ev311/Pbr7vuOru2rJmOYdZVNUGDgsySIM8//7zdmqyIsjrxxBM1e/Zsm8lglhapiPFvTdKBjCxVVG5urg4eyrbXU6oll2uJFAAAACDaHcg8aAuim/1oc6LO6XQWajP72NHC5XIVmooebdxut72Y70BlklI9Sbdde1GFnhtx+ScmU+D999/X4sWLtXPnTmVnew6G9+/3LPnx008/lev1TL0DX0zWggkufPPNNz7vv+KKK4oFFozevXvb4ILJZPBl1qxZtvaCmYaRnp5uazEY3ikRJjOjosEFE1hIz8is0HOLvVbmwYC8DgAAABBtzEFlxsGsYm2B2lcHwiGiggsTJkyw2QkHD5Z84GvqGZRHp06dSm03UxhMEMDUeCjIFGL0pWHDhnabkZFRqD0nJ0dXXXWVPvroo1L7U97+F41CVRRZCwAAAIB/fGUpRGvmAionf44ZIya4sH79ejsl4fDhw7aw49VXX602bdrY7AGTajJ9+nSddtpp9iC+PMz0htKCBMaBAweKBRdMbQVfvGkvRWejPPXUUzawYF73ySef1EknnWQzFBITPXUNrrnmGr3zzjvl7n9BFU1vMbUWxr85yQYXTHXTSJoXBAAAAITKYy++Z7MTTBBh9C1DSmwDqqKICS58+OGHNrBw6aWX6tlnnw3YGX9TSLFZs2bF2k3hRS9f0x/KywQODFPU8ayzzgpoxoK/NRcKZi0s+mWlFi9b5XdfAAAAgGjjnVpstiaoUFIbEC7UXPhf5oLRr18/n/fPnz+/Qq/722+/+QwumHbDrEJRNGsh0P03dRfMyhf+CkTNBWotAAAAAP7xVV+Bmguo6iImuJCU5JkbYpaM9HXW36zgUBEvvviizjzzzGLt48ePt9uBAwcqUP03mRem/0UzId59912bQRGO+TPUWgAAAAACg5oLqOyoufC/pRqfe+45/etf/9JFF12k7t272/ZNmzbpsssuU2ZmxaKAZjUIUw9hxIgRiomJsVkEZjnLqVOnKi4uzrYHqv9mycs777xT7733Xn42hFk54pZbbrG1Fw4dOuTXe5Q3vYVaCwAAAEDgUHMBkaxyLarphwsvvFAnnHCC9u3bp169eqlDhw7q2rWrWrVqpeXLl9siiRVhAgt33323La5oXtdMg/j73/9u7zO1HY455piA9P+hhx6yAQQTYEhNTbXBkebNm9vPZZavvPjiixVqv63eoLQdu5UQH6d+PTuH/P0BAAAAAFVDxAQXTFbBt99+qzvuuENNmjTRunXr7FSCyy+/XIsXL1aXLl0q9Lpm5YmJEyeqXbt2WrFihc0eOPnkk21Gg8koCJRu3bpp9uzZtpijSYn6/fffbfbCo48+qq+//tp+vlAyqVnT5y6x10/ofoyqJXlWrQAAAAAAoCiHu+iaiLC8tQWi+Z9n+669mvHjzzrn1N4EFwAAAAA/eadA1Kherdi0iIJtQFUUMTUXEHgN69XWpeecHO5uAAAAAAAquYiZFgEAAAAAAMKD4AIAAAAAAPALwQUAAAAAAOAXai6UIJoLOQIAAAAAUB5kLgAAAAAAAL8QXAAAAAAAAH4huAAAAAAAAPxCcAEAAAAAAPiF4AIAAAAAAPALwQUAAAAAAOAXggsAAAAAAMAvBBcAAAAAAIBfCC4AAAAAAAC/EFwAAAAAAAB+IbgAAAAAAAD8QnABAAAAAAD4heACAAAAAADwC8EFAAAAAADgF4ILAAAAAADALwQXAAAAAACAXwguAAAAAAAAvxBcAAAAAAAAfiG4AAAAAAAA/EJwAQAAAAAA+IXgAgAAAAAA8AvBBQAAAAAA4BeCCwAAAAAAwC8EFwAAAAAAgF8ILgAAAAAAAL8QXAAAAAAAAH4huAAAAAAAAPxCcAEAAAAAAPiF4AIAAAAAAPALwQUAAAAAAOAXggsAAAAAAMAvBBcAAAAAAIBfCC6gkJkzZ+qCCy5QixYt5HA49Mgjj4S7SwAAAABK8dVXX6lr165KSEhQy5Yt9c9//jPcXUIUIriAQjIyMtSpUyc99dRTatSoUbi7AwAAAKAUixYtsicHzzrrLP3000968MEHNXr0aL388svh7hqiTGy4O4DK5eyzz7YX4+677w53dwAAAACUwmQp9OzZU48//ri93bFjRy1fvlxPPPGEbr755nB3D1GEzAUAAAAAqKLmzJmjgQMHFmoztzdu3KjNmzeHrV+IPmQuAAAAAECAbdyyXdmHcwq15ebl5W9Xrd9cYpuRnJigpo3r/+n7pKWlFZvO7L1t7mvatGkAPg3w5wguAAAAAECA7dyzT598NcPnfQezDun1j74qte3awWcGvY9AIDEtAgAAAAACrPsx7XR0u5YVem6vYzuoY9sWZXps48aNtW3btkJt27dvz78PCBWCCwAAAAAQYGZZ90Fnnqjq1ZLK9bw6tVJ0zql9yvz4vn376ttvvy3U9s0339il5ZkSgVByRvOP3VxQfClKs4SNuRw+fNhGQc31NWvWhLtrAAAAQJVSPTlJgweeVObHm+OTy845RQnxcWV+zh133KEFCxbovvvu04oVK/TWW29p/PjxuueeeyrYa6BiHG63260o5A0shOrj//DDD/Zy8skn20tlZfp4yimnFGvv37+/vQ8AAABA+Uz6ZqYW/LziTx93Sp+uOvOkXuV+/S+//FKjR4+2wQVTzHH48OG68847K9hboGIo6Bgi5sB8zJgx9nplDi6YvkVpvAkAAAAICjPNYc3GLdqz70CJj2nSsK5O69u9Yq9/zjn2AoRT1E6LgH/W/rE1f9kcAAAAACUz0xzMdIeSpmXHxsTY+80WqKoILqDcdu3dr9c++FLP/OcjZR3KDnd3AAAAgEqvRdNGOrn3sT7vO7N/TzWsXyfkfQICieCCmQM1aZL69eunGjVq2Mupp56qqVOnlvqcn3/+Wddee62twpqQkKA6derozDPPtPOdijIRSu+UCLP1FpM0l4JTJEzxxBdeeEFnnXWWWrdurcTERNWqVctWgH355ZflcrlUGUyfu1Qut1sN69VWUmJCuLsDAAAAVAlm2oOZ/lBQ6+ZN1LdH57D1CQiUqA8ujBs3ToMHD9bKlSvVvn17xcfH6/vvv9cZZ5xhD+h9eemll9S9e3e9/fbb2rt3rzp16mQDAVOmTNG5556r+++/v9DjTXCgWbNm9rrZmtveS+fORwaSV199Vbfddputz2ACD126dLFBi3nz5ukvf/mLLrnkkrDXQzBZCz8tX22vn9b3uLD2BQAAAKhKik5/MNMlLj3nZDlZxQ4RIOqDC6NGjdJjjz1mswYWLlyo7du368EHH7T33X777Vq+fHmhx3/33Xe65ZZblJycrDfeeEP79u3T0qVLtXXrVnufqc766KOPFlprdvbs2Ro6dKi9brbmtvdilonxMlkM5jUOHDigtWvX2iVl1q1bp1WrVtnMCpNh8f7776syZC10aNNczRo3CGtfAAAAgKrGTH8w0yCMC8/op1o1qoe7S0BARP1SlKaq6hdffFHs/gEDBmjatGm6/vrr9frrr+e39+rVywYh3n33XQ0ZMqTY8/773/9q0KBBOv300wtNrTABCzMl4oEHHsgPXpSHCTa0bdvWTr345ptvVBHj35qkAxlZqiiX26WMTM/zqyUnKsZJwRkAAACgvMwh2OGcXMXHxZZY5BEIh5TqSbrt2osq9NyoX4rSTEPwxWQtmOBCwQP5TZs22cBCzZo1dfnll/t8npkWERcXZ7MS8vLyFFPOiq+ZmZn66KOPNHPmTG3ZskVZWVmFpkL89NNPqigTWEjPyKzw8wv18+ChgLwOAAAAEK2yDx8OdxeAgIn64IKpl1Bae1pamtLT022hx19++cW2maBB//79S3xNE308dOiQdu/erQYNyj51YNmyZTaTwgQxSmJe058oVEWRtQAAAAAAkS3Fj2PGqA8ulHTw37Bhw/zrpgaCCS6Y+gpGRkaG5syZ86evffDgwTL3wwQsTMFGE1gwUx/uvvtuW+zRrBYRGxtrV4owWRC5ubmqqIqmtxgfffmDlvy6ytZauO7igRV+HQAAAABA5In64MKOHTvyV3IoyBR29EpJSbHb6tU9xVaOO+44LV68OKD9MNMtzIoVzZs3t3UbzOoTgcpY8LfmQsGshU1pO/TYi+/53RcAAAAAQOVCzQU//Pbbbz6DC6bdMKs/mKwF4+ijj7Zbs3pDTk6Ora1QVn9WqGX9+vV226NHj2KBBWP+/PnyVyBqLlBrAQAAAABQVNQHF1588UU7DaEo7xKRAwcemQJgVms49thj9fPPP+uVV17RrbfeWub3SUryzF0xBRpLu98sienLs88+q3DMn6HWAgAAAABEhxRqLlScWQ3iqaee0ogRI2xNA1P74PHHH7fLSJrMBNNe0NixY23AwbSb+gc333xzoUyDXbt22WkNJkhw//3357e3adPGbs0qEr6yHvr06WNrK8ydO9cufTl06ND81SPuvPNOzZs3z+/PWpH0FmotAAAAAAD+jMNdcJ3DKOKdpmAyAu644w7Vr19fLVu2tNMTTIDAeOGFF3TLLbcUe+6bb76pYcOG6fDhwzbjoH379oqPj7d1GjZu3Ggfc9lll+mDDz7If45ZcaJ169a2doIpFmmCDSbA0LVrV40bN84+5p577tGTTz5przdt2tROyVixYoUNMLz66qu64YYb7H2h+i/btXe//vmfj+Ryu3XLNReqWeOyr3wBAAAAAIgeUR9cMB9/0qRJ+uc//2mXmjS3Td0Dc6Dva7qE15o1a/Tcc8/ZDAezwoPJRjArT5hpE+eff74GDRpUbCWKJUuW6IEHHrD1E/bs2WNXgDBLWv7www/5ffnXv/5lL+b1TQHJ7t27a+TIkRowYEChPocCWQsAAAAAgLKI2uACSme+FlNmLdKcRct00xXnkrUAAAAAACgRwQWU6lD2YSUmxIe7GwAAAACASozgAgAAAAAA8IvTv6cDAAAAAIBoR3ABAAAAAAD4heACAAAAAADwC8EFAAAAAADgF4ILAAAAAADALwQXAAAAAACAXwguAAAAAAAAvxBcAAAAAAAAfiG4AAAAAAAA/EJwAQAAAAAA+IXgAgAAAAAA8AvBBQAAAAAA4BeCCwAAAAAAwC8EFwAAAAAAgF8ILgAAAAAAAL8QXAAAAAAAAH4huAAAAAAAAPxCcAEAAAAAAPiF4AIAAAAAAPALwQUAAAAAAOAXggsAAAAAAMAvBBcAAAAAAIBfCC4AAAAAAAC/EFwAAAAAAAB+IbgAAAAAAAD8QnABAAAAAAD4heACAAAAAADwC8EFAAAAAADgF4ILAAAAAADALwQXAAAAAACAXwguAAAAAAAAvxBcAAAAAAAAfiG4AAAAAAAA/EJwAQAAAAAA+IXgAgAAAAAA8AvBBQAAAAAA4BeCCwAAAAAAwC8EFwAAAAAAgF8ILgAAAAAAAPnj/wG0c2ieK5SD+AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from qiskit.circuit import ClassicalRegister, Parameter, QuantumCircuit, QuantumRegister\n", "from qiskit.quantum_info import Operator, Pauli, PauliLindbladMap\n", "\n", "from samplomatic import ChangeBasis, InjectNoise, Twirl, build\n", "\n", "# our circuit has two classical registers named alpha and beta\n", "circuit = QuantumCircuit(\n", " QuantumRegister(4), alpha := ClassicalRegister(3, \"alpha\"), beta := ClassicalRegister(1, \"beta\")\n", ")\n", "\n", "# the first box is only twirled\n", "with circuit.box([Twirl()]):\n", " for idx in range(4):\n", " circuit.rx(Parameter(f\"a{idx}\"), idx)\n", " circuit.cz(0, 1)\n", " circuit.cz(1, 2)\n", "\n", "# the second box is twirled, and has noise injected\n", "with circuit.box([Twirl(), InjectNoise(ref=\"ref1\", modifier_ref=\"mod_ref1\")]):\n", " circuit.h(1)\n", " circuit.cz(1, 2)\n", "\n", "# the third box is twirled, and has different noise injected\n", "with circuit.box([Twirl(), InjectNoise(ref=\"ref2\", modifier_ref=\"mod_ref2\")]):\n", " circuit.rx(0.1, range(4))\n", " circuit.cz(0, 1)\n", " circuit.cz(1, 2)\n", "\n", "# the fourth box is the same as the second, but with a different modifer ref\n", "with circuit.box([Twirl(), InjectNoise(ref=\"ref1\", modifier_ref=\"mod_ref3\")]):\n", " circuit.h(1)\n", " circuit.cz(1, 2)\n", "\n", "circuit.barrier()\n", "\n", "# the final two boxes twirl, and add a basis change in one case\n", "with circuit.box([Twirl(), ChangeBasis(ref=\"conclude\")]):\n", " circuit.measure(range(3), alpha)\n", "\n", "with circuit.box([Twirl()]):\n", " circuit.measure([3], beta)\n", "\n", "circuit.draw(\"mpl\")" ] }, { "cell_type": "markdown", "id": "9f8a3aa7", "metadata": {}, "source": [ "Next, we call {func}`~.build` on the boxed-up circuit to construct a template and samplex pair, and we see how each of the boxes is turned into a barrier-sandwich including `rz-sx-rz-sx-rz` fragments to implement dressing." ] }, { "cell_type": "code", "execution_count": 3, "id": "daf30300", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAADWUAAAGwCAYAAAB7bObgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAA219JREFUeJzs3Qd8FHX6x/FvCklICL2FUEMHpSqiiKKigl0QO2K5w8bZOLGLomcvCJ7tr8hhQaxn7+UORQEVlSa9hV4CJJTU/b9mciQEkrAbNrvZeT7v1yuvSbZlZn/PzPPsb+c3vyifz+cTAAAAAAAAAAAAAAAAAAAAAAAAAMAv0f49DAAAAAAAAAAAAAAAAAAAAAAAAADgYFAWAAAAAAAAAAAAAAAAAAAAAAAAAASAQVkAAAAAAAAAAAAAAAAAAAAAAAAAEAAGZQEAAAAAAAAAAAAAAAAAAAAAAABAABiUBQAAAAAAAAAAAAAAAAAAAAAAAAABYFAWAAAAAAAAAAAAAAAAAAAAAAAAAASAQVkAAAAAAAAAAAAAAAAAAAAAAAAAEAAGZQEAAAAAAAAAAAAAAAAAAAAAAABAABiUBQAAAAAAAAAAAAAAAAAAAAAAAAABYFAWAAAAAAAAAAAAAAAAAAAAAAAAAASAQVkAAAAAAAAAAAAAAAAAAAAAAAAAEAAGZQEAAAAAAAAAAAAAAAAAAAAAAABAABiUBQAAAAAAAAAAAAAAAAAAAAAAAAABYFAWAAAAAAAAAAAAAAAAAAAAAAAAAASAQVkAAAAAAAAAAAAAAAAAAAAAAAAAEAAGZQEAAAAAAAAAAAAAAAAAAAAAAABAABiUBQAAAAAAAAAAAAAAAAAAAAAAAAABYFAWAAAAAAAAAAAAAAAAAAAAAAAAAASAQVkAAAAAAAAAAAAAAAAAAAAAAAAAEAAGZQEAAAAAAAAAAAAAAAAAAAAAAABAABiUBQAAAAAAAAAAAAAAAAAAAAAAAAABYFAWAAAAAAAAAAAAAAAAAAAAAAAAAASAQVkAAAAAAAAAAAAAAAAAAAAAAAAAEAAGZQEAAAAAAAAAAAAAAAAAAAAAAABAABiUBQAAAAAAAAAAAAAAAAAAAAAAAAABYFAWAAAAAAAAAAAAAAAAAAAAAAAAAASAQVkAAAAAAAAAAAAAAAAAAAAAAAAAEAAGZQEAAAAAAAAAAAAAAAAAAAAAAABAAGIDeTAAAAAAAAAAAAAAAAAAAIBj5syZAT1+06ZNevfddzVo0CDVr1/fr+ccfvjhFVw7AAAAAKhczJQFAAAAAAAAAAAAAAAAAAAqnTMo68UXX3SXAAAAABDpGJQFAAAAAAAAAAAAAAAAAAAAAAAAAAFgUBYAAAAAAAAAAAAAAAAAAAAAAAAABIBBWQAAAAAAAAAAAAAAAAAAAAAAAAAQAAZlAQAAAAAAAAAAAAAAAACASpecnKwBAwa4SwAAAACIdAzKQtB99913ioqK0mOPPVbu4woKCvTkk0+qQ4cOSkhIULNmzTRy5Ejt2LEjZOsKAAj+8d/5GTFiRKmP2bBhg+Li4tzH9OvXr8R9CxYs0FlnnaU6deooKSlJffv21TfffBOitQcqZ1/Y81OjRg316NHDrX3y8vL2ew7xDwAAYK9/bOHChbr77rvVu3dvNWjQwD0JpVu3bvrHP/5B/xgAGOob8/l8evXVV3X++eerTZs2SkxMVPPmzXXGGWdo+vTpId4KILR9Y8Q/AACATampqRozZoy7tHzu3N527typtLS0cj9TAgC8fe7c3p599tmi19q0aVMlrjWAqnDu4N7Y/yMTg7IQNjfeeKNuuukmderUSePHj9eQIUM0btw4nX766e6ALQBAZHIG2r7++uvKzs7e775XXnnF/aI9Nja2xO1LlizRUUcdpR9//FGjRo3So48+qqysLJ188sn66quvQrj2QPBccMEFbsxPmjRJo0ePVm5urlv7XHPNNSUeR/wDAADYNGHCBLfjvXXr1u7gLKcObN++ve688063Pty1a1e4VxEAEIK+MedxQ4cOdS/Y4gxMcb4vGT58uH799VcdeeSR7oAVwKt9Y8Q/AACATU4duGrVqlI/N1nl9A9u3Lgx3KsBAAjTuXN7W7NmjW699VZ3EAcA7587uDf2/8jFoCyExdy5c90vVgYNGqR3331Xf/3rX/XEE0+4P99++63eeOONcK8iAKCCzj77bGVkZOj999/f776XX35Zp5xyiuLj40vcftttt2nr1q36/PPP3d+dwnPq1Klq0qSJrr32WvfDKBBpnKtbXHzxxe6JJTfffLN++uknNW3aVC+++GKJDnXiHwAAwKZzzjlH6enpeu211/S3v/1NV111laZMmaI77rhDf/zxh1566aVwryIAIAR9Y84JGM6VM2fNmqX7779fV1xxhTtA95dfflHdunU1cuRILmQHz/aNEf8AAAA2LVu2TIMHD3aXkHtRgrFjx+ree+8N96oAAMJ07tzenHOFnAv6nXXWWZW8pgCqwrmDe2P/j1wMykJYTJ482T3B+IYbbihxuzM4KzExkSvfAUCEF5NdunRxP0TubcaMGe6g3Msuu6zE7Tt27NAHH3zgTsncrVu3otud0f5/+ctftHDhQs2cOTNk6w9UlqSkJPXu3dutgZzZsRzEPwAAgF2HHXaYatWqtd/t5513nrucM2dOGNYKABDqvjFnUMqxxx673+s0atTIvX3Dhg3uD+DFvjHiHwAAANbl5+e758sNGDDAvbg5AMBe/+De3nvvPfc8oueee04xMTEhWFsA4ewf3Rv7f2Qre/5DoBI5JxdHR0erV69e+03b6ZyQXFVOPnYmptidr4iSECNFRQXntZwDf96uyJoqPLZ6vKKC9AZYb38HMUAMVNTll1/uTrW6evVqpaamurdNmDBBDRs21GmnnVbisc4V4J3pmo888sj9XscpQh1OXtg3ZwCRaM8HKudKvw7iHwAAAPtyZs/aczJyuFn/XGy9X8RBDNiOAevtH6q+sQPlhLi4ONWuXbsS1xYIX99YeYh/AAAAWPDkk0/qzz//1DvvvKOqKNL6Bjhvir4hYoAYiOT+we3bt2vEiBG68sor3fOEnnnmGYWbsw84A4gjiTOYJZjfkwCh6B+tivs/AsOgLITFmjVrVL9+/VKn4HQKkGnTpiknJ8f9siWcnIKy7yeKKFNPkaoHac92PlC81vpiRZKLlryqaokJQXkt6+3vIAaIgYpypl0dNWqU/vWvf+n222/Xrl279MYbb7gz/zhXP903Jzj2fADd257bnA+oQKTZuXOnNm3a5HZQrFu3zr2KxaxZs9wPTu3atXMfQ/wDAABgb84XW/fdd5/7uenCCy8M9+qY/1xsvV/EQQzYjgHr7R+qvrGyfPLJJ+7Vc4cOHepe0A7wYt9YWYh/AAAAWLBs2TKNHj1ad999t1q2bKnly5erqom0vgHOm6JviBggBiK5f/CWW25RQUGBHnzwQVWl762q6sDhsgwePNjvPligqvSPVsX9H4GJDvDxQNAONKUNyHLs+XLFeQwAIDLVq1dPZ5xxhiZOnOj+/e6772rbtm3uVUD2ted4X1peICcgkjkd6A0aNHCvcuNMS+5cwWLQoEF6//33ix5D/AMAAGBvN9xwg3788UeNGTNG7du3D/fqAABC0DdWmkWLFrmDUZwLtjz++OOVvLZA+PrGSkP8AwAAwIqrrrpKaWlp7kwqAADb/YM//PCDnn/+eT3xxBOqVatWiNcWQDj7R9n/vYGhoAiLxMREbdiwodT7du/eXfQYAEDkuuyyy3Tqqafq+++/d6dfdkb4d+rUab/H7TneZ2fvP903OQGRbPjw4RoyZIhyc3M1e/ZsPfzww0pPTy9xdV/iHwAAAHvcddddevrpp9068rbbbgv36gAAQtQ3VtqV0k844QRFRUXp008/db+0BbzaN7Yv4h8AAMCGDh06uDOjWvbqq6/qyy+/1H//+19Vq1Yt3KsDAAhj/2BOTo7bj9K/f39dcMEFYVlXAOHpH2X/9w4GZSEsmjRponnz5rknIO87M8Tq1atVv359xcXFhW39AAAH7+STT3avZnrvvffq22+/1bPPPltmTthz/N/Xntuc1wEiTdu2bd0PTI6BAwfq6KOPdn+cK545U5I7iH8AAAA47rnnHt1///3uF3TPPfdcuFcHABDCvrG9LV++XMcdd5yysrL09ddf69BDDw3JugLh6hvbG/EPAAAAK5zz5ZzZsU455RQ1btxYixcvLvH9sDOTinObc/5c7dq1w7y2AIDK7h/85z//qT///NOdMXxPTnBkZmYWXcRm+/bt7uyKALzVP8r+7x3R4V4B2HT44YeroKBgv6ueODNC/PbbbzrssMPCtm4AgOCIiYnRJZdcoq+++sod3V/WSH7ny3VngO6PP/64330//fSTuyQvwAuOOuooDR06VFOmTNG0adPc24h/AAAAOAOynC/khg0bphdffNGdGQIAYKdvbO8BKf369XNPvnOult69e/eQrSsQrr6xPYh/AAAAW1asWKHLL7/cXVq0a9cubdy4UR9//LF7su6eH6cm3jOLlvO301cIAPB+/6CTD53zqZ1BG3vnhXfffde935lhq0uXLiFeewCh6B9l//cOZspCWJx33nl64IEHNHbsWPXt27fo9v/7v//Tzp07ddFFF4V1/QAAweGM6ndmPnRG6tesWbPUx9SoUUOnn366W0j+/vvv6tq1q3u7c0VUp5PRKTKd4hLwgrvuukuvvfaa7r77brfThfgHAACwbcyYMe6ALKcDfsKECYqO5hpaAGCtb2zPF6/ODEFbt251B6T07NkzpOsJhKtvzEH8AwAA2ByUNGfOHHdpUVJSkt566639bncGal1zzTUaMGCArrjiCk7ABQAj/YOXXXaZO3vOvpwZdL777jv3+6M6deqEYG0BhLp/lP3fOxiUhUrz9ddfuzNf7cuZWtkpNK699lo9/fTTGjRokDsd8/z58zVu3Dgde+yxuvDCC8OyzgCA4GrevLl71fcDefDBB928cdJJJ+nGG290P4Q6A3VXr17tXh2KK8XDK9q0aaPzzz/f/XA1depUd3A68Q8AAGCzfyw/P1+jR492Pzf1799fr7/+eonHNGrUSCeeeGII1xYAEI6+sczMTHdAijNT0N/+9jctWLDA/dmbkw+cvAB4rW+sW7duxD8AAADMnju3L6cudrRu3VrnnHNOSNYRABD+/kHnAs57LuK8t48++shdOhd7dnIHAG+eO8j+7w0MykKl+eyzz9yffbVv3979YOnMktWyZUu98MIL7gnHzkHD+cLFuUJwJF8VOHP2d1p453ElbotOSFJ8k3aq12+oGp72N0XFsOt5GTEAYqBixeYPP/ygW2+9VQ899JBycnLUo0cPN484JycCXnLHHXdo8uTJ7hUvvv32W+IfAADAaP9Y79693d9XrlypYcOG7fcY58JFkTgoi8/EIAZADARm8+bNWrZsmfv7+PHjS32M03/AoBR4sW/s5ZdfJv4BAABg9tw5r6JfAMQAiAEA8P/cQXgDWQ1B169fP/l8vgM+LiYmRiNHjnR/vKjOMReoVs9TJJ9PuRnrtPm7SUqfcJN2p89Xi2tfCPfqIQSIAViLAX+P/46srKz9buvYsaPef//9SlgzoGrtC06sO7Mi7Hsb8Q8AAGDv89HEiRPlVdY+E2N/xACsxUBF+8aci9f5+zzAi31jxD8AAAAsfz7cm9c+H1rrF8D+iAFYi4GDPXeutO+QvPw9EuBVFTl3cF/s/5GHQVlAJUlM66F6/S4u+rvBKddo7jUdtOnLF9Xk4n+oWq0GYV0/VD5iAMQAAAAAAMAqPhODGAAxAAAAAAAoTUpKiu699153Ce+iXwDEAIgBAIAVDMoCQiQmIUlJ7Xtr67S3lb1uibmC8tK1bwfttSamnKNIRAwQA9ZjAAAAAABgF5+J6RuxHgPW299hPQYAAAAAAIVq1aqlgQMHhns1EGLW+wXoGyIGiAFiAADgXQzKAkLIKSQdsTXqypKk1PqaMXqi5r3wkawjBogBqzEAAAAAAIDlz8T0jdiOAdq/mNUYAAAAAAAUy8jI0FdffaX+/furTp064V4dhJDVfgH6hooRA8SA1RiA5PP53Bpg7dq1ys3NVXR0tJKSktSsWTPFxcX59RrO8998800NGzZMCQkJlb7OAOAvBmUhKGbOnOn3Yzdt2qR3331XgwYNUv369f1+3uGHH65IUpC9U3nbN7mFRF7GOm387DntWjpLiW17KSG1nSxpduJhWvXFz7KGGChGDHg/BgLJAxXNBZGWB2AL+wAAAIBt1IO2PxP7w2LfCDFgu/2txQB5ANaxDwAAACAQ69ev16OPPqpDDz3UM4OyOHfOdr/AgdA3RAwQA96PAfJA6XJycjRt2jRNnz5dS5cu1bZt2/Z7jDM4q2nTpmrfvr2OP/54tWrVqswBWffdd5/WrFmjdevW6ZZbbmFgFqoM+kfBoKwQcXaeRx55xN2B0tPT1aBBA3dHeuCBB3TddddpwoQJGj9+vEaMGCEL78WLL76oY445JqCCItKsnTza/dlb7SMHqfmV/5Q1NdMa68+J62QNMVCMGChmNQas5gKgLOwDAAAAtlmoB/lMXJLFvhFiwHb7O4gB23kAKA/7AAAAACyzUg/TL1CMvqFixIAtxIDdPLBjxw79+9//1jfffOP+Xp6CggKtXLnS/fnyyy/Vtm1bnXHGGSUGoOw9IGvPe5iVlcWgLEQsC8cBaxiUFQK//fabBg4c6I7MdaZa7NSpk5sYxo0bpyVLlmjLli3u47p16xbuVUUQ1T95uOocNUS+/FztWjFb6959WDmb0hVVrbgIyJw7VYvHDNzvub68HPkK8tXzvXxFutjEBOVm7ZZFxEAhYoAYQKHsfOnrNdIn6dLG3VKUpJRE6czmUt/GUoxzAwAAAAB4BJ+Ji1ntGyEGbLe/gxjA3nw+aeYm6b0V0oosKc8n1YmTTkqVBjaVEvnGEgAAAAA8hX6BQvQNEQPEADFgzaxZs/R///d/RefG7+GcP5+WlqbmzZu7g6mcwVjOYCtnBi1nshPnb8eiRYv0+OOPq3fv3rr88suVn59fYkCWMynKXXfdxUAWAFUKX3GEYCTj6aef7g7IGjlypEaPHq3k5GT3PmfmLGf6xNjYWEVFRalLly7hXl0EUXxKW9Xs1t/9vVbPgarR8WgtuO1orXz2KqXd/IZ7e3Lnvuo+JavE83I2r9GfIw9Tg1O9MWtak2O7aPV/fpdFxEAhYoAYgPRpuvT4HGlrTsnbF2dKU9dLjatLd3aVejcM1xoCAAAAQHDxmbiY1b4RYsB2+zuIAewxb6t096/S8pJN7fplszRunnRle+mCNCmKCxcBAAAAgCfQL1CIviFigBggBqxwBlVNmjRJn332WdFtzvnxRx55pE488UR3BiznXPnS7Nq1Sz/88IO++OILd8Ysx08//aQ5c+a4A7icc/H3HpDVsCEn2QGoWqLDvQJed91117kjeEeMGKHHHnusaECWY9SoUeratavy8vLUsmVL1axZM6zrispVo+NRqttvqDK+n6Ks+dNKfUxBbraWPjRINTodrZQht8sLGh7eQRtnLihxW4/bLtSla99Wm/OPL/U5A965V0OXT1bt9s3kJcRAMWLAVgxY99Yy6a5f9x+Qtbd1u6Trp0vfrQ3lmgEAAABA6Fj+TEzfiO0YoP2LWY0B637fIg3/ofQBWXvsyJOemCs982co1wwAAABAuCQmJuqII45wl7DDar8AfUPFiIFixICtGLAyIOvZZ58tMSDLOT9+7Nixuvbaa9WuXbsyB2Q5qlevrv79++vhhx/W3/72N9WoUcO9PSsriwFZACICg7Iq0fz58zVlyhR3isQHH3yw1Mf07NmzKPnsbdmyZTrjjDPcQVx16tTRJZdcos2bN8sLnG0aMGBAiQFqVqScd5cUHaM1r99d6v0rn7lKBbm71fL6ifIEp4iKknz/m1Z0j98ee1MZ81eo1z3DlJhSt8R9nYafpsZHddZvj03R1gWr5DXEQCFiwFAMGM8Fzkknj8z277H5PumOX6T0HZW9VqgKrOwDAAAAKJ3VetDkZ2L6RmzHAO2/H3MxYDwPbM+Rbpou7c737/EvL5K+XlPZa4WqwMo+AAAAgNI1b95c48ePd5cWWa6HzfUL0De0H2KgEDFgKAaM5IFXXnlFU6dOdX+Pjo7WFVdcoVtvvdU9fz4QzsCtPn36uIOv4uLiStzuvCYDsuAVXjwOWMegrEo0efJkd/TvRRddVDRqt7TRvfsOysrMzNRxxx3nzrDlvMYLL7zgJqvTTjvNfb1Il5qaqjFjxrhLaxJS2qhu3/OV+cfXypxbWIDsseHDcdr280dqfdu/FR3vjSvBNOjeRptmLd7v9oLcPE29/mnFJsarzxPXFN1es3UT9bj1Am38ZaHmPPOBvIgYKEQM2IkB67ng9SWSL4DHZxdI7yyvxBVClWFlHwAAAEDprNaDFj8T0zdiOwZo//1ZiwHreeCjVdK23MCe89qSylobVCVW9gEAAACULj8/3535wllaZLkettYvQN/Q/oiBQsSAnRiwkAd+//13ffrpp0UDsm688UadeOKJ5c6MVZ6MjAw99dRTysnJKbrN5/O559Pn5eUFbb2BcPLacQAMyqpU33zzjbt0BliVxRl4te+gLGcQ1urVq/Xvf//bHYg1ZMgQvf766/rpp5/0wQeRX2hlZ2dr1apV7tKixkPucCqPEiP9M//4VumTblHaqLcU36ilIlGj3h0VFVPykJJ6XHet/va3Uh+/ZfYy/TH+PaX266Z2F/dXVHS0+o77m3uf84Fj36tDeAkxUIgY8F4MBMJCLti4W/puXeDP+2Cl/1cPRuSysA8AAACgbJbrQS9/JqZvxHYM0P7+82oMBMJCHvD5pLcrcPGhPzKkP7dVxhqhKrGwDwAAAKBsixYt0vHHH+8uLbJeD3u1X4C+If8RA4WIAe/FgMU8sHPnTj3//PNFfw8bNkyHH354hV/PGZB13333ac2aNe7fzkxbTZo0cX9fsWKF3nvvvSCsNRB+XjoOoFDs/5aoBE4CcLRo0aLU+50Ruz/88MN+g7I++ugjHX300SWmaD7yyCOVlpamDz/8UGeddVaF1uewww7TunUVODvcD+ecc47fj92wYYM7YvmCCy4IaCrJs88+W6EWFVddjcYG1gGQfGg/9Xy/7HlRqjfrqJ7vFZ9tn71+uZY+eq6aXvqo+9yD1a5dW/lydikYqvmiNVq9Dvi4lmccpT6PX62vhz2kddPmFj+/ZqJyM3eW+bzfn3xbzU86TIfdfYnqdm6pBj3aasY9E7V9SWFBVRHt2rZTblRB2No/3DEQzPZ3EAPEQGXkgYrmgnDkgYMR322g6gz/v4Cf51w9uMPRA5W3analrBcqB/sAAACAbV6tB+kb869fpCr1jQSzX8RBDNA3Rt+Y7TxwMKKT66vhw7+5V7EN9Kq4Z1x7t3Z+N6HS1g3Bxz4AAABgW0XqQYczq8Yvv/ziiXqQc+e82S9A3xB9Q8QAMWA9D8TFxenBBx8s8/73339fW7ZscX8/9NBDddJJJwVtQFaDBg101113aceOHbrjjjtUUFDgTnZywgknqG7dumW+Trt27UrMsgWEAv2j3tC4cWP9/PPPFXoug7IqkZMIHLt2lZ7gp0yZok2bNik5OVmtWrUqun3evHnu7Fj76ty5s3tfRTkDspwZuCpzW/2x5/1wloE8r7LWvTzOFKiNKvH1C7J3asmDZ6lWrzPU8NQRQXlNpyBxXjcY4qJi5M8bsPyDaarZqrGanXx40YeKpNT62pG+sdzn+fLy3as6nPbpQ+pw6QCtnz5f8174+KDWec3aNcrx5UdE+1dGDASz/R3EADHgr0CO5xXNBeHIAwejbrts1angczdn7lRWhG2vdewDAAAAtnm1HqRvzL9+karUNxLMfhEHMUDfGH1jtvPAwYhrHC/nq+RAB2Q5MrPztC7Cttc69gEAAADbqAc5d86r/QL0DdE3RAwQA9bzQHx8fJn35ebm6ptvvnF/j4mJ0V//+tcK9QWWNyBrz2CVU0891Z3UJD8/X19//XWp59jv4bwGsw8h1KiHwaCsSh4t5ySKX3/91Z3pam9r167VzTff7P7epUuXEonIeU7t2rX3ez1nZO+CBQsOan0qS1JSkt+P3XPwqF69ekDPS01NVag5I/0rU8a0d7Rr2e/avXqhMr6fst/9nZ+ep7gGxTOm+cOZqjOYV4KVnxdNWPHpDJ0w8RbNHD3R/bvZiYdp1RcHHi2au32nCnLyFBNXTelf/yr5yr5Cgj+apDQJ6pUeKluwYyCY7e8gBogBfwVyPK9oLghHHjgY8dWrVfi59ZKrq1aEba917AMAAAC2ebUepG/M/36RqtI3Esx+EQcxQN9YZaNvrGrngYMRVSOw92RvyfExiomw7bWOfQAAAMA26kHOnfNqvwB9Q/QNEQPEgPU84MyUVZbp06crMzPT/f2II44IaNavQAZkOQYMGKCPP/7YnS3LGQjmzBgUGxtbZgwwUxZCjXrYGw5mrA2DsipR//79NX/+fD388MM68cQT3SkRHTNnztTQoUPdWbIc3bp1C8n6VHQ6NX842+SvP//8051yb+DAgerQoYPfzxs7dqxCbVee1PeTynv9escNdX+CaeHCRaoepD07d+duvdb6Yr8eu21huuSTardrqq0L05XcqrEyJ64/4PP6jL1W0dVitXXhKnW5YbB71YjMFQd+XlkWLlqoaokJioT2r4wYCGb7O4gBYqAy8kBFc0E48sDB2JItnfqllBtgP0fdOGna958pLqay1gyVgX0AAADANq/Wg/SN+d8vUlX6RoLZL+IgBugbo2/Mdh44GM75Q+d/Jy0pPC8jIJ8+c59a17yvMlYLlYR9AAAAwDbqQc6d82q/AH1D9A0RA8SA9TyQl5end955p9T7ZsyYUfS7c458ZQ3IctSrV089e/Z032fnOYsWLVLHjh1Lfc2FCxeWOWALqCzUw4gO9wp42ahRo9xEsGrVKnXu3FmHHnqo2rZtq169eiktLU3HH3+8+7iuXbuWeF6dOnW0devW/V5vy5Yt7mxZQFW16suf3Sl4YxMTlJt14KsNdLziFKX0OUS/PfGWvvvr44qOiVGfJ68JybqichADQLG68VL/lMCfd2YLMSALAAAAACIUfSO20f5AsagoaUjLwJ/Xo57UumZlrBEAAACAqqJNmzb6/PPP3SXgJfQNgRiAJUuXLnWXCQkJat++faUNyNpj73Ptly1bVuH1BoDKwKCsStS0aVNNnTpVp556qpt0li9f7g6qev75591pFJ3RuKUNynJG786bN2+/13NuK2tkbyRxRnQ6I6QDGeGNyOBMt9vspMPUpF9XrfnvH+U+1rkSRI/bL9TGWYs05+l/u1eH+O3xN9X4yM7uhw1EJmIA/rKSCy5sLcVE+f/4pFhpcAVOVkHksbIPAAAAoHTUg95F34httD/8ZSUPDGwm1Y8P7DmXcE6mCVb2AQAAAJTOmb3CuWi51VksqIe9i74hEAOwkge2b9+uTZs2ub+3bNlS0dHRlTogy+FMhrLvgDAgUnnhOICSGJRVyZxBVB999JEyMzPdn+nTp2v48OHasWOHO0jLSUSHHHJIieecdtpp+v7775Wenl50m/O8JUuW6PTTTw/DVgD+WT99vmqmpajFwF7aOHNB2Q+MitLRY0e48f/99U/LV1Dg3jznn+9r02+L3Q8byS0ahW7FETTEAFBSx9rS3d38K7jioqVHDpcaVw/BigEAAAAAKgV9I7bR/sD+FyAa21tKrubf4//WUTqa0AcAAAA8zzknbuTIkSXOjQO8gL4hEAOwYv369UW/N2/evNIHZO37f/b+/wBQFTAoK0zmzp0rn8+ntm3bKjExscR9zqCtlJQUnXnmme6ArrffflsXXHCBevXq5d4W6VasWKHLL7/cXcJbfPkFWv3d74W//++DQmk6X3W6GvXqoFmPTtG2RauLn19Q4H7IYBreyEUMwF+WcsGpzaTHeklNSqb7EtKSpeeOko5oEMo1QzhZ2gcAAACwP+pB76JvxDbaH/6ylAc61JImHC0dUqfsx9SLl0Z3k4a1DeWaIZws7QMAAADYX1ZWlqZOneouLaIe9i76hkAMwEoeSEhIUJcuXdxZfpo0aeL383Jycio0IMvhzLDp/L/OnTuXmDULiEReOA6gJAZlhcns2bPdZdeuXfe7r2bNmvrmm2/cgVnnn3++/vKXv+ioo45yB2gFOsVjVbRr1y7NmTPHXcJ7Vn46Qys/m1nm/bXapqrHqPO14ecFmvvch/vdzzS8kY8YgD+s5YJjGkvvnSCNPUI6cZ/PoS/0kab0k7rUDdfaIRys7QMAAAAoiXrQ2+gbsY32hz+s5YFWydLEvtIrx0hntyh53wM9pY9OlE4P7IK6iHDW9gEAAABgb9TD3kbfEIgBWMgDzZo10+2336577rlHAwYM8Pt5cXFx6t+/f8ADsvZw/p/znMsuu6xC6w1UFV44DqCk2H3+RhUYlOVo3bq1OwgLkW/3mkVaPnaY8jI3KSaxllpeP1HVm3c+qPuqshUf/Vju/c6VHV5pdWG5j5k9/j33xwsq2sYrX7hO22Z+oJwNK9TxyVlKTOumSEEMHHwMFOTs1tLHztfuVfMUHVddsbUaqvnVzyohpU24NwcHISZKOrpR4c/XH0jO9XCcodY96oV7zQAAAACg8lS0/2Pbz59o9Wt3OpcGlS8/T43Pvln1jh+mSEDfSJBi4NfPtObVO+XLy1F0fKKaX/O8EluV3p9eldD+JVW0/yt36wYtH3uJstctUVS1eDW/6hkldz4m3JuDg9SxtnRHben9FcV9YyelhnutAAAAAADh6BdaOPok5WWsk6KjFVM9Wc3+Ok6Jad3d+wpys5U+YaS2z/pcUXEJSmzZVa1uelWRgL6hg4+BvO2btfDuE4peoyB7p7LXLVXXSRsUm1z1r3hMDATnOBDJ3xGgfKeccoo709YhhxwS0IAsAKjKIn/aJY8OyoJ3rHzmStU/ebgOeXahGg+6RcufuvSg70PkqGgb1+lzjto/+L3iGu5z2VCYiYEGJw1X52cWqNNTv6v2EWdqxdN/CdMWAAAAAABQcRXp//D5fFr25MXul7Odxv6mNnd+pBXPXKn8nZlh2AKEIwbysjK07ImL1PKGf6nTuD+Ueumj7t+IPBXt/1o96VYlte+tQ55bpJbXvaxlj18oX15umLYCAAAAAAAEu18g7eY33X4fp/+v4Rk3lbhv9b9ulaKi1PnZheo8braaXvZYmLYA4YiB2Jr13Nv2/NQ/abhq9RwYEQOyEJwY4DsC7zv++OMZkAXAUxiUFSbffPONWziceuqp4V4VBMEvZ0Zp9at3at4N3TXn6nba/N1rRVfz3LH4Z9Xrd7H7d+2jBitn0yrtXru4wvfB++3vcK76Gle/aRi3CuGMgei4BNU67BRFRUW59yW1662cDcvDuIUAAAAAAAT3c/EB+z+iopS/Y6v7a/6u7YpNrufOlgMbMZC9donb5nuumJrcua9yNq7UziW/hnS7UHntf6D+r4wf3lSDAVcV3tf2cFWr20SZc/4Tlu0DAAAAAARXgwYNdP3117tL2O0Xiq1Ru+g18nduc/sD3d9379Cmr15S6sX/KOo3qFancRi2DOGKgX1t/uol1e9/RUi2BVUoBviOAAAQQWLDvQKwJyUlRffee6+79JSoKHUaO8udKnf+yMNUo2Mf5WVuVrU6KYqKKdzVnA+KcQ2auycQOFOxVuS+hJQ2Yd1MVH7708YRqhJjYMNHT6l2rzPlJZ7NBYCf2AcAAABs82Q9GODn4vL6P5zHpf19ipY8OEgxCUnurEmtb31X0dXiQrhBCGcMJDRp6z43a/401eh4lLZO/0AFuzKVvWG5Elv3COFGIVTtv3f/V972ze6sWHufcBXfsKVyNq2UV3gyDwABYB8AAACwrV69erroIrszYnuyHq5gv8CyJy9R5uxv3d/b3v2Ju8xe51ysp67WvvWAMn//StHx1ZVy/j2q2fWEMG4gQhkDe3P6B53+4VqHnxbiDUI4Y8Dr3xF4Mg8ACAjHAe9hpiyEXK1atTRw4EB36SX1T/yLu4xvnKYanY9R1tz/hnuVEEK0PyorBpxOpuy1i5V6yYPyEq/mAsBf7AMAAAC2ebEeDObnYl9+nta+db9a3/auDn1xhdrd97WWjR2qvO2bgrjGqMoxEJNUS61Hva3Vr9ym+Tf11PbfvlBCs06KiuY6c15sf6/2f1nLA0Ag2AcAAABs2759u7766it3aZEX6+GK9gu0unGSukxYpdSL71f6pFsKb8zPU86GFarerJM6PvGzmv11nJY+ep5yt66vzE1AVYqBvTizptU77pKiQT2wEQNe/47Ai3kAQGA4DngPg7IQchkZGXrrrbfcpac5o/rrN1Nuxlq3SHT4fD53lL8z2r+i98H77Q+PCEIMrHvvMW398V21uftTRccnykvM5AKgDOwDAAAAtpmoBw/wubg8O5f+ptwta5Tc+Rj376S2hyuuXlPtXDorJKuO8MeAI7nLcWr/wH/U8Ylf1PTyx92YSGjeKQQrjlC2f2n9X7E167kn2uRmrCt6nDNLWlx97/SdmsgDQDnYBwAAAGxbs2aNbr/9dndpkYl6OMB+oXrHD3NnynFmz3bvj45W3WMLZ1NLTOuu+EattGv57JBvBsITA3vk78pSxvdvqn7/y0O66gh/DHj9OwITeQBAuTgOeA+DshBy69ev16OPPuouvWTz1y+7y+z1y5U1b6pqdOqrarUbKrF1D23+7lX3vq3T3nGLQ2fq1YreB++3PyJTsGNg/ftPKGPqZLUd86Via9SW13g1FwD+Yh8AAACwzYv1YKCfi8sT16CZcres1a5V892/d69drOx1S5SQ2j4EW4KqEAMOJwb2WDvlPiV3OZ6+M4+1f3n9X3X6DNHGz55zf9+xaKZyN69W8iHHyiu8mAeAQLAPAAAAwDIv1sOB9gvkZW1VzubiQXlbf/q3YpPrKSa5rmJr1ldylxO0fdbn/3vNZe5PQrOOYdo6hDoG9sj4foqqt+qqhKYdwrBFCGcMeP07Ai/mAQCB4TjgPczpCQSJryBf827oroLsHWr2l3GKb9TSvb3F1c9r+bhLte7tBxRTvaZaXldYfB7MffB++6945kpt+/lj92qwi+45WTHVk3XI84vDsm0IfQzkbEpX+oSRimucpoV3HufeFhUbr46PTQ/T1gEAAAAAEPzPxWX1f1Sr3Ugtrn1BSx89V1FR0fL5CtR8+NPMMG4oBhxrXr9bmfOmSvl5SupwpFqMeCls24bgt/+B+r9Shz2sZU8O1Zyr2ioqNk6tbnxVUbHVwriFAAAAAAAgWP0C+Tu3aekjQ1SQs8vt/4ut2UBt7vxIUVFR/3vec1o+/gqlT7rFvb/FNc8rrl5qWLcRoY0Bx6YvX1L9k/4atm1C+GKA7wgAAJGGQVlAkDQ6c6RSL7pvv9sTmrZXh0d+LPU5Fb0P3m9/pzMBdmMgrn5T9XzfVynrCQAAAABAVflcXF7/R91jLnB/YDcGWoz4v6CuH6pW+x+o/8s58aLdvV8EfT0BAAAAAED4+wXiG7ZQx8dmlPl68Y3T1P4f3wZ9PRE5MeDo8Mi0oK4jIisG+I4AABBJosO9AgAAAAAAAAAAAAAAAAAAwPvi4+PVvn17dwkAAAAAkY6ZshByiYmJOuKII9ylVzCjjW20P4iBwHkxFwCBYB8AAACwzWv1IJ+LQQzYRvsHzmt5AAgU+wAAAIBtrVq10iuvvCKrvFYP0y8AYgDEgO08ACBwHAe8h0FZCLnmzZtr/Pjx4V4NAEAYkQtgHfsAAACAbdSDAGAbeQDWsQ8AAADAMuphALCNPACA44D3RId7BWBPfn6+srKy3CUAwCZyAaxjHwAAALCNehAAbCMPwDr2AQAAANsWLFigPn36uEuLqIcBwDbyAACOA97DoCyE3KJFi3T88ce7SwCATeQCWMc+AAAAYBv1IADYRh6AdewDAAAAtvl8PuXm5rpLi6iHAcA28gAAjgPeExvuFQCqsoQYaeopirh1DpbY6vG6aMmriiTOOgeL9fZ3EAPEAAAAAADALuufi633iziIAdsxYL39AQAAAACwLtL6Bjhvir4hYoAYoH8wuGJiYjR48OCgvd6jz09R5o4dSk5K0s1Xnrff38FaZwAINQZlAeWIipKqG95LoqKiVC0xQVZZb38HMUAMAAAAAADssv652Hq/iIMYsB0D1tsfAAAAAADrrPcN0Ddku/0dxAAxYJ2zD8TGBi8InDkyC3yFS+d19/0bACJVdLhXAAAAAAAAAAAAAAAAAAAAAAAAAAAiCcNKAQAAAAAAAAAAAAAAAABApWvZsqUmT56s1NTUcK8KAAAAABw0BmUh5Nq0aaPPP/9cycnJ4V4VAECYkAtgHfsAAACAbdSDAGAbeQDWsQ8AAADYlpCQoNatW8sq6mEAsI08AIDjgPdEh3sFYE9sbKzq1KnjLgEANpELYB37AAAAgG3UgwBgG3kA1rEPAAAA2LZ27Vrdf//97tIi6mEAsI08AIDjgPcwKAshl56erpEjR7pLAIBN5AJYxz4AAABgG/UgANhGHoB17AMAAAC2bdu2TR988IG7tIh6GABsIw8A4DjgPQzKQshlZWVp6tSp7hIAYBO5ANaxDwAAANhGPQgAtpEHYB37AAAAACyjHgYA28gDADgOeA+DsgAAAAAAAAAAAAAAAAAAAAAAAAAgAAzKAgAAAAAAAAAAAAAAAAAAAAAAAIAAMCgLAAAAAAAAAAAAAAAAAABUurp162rYsGHuEgAAAAAiHYOyEHIxMTE64ogj3CUAwCZyAaxjHwAAALCNehAAbCMPwDr2AQAAANuio6NVrVo1d2kR9TAA2EYeAMBxwHtsfrJBWOXn52v69OnuEgBgE7kA1rEPAAAA2EY9CAC2kQdgHfsAAACAbZs2bdKLL77oLi2iHgYA28gDADgOeA+DsgAAAAAAAAAAAAAAAAAAAAAAAAAgAAzKAgAAAAAAAAAAAAAAAAAAAAAAAIAAMCgLAAAAAAAAAAAAAAAAAAAAAAAAAALAoCyEXHJysgYMGOAuAQA2kQtgHfsAAACAbdSDAGAbeQDWsQ8AAADYZr0etL79AGAdeQAAxwHvYVAWQi41NVVjxoxxlwAAm8gFsM7r+8B3332nqKgoPfbYY+U+7sEHH9SQIUOUlpbmPr5ly5YhW0cAQOUd/52fESNGlPqYDRs2KC4uzn1Mv379im6fMWOGrrvuOvXp00c1atRw7584cWII1x6VEQd7fpw27dGjh5588knl5eWVeLzVtvd6PQgAKB95ANZ5fR/wp29swYIFuuiii9SxY0fVqlVLiYmJ6tChg2666SatXbs2pOsLAAh/39jjjz/u/p2SkqL4+Hh3edxxx+m9994L4RYgHH1jVtve6/XggVjffgCwjjwAgOOA9zAoCyGXnZ2tVatWuUsAgE3kAljHPlDo9ttv1zfffKPWrVurTp064V4dAECQJCQk6PXXXy81z73yyivy+XyKjY0tcfsnn3yif/7zn9q6dau6du0awrVFZbngggvc9p40aZJGjx6t3Nxc9wTTa665psTjrLY99SAA2EYegHXsA1J6ero7+Orss892L1w0duxYnXjiiXrhhRfUs2dP96R9AICdvjHnojXOhetuvPFGPfvssxo5cqR27typQYMG6b777gvh2iPUfWNW2956PWh9+wHAOvIAAI4D3sOgLITcsmXLNHjwYHcJALCJXADr2AcKLVmyRJs3b9aXX36pJk2ahHt1AABB4pxUmJGRoffff3+/+15++WWdcsop7lVf93b11Vdr+/btmjt3rnsCAiKfc/Xfiy++WEOHDtXNN9+sn376SU2bNtWLL76ojRs3ynrbUw8CgG3kAVjHPiCdcMIJ7sWKHnjgAffk7OHDh2v8+PHuZyZnsJaF2WMBwKsq0jc2ZcoU99g/atQoXX755fr73/+uH374QV26dNEjjzyi/Pz8EG4BQtk3ZrXtrdeD1rcfAKwjDwDgOOA9JS+9AqAEn0/aHWH9GwkxUlRUcF7LuUJT3q7IGoUbWz3enf49GKy3v4MYIAYAoDKlpaWpqou0XEAtQC1ADBADVaEedE44cAbYOCeZnHvuuSWu+urcfv/99+vrr78u8ZxGjRqFYU0RSklJSerdu7fefvttd2B2gwYN3Ntp+6rN+nHQeh50EAO2Y8B6+wNAOLRo0cJdOifzVwXWc4H1WiASY4C+MerBSO0bK40zm1Zqaqpmz57tzrIUExNTyWuOcPSNlYa2R1USabmAWoBagBggBqpCPQjvcI4BkTZI3qkdg9kvAMA/DMoCyuEUlH0/UUSZeopUPUh7tvOB4rXWFyuSXLTkVVVLTAjKa1lvfwcxQAwAgHWRlguoBagFiAFioKrUg85VXW+66SatXr3aPYHAMWHCBDVs2FCnnXZauFcPYeKccOKoW7duuFcFfrJ+HLSeBx3EgO0YsN7+ABAKu3fvVlZWlrucN2+ebrnlFvd2ZxaVqsB6LrBeC0RiDNA3Rj0Y6X1jW7ZscU/63LRpk9566y199tlnOu6445SQELz9GlWzb4y2R1UVabmAWoBagBggBqpKPQhvcOqzd955R5HEmX3JGeQPILSiQ/z/AAAAAAAA4HEXX3yx29n7r3/9y/17165deuONNzR06FA6gY3YuXOnexLJxo0b3av6XnvttZo1a5Z69eqldu3ahXv1AAAAgCrhxRdfdGfKaNasmU4++WRt3bpVr776qvr27RvuVQMAhKFvzOkzcQZuderUSffdd597QqXzPHi/b4y2BwAAAIDIxVkwAAAAAAAACKp69erpjDPO0MSJE3X77bfr3Xff1bZt29yrBMOG0aNHuz97GzRokP75z3+GbZ0AAACAquass85Shw4d3NmynBO1P/jgA/cEbgCAzb4x53HO7InODFvObEnOYK7MzEx3AC+83TdG2wMAAABA5GJQFkLO+WJhxowZ4V4NAEAYkQtgHfsAAMCCyy67TKeeeqq+//57TZgwwb0KrHOlV9gwfPhwDRkyRLm5ue7VgB9++GGlp6crISEh3KtWJVAPAoBt5AFYxz5QrGnTpu7PngFazqwYhx9+uDu7xm233Rbu1QMAhLhv7Jhjjinx/AsuuEB9+vTRvHnzVKdOnRCsNcLVN2at7a3Xg9a3HwCsIw8A4DjgPdHhXgEAAAAAAAB4z8knn6zU1FTde++9+vbbb5kly5i2bduqf//+GjhwoEaNGqUPP/xQM2fO1FVXXRXuVQMAAACqrC5duqh79+565plnwr0qAIAq0Dc2bNgwrVu3zp1FCbb6xmh7AAAAAIgcDMpCyK1YscLtbHKWAACbyAWwjn0AAGBBTEyMLrnkEn311VfuFWCdq7vCrqOOOkpDhw7VlClTNG3aNFlHPQgAtpEHYB37QPl27dqlLVu2hHs1AABVoG/MyQkO8oK9vjGvt731etD69gOAdeQBABwHvCc23CsAe5yOgzlz5hR1IAAA7CEXwDr2AQCAFc6VX+Pi4pSWlqaaNWuGe3UQZnfddZdee+013X333e4JSZZRDwKAbeQBWMc+IHfmi8aNG+93uzOTivPe9OvXLyzrBQAIfd/Yjh075PP5VKNGjRK35+fn65///Kf7e+/evUOyvght35jltrdeD1rffgCwjjwAgOOA9zAoCwAAAECl+Prrr7V79+79bq9fv777ReQrr7xSdMWPjRs3KicnR/fff7/7d4sWLdwrBgIAIlvz5s11zz33HPBxTj5w8oJj7ty57vLDDz9Uenq6+7uTE5zcgMjWpk0bnX/++e7JJ1OnTlXfvn1pewAAAJjsG/v888+1du1aHX/88W696zzul19+0RtvvKHk5GQ9/vjjYVlnAEDo+8YWLVqkY489Vuecc47at2+vunXravXq1Zo8ebIWLFigYcOGuX0o8F7fmJPzaXsAAAAAiHwMygKCLHP2d1p453ElbotOSFJ8k3aq12+oGp72N0XFsOt5GTEAYgAACn322Wfuz76cL5acQVkvvfSS/vOf/+x3lUCH8yVUpA7KIg+AGAAxELhly5YV5YA93n33XffHcfTRRzMwxyPuuOMO98QS54rAziwAtL33cAwEMQBiAAAO3Dc2ZswYTZo0yb1AgXOxoqioKLfuvfLKK3XzzTe7J/FHKvIAiAEQA4Fp2rSp+32IM0jnvffeU2ZmpmrVqqXu3bu7fSYXXnhhuFcRldQ39tZbb9H28CTyAIgBEAMAAGvIakAlqXPMBarV8xTJ51Nuxjpt/m6S0ifcpN3p89Xi2hfCvXoIAWIAxAAAq/r16yefz3fAx3333XfyMvIAiAFYiwF/j/+OrKysCj8XVduB2rJjx47Kz8/3+/GIXNaOgdgfMQBiAIBV/ta45557rryMPABiANZioKJ9Y84Mik8//XQlrhmqct8YbQ8vs5YHsD9iAMQAAMAKBmUh5FJSUnTvvfe6Sy9LTOuhev0uLvq7wSnXaO41HbTpyxfV5OJ/qFqtBrLk0rVvB+21Jqaco0hADJREDBADFnMBUBb2ARvIAyVRCxADxAAxAMBWPcgxcH/WciExYLv9HcSA7TwAlId9wAbyQEnUAsQAMUAMAChmvR60sv3kgZKoBYgBYoAYsJYHAJSN44D3MCgLIedMtT1w4EBZE5OQpKT2vbV12tvKXrfEVEGZlFpfM0ZP1LwXPpJlxAAxYDkG9mU1FwB7sA/YZDkPUAsUIgaIAcsxAKAki/Wg9WMgudB2DND+hSzHwL4s5gFgb+wDNlnOA9QChYgBYsByDAAoyXo9aHX7LecBaoFCxAAxYDkG9mY1DyA4li1b5g7kSUhICPeq4CBwHPAeBmUh5DIyMvTVV1+pf//+qlOnjixxCklHbI26sqTZiYdp1Rc/h3s1qgRiAFZjYF+WcwHg1X1g5syZfj9206ZNevfddzVo0CDVr1/f7+cdfvjhinRW8wC1QDFiAF6NAfIAiIHAeLEetHwM9Ae50HYM0P7FrMbAvqzmAcDL+wD1sH+s5gFqgWLEALwaA4HkgYrmAi/kAS+jFgiMF+vBQFjefq/mgQOhFihGDMBqDOzNch6wyOfzadGiRVq4cKGWLl2qlStXaufOne7t1apVcwdYpaWlqXXr1jr00EMVHx9f5mstWLBADz74oFq1aqVbbrmFgVkRjOOA90SHewUscT5Ujxo1Sm3atHEPhM2aNdP111+vHTt26IorrlBUVJSefvrpcK9mpVu/fr0effRRd+llBdk7lbd9k3K3bdSu5bO18rlrtWvpLCW27aWE1HaypGZaY2UuXydriIFixAAxYDUXAGWxvg84dfGLL77oLr2MPFCMWoAYIAaIAYt5AGUjBmzUgxwDS7KYC4kB2+3vIAZs5wGgPNb3ASv1MHmgGLUAMUAMEANWcwFKR/tTD1rZfvJAMWoBYoAYIAYs5gHrnIFXn332mf7+97/r7rvv1quvvqpp06YpPT1dW7ZscQflbNiwQb///rvee+89PfbYY7rmmms0adIkrVmzpswBWbt379b8+fPd5yBycRzwHmbKCpHffvvNnWZu3bp1SkpKUqdOndyD5rhx47RkyRL3AOvo1q1buFcVQbJ28mj3Z2+1jxyk5lf+U5bEJiYoN2u3LCIGChEDxACK7cqTpq6XfP/721nmFkjVjAyT9/mk37dIC7dLu/OlmtWkPo2kBly0Ax5FHihELUAMEAPEAIptyZa+Xy9ty5HiYqTWyVLPelJUVLjXDAg+joHFrOZCYsB2+zuIAewr3ydN31iyb2x7jlQzTmaszJJmbpJ25EmJMVLXulLbWuFeK6BykAcKUQsQA8QAMYBizveDTt/Y+l2Ff6dUl45uVNhPBsB7yAOFqAWIAWKAGIA9M2bM0EsvvaRt27btd19sbKxq1qzp/r5r1y73Zw9nkpdPPvlEn376qU477TQNGTJEcXFxJQZkObp06aLBgweHcIsAHAiDskLAubLJ6aef7g7IGjlypEaPHq3k5GT3vkceecSdQtA5yDozZTkHSnhD/ZOHq85RQ+TLz9WuFbO17t2HlbMpXVHVis88z5w7VYvHDNzvub68HPkK8tXzvXxFuibHdtHq//wui4iBQsQAMQBp027pX4ulD1dKWXnFtzsnnpz2pXRWC2loa6lGNXl2MNb7K6U3lkqLM0veFxMlHdtYurSt1Kl2uNYQqBzkgULUAsQAMUAMQFq8XZq4SPpqjZS35yzk/2lRQxrSUhrSqrA2AryCY2Axq7mQGLDd/g5iAHvk5EuvL5XeWS6t3VWyb2zgF9KAptJlbaWmSfIsZzDaK4ulnzbuf58zMOuiNOn4JuFYM6DykAcKUQsQA8QAMQApI7vwu9IPVkrbc0veVydOOrO5dEkbW4P1AQvIA4WoBYgBYoAYgK3ZsZwZUZ0ZsfbWoUMHHX300WrTpo2aNm3qjhlw+Hw+d4zBsmXL9PPPP+vHH39Ubm6ue/uHH36oX375xR1/8K9//avEgCxn9i1nsBaAqoNBWSFw3XXXudMNjhgxwp1ecG+jRo3S66+/7k4/2KpVq6LRr4h88SltVbNbf/f3Wj0HqkbHo7XgtqO18tmrlHbzG+7tyZ37qvuUrBLPy9m8Rn+OPEwNTh0hL2h4eAf9cv+rJW7rcduF6nLdIH1/4zNa/MY3+z1nwDv3qkHPdvrw5FHaumCVIhUxUIgYIAasW54ljfhRWrfXCSd725wtvbRQ+u86aXxvqb7HZo3KK5Du/U36NL3sKyR/s7bwqnj39+DkE3gLeaAQtQAxQAwQA9b9tEG6eaa0q4zvjFZkSY/NKZwx4cGeXBkY3sExsJjVXEgM2G5/BzEAhzMj1I3TpV83l35/dkHhxXy+XSuN6y0dUkee41yo6PE5xTOE7cuZWd75cQamXdOBWVThHeSBQtQCxAAxQAxYl75DuvZHafXO0u/PyJEmLpb+s056+kipUfVQryGAykIeKEQtQAwQA8QAbMjMzHRns1q6dGnRbT179tR5552n5s2bl/ocZzKXBg0auD+9evXS0KFD9dlnn+nf//638vPztWbNGj3//PNFj2dAFlB1RYd7Bbxu/vz5mjJliurXr+8ebEvjHHQdXbt2LbptzyAu5yAbHx/vHni9IjExUUcccYS7tKRGx6NUt99QZXw/RVnzS46C3qMgN1tLHxqkGp2OVsqQ2xXxnLiNknwFBSVu/u2xN5Uxf4V63TNMiSl1S9zXafhpanxUZ/322JSI/kBRGmKgGDFgKAaM5wLnqm9/K2dA1t4WbZdumC7t9tgFXp6cW/aArL3lFEi3/1L2CTpeY2UfKIsza+yAAQOKZo+1wmQeoBYogRgoRgwYigHjeeDPbdLfyxmQtTfnxJP7jFwo0VIMlMViPWj2GEgutB0DtH8JJmPAeB4o8Em3zvSvv8eZMeG6n6RVJc/BiXifpRcOwC9rQNbeXl4kvVZ8zoanWdkHymK1HjaZB6gFSiAGihEDhmLAeC7YnlNY45U1IGtvy7Kk63+SdubJ86y0f3ms14NWt99kHqAWKIEYKEYMGIqBUljNA16fIWvvAVlJSUm69tpr3QFUZQ3IKo1THw4ZMkQPPfSQmjQpeWVzZ5YtBmR5B8cB72FQViWbPHmyCgoKdNFFF6lGjRqlPqZ69er7DcpavHix3nnnHTVu3FiHH364vMRJMOPHjw8o0XhFynl3SdExWvP63aXev/KZq1SQu1str58oL2jQvY02zVq83+0FuXmaev3Tik2MV58nrim6vWbrJupx6wXa+MtCzXnmA3kRMVCIGLATA9ZzwRvLpLV+DMja+6Rd50QNL135bsoy/x+f55OenicTrOwDZUlNTdWYMWPcpTXW8gC1wP6IgULEgJ0YsJ4HnvszsEH3zmD2P7fK8yzFQFms1oMWj4HkQtsxQPvvz1oMWM8DP22Uftzo/+OdgVkTFslTM8iPD7Cv64U/paxceZ6VfaAslutha3mAWmB/xEAhYsBODFjPBe+skFbu8P/xizOlD7117rnp9i+P9XrQ8vZbywPUAvsjBgoRA3ZioDSW84BXTZgwoWhAVp06dXTvvfeqb9++FZ6QxRnktWXLlhK3bdq0STk5OUFZX4QfxwHvYVBWJfvmm8KpRY877rgyH+PMirXvoKxjjjlGa9eu1QcffKD+/Qun7/QKZ0rFrKwsd2lNQkob1e17vjL/+FqZc6eWuG/Dh+O07eeP1Pq2fys6PvJGvjbq3VFRMSUPKanHddfqb38r9fFbZi/TH+PfU2q/bmp3cX9FRUer77i/ufc5Hzj2vTqEVxADxYgB78VAICzkgtwC6d8rAn/eW8slnz+Xzo0A7ywP/Dl/ZEgLtsnzLOwD5cnOztaqVavcpTVezgPUAv4hBooRA96LAX9ZyQOrd0g/rA/8eW9XoIaKNFZioDxW60GvHwPJhbZjgPb3j5djIBBW8sBbAVysZ48vVkvbPHJuwffrpfW7A3vOznz/Zp2PdFb2gbJYroe9nAeoBfxDDBQjBrwXA4GwkAvyfRX7rvDtZd75rtRy+x+I9XrQ8vZ7OQ9QC/iHGChGDHgvBvxlOQ940c8//6zvv//e/d2Z9ej2229X06ZNK/x6CxYscGfd2r17d9GsW46tW7dq0qRJQVprhBvHAe9hUFYlW7Gi8GzsFi1alHp/Xl6efvjhh/0GZUVHe7dpFi1apOOPP95dWtR4yB1OA5cY6Z/5x7dKn3SL0ka9pfhGLRVpWp5xlPq/crsaHdGxxO3VaiYqN7Pseeh/f/JtbZmzTIfdfYmO+MflatCjrX59eLK2L1kjLyMGihED3omBQFnIBb9skjZXoB/dGZAUyBXjqrLPV1fsec7JN15nYR8oz7JlyzR48GB3aZEX8wC1QGCIgWLEgHdiIBBW8sCXayRfBWsor594YiUGymO5HvTqMZBcaDsGaP/AeDEGAmUhD+zIKxyUFKjsAuk/62S6b6yiz4skFvaB8livh72YB6gFAkMMFCMGvBMDgbKQC2ZvkdbtCvx5y7KkRdvlaRba/0Cs14PWt9+LeYBaIDDEQDFiwDsxEAjrecBLnIFTL774YtHfw4YNU7NmzYI2IKtLly66//77Vb16dffv//73v/r999+DsOYIN44D3hMb7hXwuh07Cs+q3rWr9J6GKVOmuFMKJicnq1WrVpW6LocddpjWraucb7LOOeccvx+7YcMGd/npp5/ql19+8ft5Z599tkItKq66Go0N7ICXfGg/9Xy/7LOnqjfrqJ7vFY9szV6/XEsfPVdNL33Ufe7BateurXw5FejZKkU1X7RGq9cBH7f8g2mq2aqxmp18uNZNm+velpRaXzvSN5b7PF9evntVh9M+fUgdLh2g9dPna94LHx/UOrdr2065UQVha/9wx0Aw299BDBADlZEHKpoLwpEHDkbC4Wer9mXjK/TcfqcOUu6SGYp0jcYtVVRsXMDPe3bSG3r41b8rkrAPUA96NQ9QC1ALEAPEgPU8cDCSB92lpP5XBvy8XflS89bhaceDYT0GvFoPRlotFK6+saqUC4OZBx3EALUQtZDtPHAwYuo2VYP7f6rQc2++50Fd88U/Fenq3PCm4tsdFfDzfp6/RE3PP1aRhH3Au/UwtYDtWiASY4C+MepB6sGqI77bQNUZ/n8Veu6Acy5Uzvz/KpJ4tRbwF/uAd2OAWoBawHotQAwQA9bzQLCdfdkNSqpRU2vXrXVnk9r376omLi7OHSRVFmeGLGcGK0f37t11zDHHBHVA1t///nd3HS655BI9//zz7u0ff/xxiUlg9tWuXTvl5ORUeD1QMdTD3tC4cWN39ruKYFBWCBonIyNDv/76q4488sgS961du1Y333xz0cEzKiqqUtfFGZC1evXqSh185o89A9ScZSDPq6x1L48zBWqjSnz9guydWvLgWarV6ww1PHVEUF5zzZo17usGQ1xUjPx9A1Z8OkMnTLxFM0dPdP9uduJhWvXFgQ9Mudt3qiAnTzFx1ZT+9a8HfTnwNWvXKMeXHxHtXxkxEMz2dxADxIC/AjmeVzQXhCMPHIw6rTaodgWfu3HdGu2IsO0tTcP8vAoNytqxfVvEtTf7APWgV/MAtQC1ADFADFjPAwcjddtWJVXwuatXrZAvL1eRxHoMeLUejLRaKJx9Y1UlFwYzDzqIAWohaiHbeeBgVNstNajgc7du2aQNEba9pUncuUPxFXhe7u5dEdfe7APerYepBWzXApEYA/SNUQ9SD1YdtVLXq04Fn7tx/VplRdj2erUW8Bf7gHdjgFqAWsB6LUAMEAPW80CwFeTnFy2d7dn376omPr7s3j2fz6cvvvii6O9zzz23wuMAyhuQ5Tj22GP13nvvuQN5/vjjD3f8QUpKSpn7QHZ2doXWAxVHPQwGZVWy/v37a/78+Xr44Yd14oknuiNQHTNnztTQoUPdWbIc3bp1C8kAscqSlOT/aUZ7Dh7OdIqBPC81NVWh5oz0r0wZ097RrmW/a/fqhcr4fsp+93d+ep7iGjQP6DWbNGkS1Ku/yc+LJmxbmC75pNrtmmrrwnQlt2qszInrD/i8PmOvVXS1WG1duEpdbhjsXjUic8WBn1eWJilNgnqlh8oW7BgIZvs7iAFiwF+BHM8rmgvCkQcORmzetqIPYIF84PLl56lu9G7VjrDtLU3+xuWKbtop4OfF79wQce3NPkA96NU8QC1ALUAMEAPW88DBqL6rsM8nUPmb09WkUUNFGusx4NV6MNJqoXD2jVWVXBjMPOggBqiFKpvFWiiS8sBBiY1Twa7tiq5eM+Cn1sjeomqRtr2liN2+pkLPi8pIj7j2Zh/wbj1MLWC7FojEGKBvjHqQerDqiMnfXrHvSgsKVMe3Q7UibHu9Wgv4i33AuzFALUAtUNmIAWKgqseA9TwQbNExMUVLZ3v2/buq2TMoqjTLli3TypUr3d/btm2rVq1aVcqALEd0dLQ7BuG1115z//7Pf/6j888/v8x9gJmyQo962BsOZqwNg7Iq2ahRo/T6669r1apV6ty5szp06OAeOBcvXqyBAweqZcuW+vzzz8udSjBYKjqdmj+cQWb++vPPPzV58mR3+533w19jx45VqO3Kk/p+UnmvX++4oe5PMC1cuEjVg7Rn5+7crddaX+z341d9+bM7BW9W+iblZh24sO14xSlK6XOIfnnwda36bIZO/+JR9XnyGn02aHSF13nhooWqlpigSGj/yoiBYLa/gxggBiojD1Q0F4QjDxwM58I1Q/8r/bktsCtgHN80Vo/O/01e8OYy6ZHZgT0nNkr66fm7VDf+LkUS9gHqQa/mAWoBagFigBiwngcOxo486ZQvCpeBGNGnqa5IT1eksR4DXq0HI60WCnffWFXIhcHMgw5igFqIWsh2HjhYj86WpiwL7DkNEqSfPn5ZsdGKeAu2SRf9J/DnPXflAB19d2TVg+wD3q2HqQVs1wKRGAP0jVEPUg9WLX/5XvptS2DflfZpHK1xs2co0ni1FvAX+4B3Y4BagFrAei1ADBAD1vNAsD3wz9e0PWuHUhqnKD09fb+/q5q8vDy98847pd63cOHCot/79OlTaQOy9v4fewZlLVq0qMzXdNYrNpbhIaFGPQwPfKVRtTVt2lRTp07VqaeeqoSEBC1fvlx169bV888/r48//rjooByKQVlVRZs2bdyBaM4S3uJMt9vspMPUpF9XrfnvH+U+1rkSRI/bL9TGWYs05+l/u1eH+O3xN9X4yM7uhw1EJmIA/rKQC5wLvp3TMvDnDanAc6qqU5pKiYUXNPFb/yZS3bJnfvYMC/tAeZwPkzNmzAiocwmRgVoAxAD8YSUPJMUW1kOBDlA/M7CLwEckKzFQHuv1oJeRC22j/eEvK3mgIn1jg1rIEwOyHO1rSV3qBPac1ETpyMibNDVgVvaBslAPexe1AIgB+MtKLrD+Xan19i+P9XrQ+vZ7GbUAiAH4gzzgDc5MWXu0bt26UgdkOZyxB3Xq1Cn6386MtIhcHAe8xyNfa1RtHTt21EcffaTMzEz3Z/r06Ro+fLg79ZwzSMuZVvCQQw6RFc4IXCcxMBLXe9ZPn6+aaSlqMbCXNs5cUPYDo6J09NgRbux/f/3T7vTzjjn/fF+bflvsfthIbtEodCuOoCEG4C8rueD05tIxjQP7kuHw+vKMGtWku7tL/l7/rkmidGNnmWBlH4A91AIgBoCSrukopSX7//jbukr1g3dBc1Rh1IPeRS60jfaHv6zkgVbJ0rUd/X+8M4BpqMe+g76rm5Rczb/HxkVL9/WQYgKbTCIiWdkHYA+1AIgBoKSTUqUTm/j/eOdiRUcT+iZYrwetb7+XUQuAGIA/yAPesHLlSncZFRWlFi1aVOqArD3S0tLc5c6dO7Vx48YKrzvCj+OA9zAoK4zmzp3rjlRt27atEhMT97v/7bffdn/mzZtX4u+ff/5ZkcyZYnLkyJFVcqpJHBxffoFWf/d74e//+6BQms5Xna5GvTpo1qNTtG3R6uLnFxS4HzKiY2LcaXgReYgB+MtKLnBOoHigp3RCyoEfe34r6e+HFs6w5SXOzFfOySTVDlB1tqohPXeUVM/ISchW9oGyrFixQpdffrm7hLdQC4AYgD8s5QHnBNxnjpQ61Dpw3Xh7FxuzZFmLgbJYrwe9jFxoG+0Pf1nKA5e28W9gVs960lO9pYQAZ12PhIFpzx4l1T/AzPA1YqVxvaUudWWCpX2gNNTD3kUtAGIA/rKSC6KjpDE9pIF+zCZ/dgvpti7e+67UcvuXx3o9aH37vYxaAMQA/EEe8IZdu3a5y6SkpAMOpgrGgCxHrVrFXzrveT4iE8cB72FQVhjNnj3bXXbt2rXU+4cMGeL+vPXWWyX+fvrppxXJsrKyNHXqVHcJ71n56Qyt/GxmmffXapuqHqPO14afF2jucx/udz/T8EY+YgD+sJQLnBNJHjpMevZI6fiUkle6jY+WTm8mTewrjTzEu1fBHdBUeu946fK2Ut19Pj8eUke6p7v0yrGFM2VZYWkfKKtjYs6cOUUdFPAWagEQAzgQa3nAmfnq5b6Fg/V71Nv//qGtpbePkwa1lBnWYqA01utBryMX2kb7wx+W8oBzUu1lbaUp/QpniU/a58KfRzaQHu8lPXOU/zNKRRpngP7bx0ujDi19FtW/dZTeO0E6rL7MsLQPlIZ62NuoBUAMwB+WcoFz4cYx3aUX+hTOmrXv96HOgK0JRxdesCjWyFlsltq/LNbrQevb73XUAiAGcCDkAW+49957NW7cON13330BPc8ZmF+RAVkOZwzB2LFj9cwzz6hJkwCmpEWVw3HAe5jzrAoPynJm0ULk271mkZaPHaa8zE2KSaylltdPVPXmnQ9438LRJykvY50UHa2Y6slq9tdxSkzrrqpuxUc/lnu/c2WHV1pdWO5jZo9/z/2x3P57bPrqZa0Yf7la3/aeavc+S5GAGAhODMz+a0tFxcYrOr66+3fjwbepbt/zwrotOLiTTw5vUPiTlStlZBfeVi9eqm6kGmucKF3TURreXjryI8mpcpzvXJwBaYCXlXesX/nCddo28wPlbFihjk/OUmJaN/f2gpzdWvrY+dq9ap6i46ortlZDNb/6WSWktFEkoBY4+BiI5M8DDmIgODEQyZ8JUPrJJyelFv5szZZO/Ly4Hrq+5MdAwHPKOg4eqOZZ+9YD2vzNv5S9dpFa3/puRB0DyYXBiYHlT12mrD9/cO+LTqihZn8Zq6S2h6uqo/2D1/47l/zi1sNRMdWUeslDqtn1hHBvDg5C65rSLV2kGzpLm7Ol3AKpTpxU0/+LyEa0GtWkc1sVDkzblC2d8kVxPTisbbjXDqhcFf0+1J/v0aoiaoHgtL8/fSZVFTFw8DEQ6X3k2J/zvahzsSLnZ0ee1O+T4lrovh7hXjsAVbEW2PbrZ1rz6p3y5eUoOj5Rza95XomtSj/HsqqhFiipoufH5W7doOVjL1H2uiWKqhav5lc9o+TOxygSEAPBiYFI/o4ANuw9a1UgTjrpJOXn52vWrFkBDchy1KlTp0L/E0DlM3KNkcgclAVvWPnMlap/8nAd8uxCNR50i5Y/dalf96Xd/KY6jftDncb+poZn3FTiPni//R3Z65dr0xf/p6T2vcOw5qgKMZB28xT3GOD8MCDLWydgNKshNU2yMyBrb84V7vZcAM+jE4MBJZR3rK/T5xy1f/B7xTVssd/zGpw0XJ2fWaBOT/2u2kecqRVP/yXEa45wxwCfB7yjojHg4DOBN9WOpx6CLeUdB8ureWp27a+2oz9VjQj5oh3Bj4Havc9W56fnufc1Puc2LX1kSJi2AOFo/6ZXPFlUD7e49gW3/X0FBWHaCgRTfEzhbOktatgZkLXvCckNEqgHYUtFvw890Hco8Hb7H6jPBN6PAfrIvcuZOZVaCLCjInkgLytDy564SC1v+Jd7f+qlj7p/IzJV9Py41ZNudW875LlFanndy1r2+IXy5eWGeO0RzhjgOwJ42cCBA3XrrbcGNCALQNXGoKww+uabb9zZsE499dRwrwoO0i9nRmn1q3dq3g3dNefqdtr83WtFV2zYsfhn1et3sft37aMGK2fTKu1eu7jc+xyxNWoXvX7+zm2F39TBTPs7Jxg4HcvNho93r/YBezEAAPB2HnA4V/KKq990v9eLjktQrcNOUdT/6r+kdr2Vs2F5SLcJ4Y0BB58HIktlxACfCQB4/Th4oJonqV0vxTdOC9MWoSrEQO0jzlBUTOHVTGq0762czavly88Ly/Yh9O1foh7esS3k2wQACM3n4rL6P/gOxXb7H6jPBN6PAfrIAcB2Hsheu0SxyfWKZtJJ7txXORtXaueSX8OwdajMGCjvu7CMH95UgwFXub8ntT1c1eo2Ueac/4R82xC+GOA7AnhddDRDOAAvMTg/A8KtQYMGuv76692lp0RFqdPYWcpet1TzRx6mGh37KC9zs6rVSSk6ecDpNIxr0Nz9oOhMxVrWfQkpbdzblj15iTJnf+v+3vbuT8K4cQh1+69//wn3NZLa9AzzhiGcxwBnGm6ffEpq20uplzykarW8c9z0bC4A/GR9H0hJSdG9997rLq3mgT3Hen9s+Ogp1e51ZiWuPKpqDPB5wHYMePkzgSfzAAJCDHi0HjzI4yA1jwdUYgys//Ap1ep5StHrwEb7p//rVmVMe0v5WRlqfcs7ivLQl9SezANAAKzvA56thyuYC0rr/3BO0gtGvxois/0RoSoxBrz4edGzuQB+of2pBz25/UHMAwlN2rrPzZo/TTU6HqWt0z9Qwa5MZW9YrsTWPcK4kQh2DJT1XVje9s3urFjV6jQuui2+YUvlbFoZ8s1CeGLA6zyZBwAEhOOA93jnGyxEjHr16umiiy5yl15S/8S/uEtndL4zZWrW3P8e9Gu2unGSukxYpdSL71f6pFuCsJaIhPbftWKOtv74jlLOvTOIa4hIOwa0f+C/hdO0P/GrYmvW1/KnhslLvJoLAH9Z3wdq1arlTsXtLL2iMmpBx9q3HlD22sVKveTBoLweKg+fB8BnAtt5AIEhBrxZDx7McZCaxxsqKwY2f/eqMr5/Uy2ufSGo64uq3/5Nhz2kQ59forSb31T6v0apIDdHXuHFPAAEwvo+4NV6uKK5gP4Pb6D9UVkx4NXPi17NBfAP7U896MXtD2YeiEmqpdaj3tbqV27T/Jt6avtvXyihWSdFRXOxHi/FgNe/C7OIGLCdBwAEhuOA9zAoCyG3fft2ffXVV+7S05xR/fWbKTdjrXz5ee5NPp/PHeXvjPYv77591Tt+mHtVEOcqEPB++2fNm+pe3WXO1W01+68ttWPBT1rxzHBt/PTZMG8UQnkM2LOMiq2mRqffoKy5U+UlZnIBUAbr+0BGRobeeustd2k1D/hj3XuPaeuP76rN3Z8qOj6xklcYVTEG9uDzgL0Y8PpnAhN5AOUiBozUg34eB6l5PCwIMbBl6hStfeNetRvzparVbhTyTUDVOAbU7NZf+bsytWvFbHmFiTwAlMP6PmCmHg7wc/He/R/B6lNBZLY/PCIIMeDlz4tmcgFKRftTD5rY/oPMA8ldjlP7B/6jjk/8oqaXP67cLWuU0LxTyDcDlRcD5X0XFluznjuzUm7GuqKXcx4bV5/PA1ZiwOtM5AEA5eI44D0MykLIrVmzRrfffru79JLNX7/sLrPXL3cLxhqd+qpa7YbutMnO1VwdW6e9o7h6Td2pV8u7Ly9rq3I2F78/W3/6t2KT6ykmuW6Ytg6hbP8GA69W14lrdej/LXd/ktr3VotrXnBvh40YyN+9wz0O7LFl6mQlpnWXl3g1FwD+sr4PrF+/Xo8++qi7tJoHDmT9+08oY+pktR3zpWJr1K709UfVigE+D0SmYMaA1z8TeDEPIDDEgDfrwYocB6l5vCXYMbDl+ze15rU71XbMV5yAbaz9fXm52r12cdHfOxbOUN62De5Vdr3Ci3kACIT1fcCr9XCguaC8/o+D6VdD5Lc/IlOwY8Drnxe9mgvgH9qfetCL2x/sPJC7ZW3RfWun3KfkLsdTC3osBg70XVidPkO08bPn3N93LJqp3M2rlXzIsWHcQoQ6BrzMi3kAQGA4DngPc7oCQeIryNe8G7qrIHuHmv1lnOIbtXRvb3H181o+7lKte/sBxVSvqZbXFRaf5d2Xv3Oblj4yRAU5uxQVFa3Ymg3U5s6PFBUVFbbtQ+jaH5EpmDGQt3W9ljw0WCrIl08+xTdKU8sbJoVt2wAAlZMHVjxzpbb9/LF7ha9F95ysmOrJOuT5xcrZlK70CSMV1zhNC+88zn1sVGy8Oj42PWzbh9DGAJ8HIlMwYwAALBwHD1TzrH3zfvdL97xtG7V8xRxFvzBCHZ+cpWq1GoRxKxHKGFj2xEWqVruxljxwZtH/aDfma/dKufB2+/vyc7V87DC3Lnauihwdn6S0W95WbI06Yd1GAEBwc8GB+j/4Hs12+9NnYjsG6CMHgMgT7Fpgzet3K3PeVCk/T0kdjlSLES+FdftQOd+TlSd12MNa9uRQzbmqraJi49TqxlcVFVutkrcCVSkG+I4AABBJGJQFBEmjM0cq9aL79rs9oWl7dXjkx1KfU9Z98Q1bqONjMyplPVH1239f7f/xXVDWERF0DGicpk5jZ1XKegIAqk4eaHHN86XeHle/qXq+7wv6OiJyYoDPA5EpmDGwLz4TAPDicfBANU/KuXe6P7AbAz3fzQ36OiIy2j86PlEdHv6hUtYTAFB1csGB+j/8/R4N3mx/f/tM4M0YoI8cACJP0GuBEf8X9HVE1fuerLzvwqrVbqR2934R1HVEZMUA3xEAACJJdLhXAAAAAAAAAAAAAAAAAAAAAAAAAAAiCTNlIeTi4+PVvn17d+kVXKXJNtofxEDgvJgLgEBY3wcSExN1xBFHuEsvIA+AGAAxYDsPIHDEgPfqQY6DIAZso/0D57U8AATK+j7gxXqYXGAb7Q9iIHBezAXwH+1PPei17ScPgBgAMWA7DwAIHMcB72FQFkKuVatWeuWVV8K9GgCAMCIXwDrr+0Dz5s01fvz4cK8GACBMyAMgBqgHAcA68gCss74PUA8DAMgFttH+1IPWtx8ArCMPAOA44D3R4V4BAAAAALbk5+crKyvLXQIA7CEPgBgAAACAZdTDAABygW20PwAAAAB4C4OyEHILFixQnz593CUAwCZyAayzvg8sWrRIxx9/vLsEANhDHgAxQD0IANaRB2Cd9X2AehgAQC6wjfanHrS+/QBgHXkAAMcB72FQFkLO5/MpNzfXXQIAbCIXwDr2AQAAANuoBwHANvIArGMfAAAAsM16PWh9+wHAOvIAAI4D3hMb7hUAqrKEGGnqKYq4dQ6W2OrxumjJq4okzjoHi/X2dxADxAAAWBdpuYBagFqAGCAGqAcBBJP146D1POggBmzHgPX2BwCQC6zXApEYA/SNUQ9SDwJAcEVaLqAWoBYgBogB6kEEU0xMjAYPHhy013v0+SnK3LFDyUlJuvnK8/b7O1jrDCD0GJQFlCMqSqpueC+JiopStcQEWWW9/R3EADEAANZZzwXUArbb30EMEAMAbLN+HLSeBx3EgO0YsN7+AABygfVawEEM2I4B6+0PACAXUAvYbn8HMUAMwDbnGBAbG7ydwJkTqcBXuHRed9+/AUSu6HCvAAAAAAAAAAAAAAAAAAAAAAAAAABEEoZVIuRatmypyZMnKzU1NdyrAgAIE3IBrLO+D7Rp00aff/65kpOTw70qAIAwIA+AGKAeBADryAOwzvo+QD0MACAX2Eb7Uw9a334AsI48AIDjgPcwKAshl5CQoNatW4d7NQAAYUQugHXW9wFnyu06deqEezUAAGFCHgAxQD0IANaRB2Cd9X2AehgAQC6wjfanHrS+/QBgHXkAAMcB74kO9wrAnrVr1+r+++93lwAAm8gFsM76PpCenq6RI0e6SwCAPeQBEAPUgwBgHXkA1lnfB6iHAQDkAttof+pB69sPANaRBwBwHPAeBmUh5LZt26YPPvjAXQIAbCIXwDrr+0BWVpamTp3qLgEA9pAHQAxQDwKAdeQBWGd9H6AeBgCQC2yj/akHrW8/AFhHHgDAccB7GJQFAAAAAAAAAAAAAAAAAAAAAAAAAAFgUBYAAAAAAAAAAAAAAAAAAAAAAAAABIBBWQAAAAAAAAAAAAAAAAAAAAAAAAAQAAZlIeSio6PVvXt3dwkAsIlcAOus7wMxMTE64ogj3CUAwB7yAIgB6kEAsI48AOus7wPUwwAAcoFttD/1oPXtBwDryAMAOA54Dy2JkCsoKNCsWbPcJQDAJnIBrLO+D+Tn52v69OnuEgBgD3kAxAD1IABYRx6Addb3AephAAC5wDban3rQ+vYDgHXkAQAcB7yHQVkAAAAAAAAAAAAAAAAAAAAAAAAAEAAGZQEAAAAAAAAAAAAAAAAAAAAAAABAABiUBQAAAAAAAAAAAAAAAAAAAAAAAAABYFAWQi45OVkDBgxwlwAAm8gFsM76PmB9+wHAOvIAiAHeAwCwjjwA66zvA9a3HwBALrCO9uc9sL79AGAdeQAAxwHviQ33CsCe1NRUjRkzJtyrAQAII3IBrLO+D1jffgCwjjwAYoD3AACsIw/AOuv7gPXtBwCQC6yj/XkPrG8/AFhHHgDAccB7mCkLIZedna1Vq1a5SwCATeQCWGd9H7C+/QBgHXkAxADvAQBYRx6Addb3AevbDwAgF1hH+/MeWN9+ALCOPACA44D3MCgLIbds2TINHjzYXQIAbCIXwDrr+4D17QcA68gDIAZ4DwDAOvIArLO+D1jffgAAucA62p/3wPr2A4B15AEAHAe8JzbcKwBUZT6ftDtfESUhRoqKCs5r+Xw+5e2KrFG4sdXjFRWkN8B6+zuIAWIAAKyLtFxALUAtQAwQA9SDAILJ+nHQeh50EAO2Y8B6+wMAyAXWa4FIjAH6xqgHqQcBILgiLRdQC1ALEAPEAPUgEFzOcTA/P3IOBDExMUHtFwH8xaAsoBxOQdn3E0WUqadI1YO0ZzsfKF5rfbEiyUVLXlW1xISgvJb19ncQA8QAAFgXabmAWoBagBggBqgHAQST9eOg9TzoIAZsx4D19gcAkAus1wKRGAP0jVEPUg8CQHBFWi6gFqAWIAaIAepBILicAVnvvPOOIoUz+1RsLAcBhF50GP4nAAAAAAAAAAAAAAAAAAAAAAAAAEQsBmUBAAAAAAAAAAAAAAAAAAAAAAAAQACYnw0h16FDB82YMSPcqwEACCNyAayzvg9Y334AsI48AGKA9wAArCMPwDrr+4D17QcAkAuso/15D6xvPwBYRx4AwHHAe5gpCwAAAAAAAAAAAAAAAAAAAAAAAAACwKAshNyKFSt0+eWXu0sAgE3kAlhnfR+wvv0AYB15AMQA7wEAWEcegHXW9wHr2w8AIBdYR/vzHljffgCwjjwAgOOA9zAoCyG3a9cuzZkzx10CAGwiF8A66/uA9e0HAOvIAyAGeA8AwDryAKyzvg9Y334AALnAOtqf98D69gOAdeQBABwHvIdBWQAAAAAAAAAAAAAAAAAAAAAAAAAQgNhAHgzgwDJnf6eFdx5X4rbohCTFN2mnev2GquFpf1NUDLuelxEDIAYAwDbyAIgBEAMALOMYCGIAxAAA2EYeADEAYgAAbCMPgBgAMQAAsIasBlSSOsdcoFo9T5F8PuVmrNPm7yYpfcJN2p0+Xy2ufSHcq4cQIAZADACAbeQBEAMgBgBYxjEQxACIAQCwjTwAYgDEAADYRh4AMQBiAABgBYOyEHIpKSm699573aWXJab1UL1+Fxf93eCUazT3mg7a9OWLanLxP1StVgNZcunat4P2WhNTzlEkIAZKIgaIAYu5ACiL9X3AyvaTB0qiFiAGiAFiwFoeQNmIARvvAcfA/VnLhcSA7fZ3EAO28wBQHuv7gJXtJw+URC1ADBADxIDFXIDS0f68B1a2nzxQErUAMUAMEAPW8gCAsnEc8B4GZSHkatWqpYEDB8qamIQkJbXvra3T3lb2uiWmCsqk1PqaMXqi5r3wkSwjBogByzGwL6u5ANjD+j5gdfst5wFqgULEADFgOQb2ZjUPoBgxYPM9sH4MJBfajgHav5DlGNiXxTwA7M36PmB1+y3nAWqBQsQAMWA5BvZlNRegEO3Pe2B1+y3nAWqBQsQAMWA5BvZmNQ8AwVJQUKDo6GhFMo4D3hPZEYmIlJGRobfeestdWuMUko7YGnVlSbMTD9OqL34O92pUCcQArMbAviznAsBhfR+wvP1W8wC1QDFiAFZjYG+W8wAKEQN23wPLx0Byoe0YoP2LWY2BfVnNA8Ae1vcBy9tvNQ9QCxQjBmA1BvZlOReA9ndYfw8sb7/VPEAtUIwYgNUY2JvlPAC78vLytGzZMn399dd6++23NXnyZHc/+OKLL7R48WLl5OT49Tqff/657rvvPu3evVuRjOOA9zBTFkJu/fr1evTRR3XooYeqTp068qqC7J3K275JPp9PeRnrtPGz57Rr6Swltu2lhNR2sqRmWmP9OXGdrCEGihEDxIDVXACUxfo+YGX7yQPFqAWIAWKAGLCYB1A2YsDGe8AxsCSLuZAYsN3+DmLAdh4AymN9H7Cy/eSBYtQCxAAxQAxYzQUoHe3Pe2Bl+8kDxagFiAFigBiwmAcAZ0arWbNm6csvv9ScOXPcgVlliYmJUYcOHXTiiSfqsMMOU2xsbKkDsl5++WX394cfflh33HFHqY+LBBwHvCcyIzFCbdq0SY888ojeffddpaenq0GDBho0aJAeeOABXXfddZowYYLGjx+vESNGhHtVEQRrJ492f/ZW+8hBan7lP2VJbGKCcrMie0RyRREDhYgBYgDYm88n+fb8HuZ1ASobeaAQtQAxQAwQAygpr4B6CDZwDCxmNRcSA7bb30EMAKXL3aseBLyMPFCIWoAYIAaIAZRUwHeFgBnkgULUAsQAMUAMANY4AzGnTZvmzobljJ3wR35+vubOnev+OIOUBg8erBNOOEFRUVH7DchyOAO4nIFcQFXBoKwQ+e233zRw4ECtW7dOSUlJ6tSpk9asWaNx48ZpyZIl2rJli/u4bt26hXtVEST1Tx6uOkcNkS8/V7tWzNa6dx9WzqZ0RVVLKHpM5typWjxm4H7P9eXlyFeQr57v5SvSNTm2i1b/53dZRAwUIgaIAcCxPUf6aJX09vKSX7TcMF06p6V0ZEMppvAzFOAZ5IFC1ALEADFADKBwYPrMTdJby6X/ritZD01cJJ3ZXKoTH+aVBIKMY2Axq7mQGLDd/g5iACg5EOubtdLby6RZhV8Jugok/XuFNCBVSuBbW3gMeaAQtQAxQAwQAyi0ZHvh94SfpJfsG3t8TuF3hS1qhHkFAQQdeaAQtQAxQAwQA4AlW7du1UsvvaSZM2eWuL1u3brq2LGj0tLSlJKSori4OOXm5rozRi1dulR//vmnNmzY4D42IyNDL774on766SddeeWV+vXXX0sMyDr77LN17rnnFg3YAqoCuvdDwBnlefrpp7sDskaOHKnRo0crOTnZvc+ZOeuWW25xp89zDg5dunQJ9+oiSOJT2qpmt/7u77V6DlSNjkdrwW1Ha+WzVynt5jfc25M791X3KVklnpezeY3+HHmYGpzqjRnTGh7eQb/c/2qJ23rcdqG6XDdI39/4jBa/8c1+zxnwzr1q0LOdPjx5lLYuWKVIRQwUIgaIAeDHDdItP0s7S5mB+Pv1hT+H1JGe6CXV5WRkeAh5oBC1ADFADBAD1mXmSrfMlGaUcRGwp+dL/7dAGtNDOqFJqNcOqDwcA4tZzYXEgO32dxADQKFVWdL106WVO0q///7fpef+lMYeIXWoHeq1AyoPeaAQtQAxQAwQA9bl+6Sxc6XJS0u/37nd+bm8rXR1B4nzKgHvIA8UohYgBogBYgCwYsWKFXrggQe0bdu2otuccREnn3yyunfvrujo6HJn15ozZ46++OKLogFdzt833XSTO3hrDwZkoaoqO7oRNNddd53S09M1YsQIPfbYY0UDshyjRo1S165dlZeXp5YtW6pmzZryusTERB1xxBHu0pIaHY9S3X5DlfH9FGXNn1bqYwpys7X0oUGq0elopQy5XRHPSXpRkq/AudZjsd8ee1MZ81eo1z3DlJhSt8R9nYafpsZHddZvj02J6A8UpSEGihEDhmKgDFZzgUU/bSicDau0AVl7m5MhXTWt8KRlC6zvA1a332QeoBYogRgoRgwYigHjeWBXnjTix7IHZO2RXSDd+rP09RqZYCkGymLxPTB7DCQX2o4B2r8EkzFQBot5wKq1O6W//lD2gKw9NmVLV06TFhWfr+Bp1vcBq9tvMg9QC5RADBQjBgzFgPFc4Mwe//AfZQ/I2tuERdK4eTLBSvuXx/p7YHX7TeYBaoESiIFixIChGCiF1TwA7w/IGjNmTNGALGc8xA033KDbb79dPXv2LHdAlsMZZHXooYe6k9/cdtttqlevnnu7VwdkcRzwHgZlVbL58+drypQpql+/vh588MFSH+McbBzO4Kw93n77bQ0ePFgtWrRwd7gOHTrojjvuUFZWyRHhkah58+YaP368u7Qm5by7pOgYrXn97lLvX/nMVSrI3a2W10+UFzTo3kabZi3e7/aC3DxNvf5pxSbGq88T1xTdXrN1E/W49QJt/GWh5jzzgbyIGChEDNiJgbJYzgWW7M6Tbv+l8Ap4/liaWXilPAus7wOWt99aHqAW2B8xUIgYsBMD1vPACwukuVv9e6xTMt39q7Q1R55nKQbKYvU9sHgMJBfajgHaf3/WYqAsVvOARff9Vjjgyh87/teX5py87HXW9wHL228tD1AL7I8YKEQM2IkB67ngP+ukd1f4//hXlkgzNsrzrLR/eay/B5a331oeoBbYHzFQiBiwEwOlsZwH4E3OQCxnjMSOHYVXpmrbtq07iU3v3r0r9HrOeIoBAwaUuC02NlbHHnusJwZkOTgOeA+DsirZ5MmTVVBQoIsuukg1atQo9THVq1ffb1CWczCKiYlxp/H79NNPdfXVV+vZZ591DzLO60Wy/Px8d3CZs7QmIaWN6vY9X5l/fK3MuVNL3Lfhw3Ha9vNHan3bvxUdH3kjXxv17qiomJKHlNTjumv1t7+V+vgts5fpj/HvKbVfN7W7uL+ioqPVd9zf3PucDxz7Xh3CK4iBYsSA92IgEJZzgSWfrZa2Bzjz1Wfp0nYDJyJb3wcsb7+X8wC1gH+IgWLEgPdiwF9W8sDufOn9lYE9x5kx66MAnxOJrMRAeay+B14/BpILbccA7e8fL8dAIKzmAWuWZR54xtT9npMl/bJZnmd9H7C8/V7OA9QC/iEGihED3ouBQFjJBW8uC/w5b1XgOZHGSvuXx/p7YHn7vZwHqAX8QwwUIwa8FwP+spwH4D0+n08vvfSStm7dWjQgy5mExpkpq6I+//xzvfbaayVuy8vL0/PPPx/xYyj24DjgPQzKqmTffPONuzzuuOPKfEx6evp+g7I+/PBDvfnmm+5gLmdk5/XXX6+nn35aP/zwg77//ntFskWLFun44493lxY1HnKHFB1dYqR/5h/fKn3SLUob9ZbiG7VUpGl5xlHq/8rtanRExxK3V6uZqNzMnWU+7/cn39aWOct02N2X6Ih/XK4GPdrq14cna/uSNfIyYqAYMeCdGAiU9VxgRSBXvtv7RORPCksjT7O+D1jffi/mAWqBwBADxYgB78RAIKzkga/XBD5A3fFOBWqoSGMlBspj+T3w6jGQXGg7Bmj/wHgxBgJlOQ9YUpG+Mcc7y+V51vcB69vvxTxALRAYYqAYMeCdGAiUhVywKivwAep7ZtfauFueZqH9D8T6e2B9+72YB6gFAkMMFCMGvBMDgbCeB+AtP/30k2bMmOH+npycrL///e9KSEg4qAFZL7/8ctHfp59+uurXr+/+Pn/+fH3xxRfyAo4D3hMb7hXwuhUrCr9xadGiRan3OyM3nYFW+w7KatCgwX6PPeyww9zl6tWrK7QuzvPXrVunynDOOef4/dgNGza4S2cGsF9++cXv55199tkKtai46mo0NrADXvKh/dTzfV+Z91dv1lE93yse2Zq9frmWPnquml76qPvcg9WuXVv5cnYpGKr5ojVavQ74uOUfTFPNVo3V7OTDtW7aXPe2pNT62pFe/rzyvrx896oOp336kDpcOkDrp8/XvBc+Pqh1bte2nXKjCsLW/uGOgWC2v4MYIAYqIw9UNBeEIw/g4DR8cmGFrlwz5tlX9PfJtymSsA9QD3o1D1ALUAsQA8SA9TxwMGqceZtqnHxtwM9btUNq2rylVJCnSGI9BrxaD0ZaLRSuvrGqlAuDmQcdxAC1ELWQ7TyAg1Pnb68pvuOxAT/vk5l/6pWz+iuSsA94tx6mFrBdC0RiDNA3Rj1IPVh1xB/aX3Wunhjw85zoPWLgEOUs+lGRxKu1gL/YB7wbA9QC1ALWawFigBiwngeC7ezLblBSjZpau26tmjZtut/fXheJ2x8XF6cHH3yw1PucWaveeOONor8vv/xy1apVK2gDspyYP/fcc93xFffff7972zvvvOMOZnLWqzTt2rVTTk6OQo162BsaN26sn3/+uULPZVBWJduxY4e73LWr9CQ/ZcoUbdq0yR0d2qpVq3Jf69tvv3WXHTuWHE3vL2dAVkUHdPm7nf7Y8144y0CeV1nrXh7nRPJGlfj6Bdk7teTBs1Sr1xlqeOqIoLzmmjVr3NcNhrioGPn7Bqz4dIZOmHiLZo4u7FRrduJhWvXFgQ9Mudt3qiAnTzFx1ZT+9a/OXJYHtc5r1q5Rji8/Itq/MmIgmO3vIAaIAX8FcjyvaC4IRx7AwWkUW/qHnwPZmZMXce3NPkA96NU8QC1ALUAMEAPW88DBaJqdoxoVfO7ajZtUsDuw+iLcrMeAV+vBSKuFwtk3VlVyYTDzoIMYoBaiFrKdB3BwkvKl+Ao8L1/REdfe7APerYepBWzXApEYA/SNUQ9SD1YdtVtkqU4Fn7t523Ztj7Dt9Wot4C/2Ae/GALUAtYD1WoAYIAas54FgK8jPL1o627Pv314XidsfH192D+fs2bO1fv169/fOnTurd+/eQR+QFRUVpUMOOURHHnmkfvzxR2VmZmr69Onq27dvmceA7OxshRr1MBiUFYIRcxkZGfr111/dA8Le1q5dq5tvvtn9vUuXLu6Bo7wd6a677tKAAQPUrVu3Cq9LZUlKSvL7sXsOHtWrVw/oeampqQo1Z6R/ZcqY9o52Lftdu1cvVMb3U/a7v/PT8xTXoHlAr9mkSZOgXv3NvQyRH7YtTJd8Uu12TbV1YbqSWzVW5sTCZFuePmOvVXS1WG1duEpdbhjsXjUic8WBn1eWJilNgnqlh8oW7BgIZvs7iAFiwF+BHM8rmgvCkQdwcAqytiimVsOAn1e9IDvi2pt9gHrQq3mAWoBagBggBqzngYORqIpdgcuXu1sp9Wo7p64okliPAa/Wg5FWC4Wzb6yq5MJg5kEHMUAtVNks1kKRlAdwcKrlVmyQfXT29ohrb/YB79bD1AK2a4FIjAH6xqgHqQerjri4ss+BOpA68dFKjrDt9Wot4C/2Ae/GALUAtUBlIwaIgaoeA9bzQLBFx8QULZ3t2fdvr4vE7S9rRirHl19+WfT7ySefXO44iIoOyNr79Z1BWY4vvviizEFZzjEgHDNlUQ97w8GMtWFQViXr37+/5s+fr4cfflgnnniiOy2eY+bMmRo6dKg7S5ajvIFWWVlZOvPMM90D24QJEyq8LhWdTs0fzvb4688//9TkyZM1cOBAdejQwe/njR07VqG2K0/q+0nlvX6944a6P8G0cOEiVQ/Snp27c7dea32x349f9eXP7hS8WemblJt14MK24xWnKKXPIfrlwde16rMZOv2LR9XnyWv02aDRFV7nhYsWqlpigiKh/SsjBoLZ/g5igBiojDxQ0VwQjjyAg/PwH9JbywN/3ltjrtIh469SJGEfoB70ah6gFqAWIAaIAet54GAsz5TOKZz0PCCntEzQfenpijTWY8Cr9WCk1ULh7hurCrkwmHnQQQxQC1EL2c4DODifpUt3/hr480adfpguviGy6kH2Ae/Ww9QCtmuBSIwB+saoB6kHq47cAum0L6XNAV6kPjVRmjHtU0VXfExXWHi1FvAX+4B3Y4BagFrAei1ADBAD1vNAsD3wz9e0PWuHUhqnKD09fb+/vS4Stz8vL0/vvPPOfrcXFBS4M2U5ateurZ49e1bagCxH+/bt1bRpU/d9WrRokXbu3KnExMT9Xm/hwoWKjQ39QYB6GNHhXgGvGzVqlOrVq6dVq1a5U/Mdeuihatu2rXr16qW0tDQdf/zx7uO6du1a6vOdaelOP/10LVu2zB3ZmZKSokjXpk0b9yDqLOEtznS7zU46TE36ddWa//5R7mOdK0H0uP1CbZy1SHOe/rd7dYjfHn9TjY/s7H7YQGQiBuAvcoENQ1oF/pwOtaTOkTUpRIVY3wesb7+XUQuAGIA/rOSBlslSr/qBP++cCtRQkcZKDJSH98C7yIW20f7wF3nAhhOaSHXLvpBsqeKjpdObyfOs7wPWt9/LqAVADMBfFnJBtWhpUIvAnze4pSJuQFagLLT/gVh/D6xvv5dRC4AYgD/IA/CCNWvWKDu78AoMzoQ1Mf+b9asyBmQ5nNv2Hry0fHkFrhRfhXAc8B4GZVUyZ1Tm1KlTdeqppyohIcE9CNStW1fPP/+8Pv74Y3dEZlmDsnJzc3XOOee4M1x9+umn6tSpk7zAGYFap06dsIxEReVaP32+aqalqMXAXto4c0HZD4yK0tFjRyg6OlrfX/+0fAWF0+XO+ef72vTbYvfDRnKLRqFbcQQNMQB/kQtsSEuWTm0aWGF6dQf3EOF51vcB69vvZdQCIAbgD0t5YHh7KTaA2qZvI6lLHXmepRgoC++Bd5ELbaP94S/ygA3OichX+X+xY9clbaRaAQ7kikTW9wHr2+9l1AIgBuAvK7nAuYBjo4TAZsk6q7k8z0r7l8f6e2B9+72MWgDEAPxBHoAXLF26tOh3Z5KayhyQVdr/2fv/RyKOA97DoKwQ6Nixoz766CNlZma6P9OnT9fw4cO1Y8cOd5CWU1gdcsgh+03rd9FFF+nrr7/W+++/786s5RXO1IEjR46sslMtouJ8+QVa/d3vhb//74NCaTpfdboa9eqgWY9O0bZFq4ufX1DgfsiIjolxp+FF5CEG4C9ygR13dJWObuRfUXpHN6mPkT4l6/uA9e33MmoBEAPwh6U80K2edH9P/wZm9agnPdDTxgB1SzFQFt4D7yIX2kb7w1/kATsGtZT+2s7Px7YoHNRvgfV9wPr2exm1AIgB+MtKLqgbLz3VW6oXf+DHNq4uje8t1TQwQN1K+5fH+ntgffu9jFoAxAD8QR6AF2RkZBT9npKSUukDsvb9P3v//0jEccB7GJQVRnPnzpXP51Pbtm2VmJhY4r5rr71Wb731lm688Ub3vp9++qnoZ+PGjYpkWVlZ7uxhzhLes/LTGVr52cwy76/VNlU9Rp2vDT8v0NznPtzvfqbhjXzEAPxBLrAjLkZ67HBpRMeyr4TXs5709JHSmQaufLeH9X3A+vZ7HbUAiAEciLU80L+J9Hwf6cgGpd/vnJTinKj7dG+pupELYVmLgdLwHngbudA22h/+IA/YcmUH6cGeUvtapd/fskbhhY1u62JjgL7D+j5gffu9jloAxAD8YSkXtKkp/auvdFozKa6Us9QSYqSzW0gT+0rNa8gES+1fFuvvgfXt9zpqARADOBDyALygQ4cOGjJkiM4880ylpqb6/bwVK1ZUaECWo0GDBjrjjDN0zjnnqGvXropkHAe8x8ipHlXT7Nmz3WVpB4ZPP/3UXT700EPuz96cg9Gll14aorUEArPiox/Lvd+5ssMrrS4s9zGzx7/n/iAyEQMA9hUbLV3aVrq4tfT9emnhdik7X0quJh3TWEpLDvcaAggmagEQA8D+utaVxh8prcySvlsnbcspPAmldU3p2MZSNS6bBHgKudA22h9AaU5MLRysP3erNH2jtCNPSowprBMPq29nMBZgAbUAiAFgf40TpXu6Szd0lr5aLa3fLUX9b3Ysp05yvjMEAK+gFgAxAMCC9u3buz+BatGihS655BJNmjQpoAFZjvr16+vCC8s/fgLhwqCsKjooa/ny5WFYI1SG3WsWafnYYcrL3KSYxFpqef1EVW/e+YD3FeRmK33CSG2f9bmi4hKU2LKrWt30api3BqFo/7ztm7Xw7hOKXqMge6ey1y1V10kbFJtcN4xbg1AeA7b9/IlWv3anMy+1fPl5anz2zap3/LAwbw1w8IOz+qUU/gBWlHesX/nCddo28wPlbFihjk/OUmJat6Lnzf5rS0XFxis6vrr7d+PBt6lu3/PCth0IfQzwecB2DPCZwLucq/1e0ibcawFUjeNgQc5uLX3sfO1eNU/RcdUVW6uhml/9rBJSSu4k2//4RotGn6imlz2uRmfcELbtQOhjYMEd/dwcGZNUOLVMveOGqdGZN4Z5axCq9vf5fFr7xr3a8t/XFVUtXrHJ9dX+H9+Ge3OAg+KcW3BIncIfwJLyPhcvHH2S8jLWSdHRiqmerGZ/HafEtO4HvA/eb/89Nn31slaMv1ytb3tPtXufFaatQDhigD5yb6odJ53TKtxrAaCq5IHy8v3ypy5T1p8/uH0G0Qk11OwvY5XU9vAwbQXCFQM7l/zi1glRMdWUeslDqtm1+LszeD8G9uA7AsB7TjnlFLVp00Zt27b1e0AWUNUxKKuKDsqCd6x85krVP3m46p9wqTJ+eFvLn7pUHR+fecD7Vv/rVvcbus7PLnSTTq7TGQkT7R9bs546jf2t6DXWvfeYsub+h5MvDcWAc9LJsicvVrt/fKfEll2UvX655l7bQbV7D1JMIlMKAYBX8kCdPueo8aBRWnDb0aU+N+3mKSUG6cBWDPB5wHYM8JkAgJXjYIOThqtmz4Furtvw8dNa8fRf1P4f3xU9N3/HNq2edKtq9TwljFuAcMZAsyue5ORbo+2/4aNx2rX8D3UaN0fR1eKohwHAo7kg7eY3FVujtvt7xo/vufd1eur3A94H77e/w/l+bNMX/6ek9r3Dtv4IbwzQRw4A3s4D5eX72r3PVosR/6eomFhtnfmRlj4yRIf+Hxe5txQDTa94sqhO2Ll0lhbedYK6vrJJUdHRId8GhCcGHHxHAHhXu3btwr0KQFBRoYTRN9984554f+qpp8qSBg0a6Prrr3eXXvHLmVFa/eqdmndDd825up02f/eae3vu1g3asfhn1et3sft37aMGK2fTKu1eu7jc+/J379Cmr15S6sX/KBoFXK1O4zBuIULZ/vva/NVLqt//ihBvFcIeA1FRyt+x1f01f9d2xSbXc68K7BVezAVAIKzvA17b/orkAUdy52MUV79pWNcdVTMG+DwQeSr7OOC1zwReywMIHDHgvfegIsfB6LgE1TrslKJcl9Sut3I2lDyxYuULI5Qy5E73MzFsxgDstv/69x51r4DsDMjyYj3stTwABMr6PuDF7a/o5+I9J1k68nduK5xS7n/Kuw/eb39fQYE7YLvZ8PGe+n7MqyojBrzOi7kA/qP9eQ+8tv0VzQPl5fvaR5zhDshy1GjfWzmbV8uXnxfybUP4YqBEnbBjW0i3B1UjBrz8HYHX8gCAwHEc8B5mykLI1atXTxdddJE8JypKncbOUva6pZo/8jDV6NhHeZmbVa1OStGHROcL5rgGzZWzcaU7FWtZ9xVk73SvgL72rQeU+ftXio6vrpTz72EKXiPtn5DSpuhls+ZPU15WhmodflrYNg3hiYG0v0/RkgcHKSYhyY2B1re+W3QSihd4NhcAfrK+D3hy+wPMA3vn+7IsH3uJfPIpqW0v92TEarX4IG4lBrLXLeHzQCSqhOOAVz8TeDIPICDEgEffg4M8Dm746CnV7nVm0d/OFTMVFe2egLH1p3dDvjkIfww40ifdqtWv36XqTTsp9ZIHFd84LaSbhPC0f/7O7crdul5bp7+vjGlvu7c1OvMm1e17nrzCk3kACID1fcCz21/BXLDsyUuUOftb9/e2d39S4iXLuw/ebv/17z/hvkZSm55h2iBUhWOAl/vIPZsL4Bfan/fAk9tfgTzgb75f/+FT7iw5e14HdmIg/V+3KmPaW8p3zpu65R1myTIWA17+jsCTeQBAQDgOeA9VCkJu+/bt+uqrr9yll9Q/8S/u0jkxoEbnY5Q1978Vf7H8POVsWKHqzTqp4xM/q9lfx2npo+e5X0TDQPvvxZkhod5xl9CxYCwGnKv7rH3rfrW+7V0d+uIKtbvvay0bO1R52zfJK7yaCwB/Wd8HvLj9wa4F2j/wX3Ua94c6PfGrYmvW1/KnhgVpTVFZ+DwAPhPYzgMIDDHgzffgYI6DzkDk7LWL3UE3jtyMde7n4mZ/earS1hdVOwYcrW54RYc886c6PfWHanTuq8X3eWeAshcFs/3dK1/n56kgZ5c6PjZdaTdPUfpLN2rnst/lFV7MA0AgrO8DXt3+iuaCVjdOUpcJq5R68f1Kn3SL3/fBu+2/a8Ucbf3xHaWce2elrjOq9jHA633kXs0F8A/tz3vgxe0PNA/4m+83f/eqMr5/Uy2ufSGo64vIiIGmwx7Soc8vUdrNbyr9X6NUkJsT9PVG1YwBr39H4MU8ACAwHAe8h0FZCLk1a9bo9ttvd5ee5ozqr99MuRlri6ZP9vl87ih/Z7R/ufc1aC5FR6vusYWjYBPTuiu+USvtWj47rJuE0LT/Hvm7styOhfr9Lw/bZiA8MbBz6W/K3bJGyZ2Pce9Lanu44uo11c6ls+QVZnIBUAbr+4CJ7T9AHjiQPY+Jiq2mRqffoKy5Uyt9lVF1YoDPAx5xkMcBL38mMJEHUC5iwMh74OdxcN17j2nrj++qzd2fKjo+0b1t55JflLtlrebf2E2z/9rSnSln7ZQxWv3KHWHbHIQ2BhxxDZr972Wi1PDUEcpev1R52zeHYUMQ6vZ3Zo2NTqihev0udv+Ob9RSSR37aOeimfIKE3kAKIf1fcDM9gf4ubje8cPc2XJKy/fl3QfvtX/WvKnK3rBcc65u634e2LHgJ614Zrg2fvpsGDYE4ToGeL2P3EwuQKlof94DE9t/gDzgT77fMnWK1r5xr9qN+VLVajcK48YgXDGwR81u/ZW/K1O7VvBdqZUY8Pp3BCbyAIBycRzwHgZlAUGy+euX3WX2+uVuwVijU19Vq91Qia17uFftcGyd9o47sMKZerW8+5wrPSV3OUHbZ33+v9dc5v4kNOsYxi1EqNp/j4zvp6h6q65KaNohTFuFcMWAc9KR88Fy16r57n271y5W9rolSkhtH8YtBAAEMw+UJ3/3DuVlbS36e8vUye6gHNiJAT4PRKZgxsAefCYA4PXj4Pr3n1DG1MlqO+ZLxdaoXfRatQ47VV0nrdeh/7fc/alz1DlKOe9upQ79R5i2DqGOAedL+r1nCc2Y9o578k1szXoh3y6Evv0ddY+5QNt+/cz9PS9zi3YumqHqLbuEfLsAAJWXC5z+r5zNxSeebP3p34pNrqeY5Lrl3gfvt3+DgVer68S1RZ8Hktr3VotrXnBvh40YoI8cALyfBw6U77d8/6bWvHan2o75yu8L3cE7MeDLy3XPldpjx8IZytu2wZ2BCTZigO8IAACRJjbcKwB4ha8gX/Nu6K6C7B1q9pdx7tU7HS2ufl7Lx12qdW8/oJjqNdXyusLi88D3Pafl469Q+qRbFBUVrRbXPK+4eqlh2TaEvv0dm758SfVP+mvItwXhjwHnJCNn6vWlj57r7v8+X4GaD3+ajiYA8FgeWPHMldr288fKzVinRfecrJjqyTrk+cXK27peSx4aLBXkyyef4hulqeUNk8K4dQh1DBQ+j88D1mPAwWcCAF4+DuZsSlf6hJGKa5ymhXce594WFRuvjo9ND+t2oGrEQEFuthaPOVUFedluLeQMWm99xwdh3T6E9hiQOvRBLR93mTZ++oz7d6NBtyipXa+wbR8AIPi5IH/nNi19ZIgKcnb9L983UJs7P3JnySzvPni//RGZghkD9JEDgI3vSMqz7ImLVK12Yy154Myi29qN+ZoL9hiJAV9+rpaPHebWC1ExsYqOT1LaLW8rtkadEGwJqspxAACASMKgLCBIGp05UqkX3bff7QlN26vDIz+W+pzy7nOu7ND+H98GfT0RGe3v6PDItKCuIyIrBpyrATs/AADv5gFnkE1ZdWCnsbOCvo6InBhw8Hkg8gQ7Bhx8JgDg5eNgXP2m6vm+z6/Xbnn9xKCsIyInBmISktTxiZ8rZT0RGccA5ySrNncyEA8AvJwL4hu2UMfHZpT6WuXdB++3/77a/+O7oKwjIugYQB85AJj4jqS8fN/z3dygrh8iKwai4xPV4eEfgr6OiKzjwN74jgAAUNVFh3sFYE98fLzat2/vLgEANpELYJ31fcD69gOAdeQBEAO8BwBgHXkA1lnfB6xvPwCAXGAd7c97YH37AcA68gAAjgPew0xZCLlWrVrplVdekZf4e1VfeBPtD2IgcF7MBUAgrO8DXtt+8gCIARADtvMAAkcMeO894DgIYsA22j9wXssDQKCs7wNe3H5ygW20P4iBwHkxF8B/tD/vgde2nzwAYgDEgO08ACBwHAe8h5myAAAAAAAAAAAAAAAAAAAAAAAAACAADMpCyC1YsEB9+vRxlwAAm8gFsM76PmB9+wHAOvIAiAHeAwCwjjwA66zvA9a3HwBALrCO9uc9sL79AGAdeQAAxwHvYVAWQs7n8yk3N9ddAgBsIhfAOuv7gPXtBwDryAMgBngPAMA68gCss74PWN9+AAC5wDran/fA+vYDgHXkAQAcB7wnNtwrAFRlCTHS1FMUcescLLHV43XRklcVSZx1Dhbr7e8gBogBALAu0nIBtQC1ADFADFAPAggm68dB63nQQQzYjgHr7Q8AIBdYrwUiMQboG6MepB4EgOCKtFxALUAtQAwQA9SDQHDFxMRo8ODBQXmtR5+foswdO5SclKSbrzyvzNsOdn2BcGBQFlCOqCipuuG9JCoqStUSE2SV9fZ3EAPEAABYZz0XUAvYbn8HMUAMALDN+nHQeh50EAO2Y8B6+wMAyAXWawEHMWA7Bqy3PwCAXEAtYLv9HcQAMQBY5xwHY2ODcyBw5oQq8BUu97xmabcBkSg63CsAAAAAAAAAAAAAAAAAAAAAAAAAAJGEIYUIuZYtW2ry5MlKTU0N96oAAMKEXADrrO8D1rcfAKwjD4AY4D0AAOvIA7DO+j5gffsBAOQC62h/3gPr2w8A1pEHAHAc8B4GZSHkEhIS1Lp163CvBgAgjMgFsM76PmB9+wHAOvIAiAHeAwCwjjwA66zvA9a3HwBALrCO9uc9sL79AGAdeQAAxwHviQ73CsCetWvX6v7773eXAACbyAWwzvo+YH37AcA68gCIAd4DALCOPADrrO8D1rcfAEAusI725z2wvv0AYB15AADHAe9hUBZCbtu2bfrggw/cJQDAJnIBrLO+D1jffgCwjjwAYoD3AACsIw/AOuv7gPXtBwCQC6yj/XkPrG8/AFhHHgDAccB7GJQFAAAAAAAAAAAAAAAAAAAAAAAAAAFgUBYAAAAAAAAAAAAAAAAAAAAAAAAABIBBWQAAAAAAAAAAAAAAAAAAAAAAAAAQgNhAHgwEQ3R0tLp37+4uAQA2kQtgnRf3gcMPP9zvxzZt2lSjR49W//79lZKSUqnrBQAIDfIAiIHAeLEeBAD4jzwA67y4D1APA4BtgeQBB7nAe6gFAkM9SAwAgNeQBwDb+EwIBmUh5AoKCjRr1ix3CQCwiVwA66zvA86HyXvuuSfcqwEACBPyAIgB6kEAsI48AOus7wPUwwAAcoFttD/1IDEAALaRBwBwHPAe71xuAgAAAAAAAAAAAAAAAAAAAAAAAABCgEFZAAAAAAAAAAAAAAAAAAAAAAAAABAABmUBAAAAAAAAAAAAAAAAAAAAAAAAQAAYlIWQS05O1oABA9wlAMAmcgGsYx8AAACwjXoQAGwjD8A69gEAAADbqAcBAAAAeAmDshByqampGjNmjLsEANhELoB17AMAAAC2UQ8CgG3kAVjHPgAAAGCb1+vB7777TlFRUXrsscfKfZzzmNJ+atSoEbJ1BQAE//jv/IwYMaLUx2zYsEFxcXHuY/r161d0+z333FNmXjhQPgGAqnosjNqrvu3Ro4eefPJJ5eXllXi8V45/seFeAdiTnZ3tFhYNGzZUfHx8uFcHABAG5AJYxz4AAABgG/UgANhGHoB17AMAAAC2UQ8W69u3r4YPH17itmrVqoVtfQAABy8hIUGvv/66Hn/88f3y3CuvvCKfz6fY2NJP33cGLNSvX7/EbT179qzU9QWAynDBBRfolFNOcY9569at06RJk3TTTTdp/vz5euGFFzx3/GNQFkJu2bJluuSSS9ydq0OHDuFeHQBAGJALYB37AAAAgG3UgwBgG3kA1rEPAAAA2EY9WCwtLU0XX3xxuFcDABBEZ599tiZPnqz3339f5557bon7Xn75ZXeQwtdff13qc8866yy1bNkyRGsKAJWnR48eJerca665xq39X3zxRf3jH/9QgwYNPHX8iw73CgAAAAAAAAAAAAAAAAAAAFiTk5OjrKyscK8GACCIAxG6dOniDsDa24wZMzR37lxddtll5T5/+/btysvLq+S1BIDQSkpKUu/evd2Zs5YsWeK54x8zZQHl8Pmk3fmKKAkxUlRUcF7LOfDl7cpWJImtHq+oIL0B1tvfQQwQAwAAAAAAu6x/LrbeL+IgBmzHgPX2BwAAAACgsr399tt69dVXlZ+f784WcN555+n+++9XrVq1VBVEWt8A503RN0QMEANVpX/w8ssv10033aTVq1crNTXVvW3ChAlq2LChTjvttDKf5wzmyszMVExMjHr16qW77rpLAwcODOGaA9g3Dzh1WiRxjh/B/K4wmJb8bzBW3bp1PXf8Y1AWUA6noOz7iSLK1FOk6kHas50PFP/f3n2AWVGeiwN/FxZYqoBUqVJEQBFFbKCCQRExGru5duPfa2LXqIkmsdwoURMbakw0RmPU6I0Ecy3YjS12saCCFUGaIL3D7v+ZMaC4gHuWZcuZ3+95zjPnTNvv7Lwz35xv9z3vnV1rVonsIz76a9RpUFQh+8r68U+IATEAAABAdmX9c3HWx0USYiDbMZD14w8AAAAbU/LPpoccckh069YtrQrw0EMPxfXXXx//+te/4oUXXohGjRpVdRNr3NiA/5syNiQGxEB1GR888sgj49xzz43bb789zj///Fi8eHH87W9/ixNOOCEKC0s3sGnTpnHiiSfGLrvsEs2aNYvx48fHNddcE8OHD0+TuY499tgqeR+QdUlC1n333Rc1yUEHHbTW60xlW7RoUcycOTNNbJs2bVrcdNNN8cYbb6T3wFtssUXeXf+q/jcOAAAAAAAAAAAAkBEvvfTSGq+PPvrotELABRdcENdee206BaBm2nTTTWO//faL2267LU3KGjVqVMydOzetoLU2Z5xxRql5ybpbbbVVnHnmmXHwwQdXi2RdgLK68MIL08c3HXjggXHDDTfk5fWvVlU3gOzZcsst4+WXX06nAGSTvoCscw4AAGSb+0GAbNMPkHXOAQCAbHM/uG7nnHNO1K1bNx588MGqbgoAG+i4446LDz74IJ577rm02ktSHaZXr145JXaddNJJMWfOnLSCIkBNcuKJJ8Zjjz2WVoO9/PLLo3nz5jF58uQoKirKy+ufSlkAAAAAAAAAAAAAVahOnTqx2WabxcyZM6u6KQBsoKFDh0a7du3i4osvjqeeeip+//vf57yPzp07p1P9AlDTdO/ePYYMGZI+HzZsWAwcODB9JMlWf/vb3/Lu+qdSFpVu4sSJaVm5ZApANukLyDrnAABAtrkfBMg2/QBZ5xwAAMg294PrtmTJkrSCQOvWrau6KQBsoNq1a8fRRx8djz/+eFoZ5oc//GHO+0gqbSX0C0BNt8suu8RRRx0V99xzT5mqX9W065+kLCrd4sWL45133kmnAGSTvoCscw4AAGSb+0GAbNMPkHXOAQCAbHM/GDFr1qy1zv/lL38ZK1asiO9///uV3iYAKl5SEebCCy+Mm266KZo0abLWdZLr/ty5c0vNnzRpUlpda9NNN02TGQBqul/+8pdpwuqvfvWrvLv+FVZ1AwAAAAAAAAAAAADyxRNPPJFWvvq2Fi1axPjx4+PFF1+MwYMHR8eOHWPBggXx0EMPxVNPPRU77rhjnHrqqVXSZgAqVnKNv+iii9a7TtIHbL755vGDH/wgevbsGc2aNUv7iVtuuSVddvfdd0f9+vUrrc0AG0u3bt3i8MMPjzvvvDOeffbZ2HrrrfPm+icpCyrY/Lefjgm/GLzGvFpFDaPeZlvEpoOOilb7nhoFtZ16+UwMIAYAAADIKp+JEQOIAQAAAIgYM2ZM+vi2Hj16xOWXXx7vvvtu3H777WnVrKRiQPfu3ePSSy+Ns846K4qKiqKmMi6AGEAM5CZJODjooIPipZdeitGjR6eJCEkC75AhQ+Lcc8+NHXbYoaqbCFBhLrjggjTZKqmWldwr58v1T68GG0mz3X4Ym/TbJ6KkJJbPnhaznv5LTL71rFgy+b3odPIfq7p5VAIxgBgAAAAgq3wmRgwgBgAAAMiiQYMGRUlJyXeut//++0c+My6AGCBrMVDW638iSTxYpV69emlVGIAsXAt79uwZK1euXP06X65/krKodG3bto2LL744neazBl22i00HHbn6dct9fhLjfrJlzHzsltjsyEujziYtq7R9bHxiADGwblnpC2BdnAMAANmWhftBn4kRA4iBbPcDsD7OAQCAbHM/mA3GBRADiAEAskJSFpVuk002iWHDhkXW1C5qGA177BRzXvh7LJ32UeZuKI+d+vcK29dtbQ+OmkgMiIGsx8A3ZbUvgFWcAwAA2ZbF+0GfiY2NZD0Gsn78E1mPgaz3A/BNzgEAgGxzP5hNWR8XMDYkBsSAGAAgf0nKotLNnj07Hn/88RgyZEg0a9YssiS5kUwUNmoeWdKwXYt4+cLb4t0/PhBZJwbEQFZj4Nuy3BdAwjkAAJBtWb0fzPJnYmMj2Y4Bx/9rWY2Bb8tqPwCrOAcAALLN/WB2ZXVcwNjQ18SAGMhqDAAkSkpKYu7cubFkyZIoKCiI+vXrR+PGjdPnZVFcXBz/93//F0OHDo2ioqKN3l7KTlIWlW769Olx5ZVXxtZbb53XH6yLly6KFfNmphfQFbOnxRdjborFH78RDbrvEEXttogs6bDn9jHp0Vcja8TA18SAGMhqXwDr4hwAAMi2LNwP+ky8piyOjYiBbB//hBjIdj8A6+McAADItny8H3zllVfKvO7MmTNj1KhRceCBB0aLFi3KvF3//v2jJjEu8DVjQ2JADOR/DOgHgHX57LPP4rnnnouPPvooPv3001i4cGGpKrJdunSJbt26xa677hqtWrVaZ0LWDTfcEM8//3yMHTs2zjvvvGqVmPVKxq+DkrIqURJAV1xxRRpEkydPjpYtW6bBdNlll8Vpp50Wt956a4wcOTJOOeWUqm4qFWDq3Remj29quvOB0fG/b4isadKlTbx/27TIGjHwNTHwtazGAAAAANniM/Gasjg2IgayffwTYgAAAADW/j+Et9xyS+y22245/RNqTWNc4GvGhr4mBrJFDGS7H4AsS5JRX3rppXj44Ydj/Pjx6103qZz1xhtvpI+///3vsd1228U+++wTvXv3XmtCVmLChAnx8ccfR69evaImmpmH10FJWZUkyUgcNmxYTJs2LRo2bJieBFOmTInrrrsuzXz88ssv0/X69u1b1U2lgrQYemI02+WQKFm5PBZPfDumjbo8ls2cHAV1vs5KnT/u2fjwkmGlti1ZsSxKildGv3+sjJqusEFRLF+wJLJIDHxFDIgBAAAAssdn4q9ldWxEDGT7+CfEAAAAAGSXcYGvGBsSA2JADADZMmvWrPjjH/8Yb775ZqllSZXYTp06pbkkSeLWvHnz4pNPPlldPSuZ99prr6WPQYMGxdFHH51Ww/pmQlbt2rXjrLPOqrEJWflKUlYlZfN9//vfTxOyzj777LjwwgujcePG6bKkclZSPq6wsDAKCgqiT58+Vd1cKki9tt2jSd8h6fNN+g2LRj0HxvifD4zPfn9SdDnnb+n8xr13jW3vWbDGdstmTYn3z94+Wg7Pj4ppm+3eJz7/V+mOJQvEwFfEgBgAAAAge3wm/lpWx0bEQLaPf0IMAAAAQHYZF/iKsSExIAbEAJAdL7/8cvz+97+PxYsXr57Xvn372HPPPaN///7RvHnzUtskiVjTp0+Pf//73/H444+nSV2Jp59+Ok3s6tChQ7z11ltrJGT169evEt8VZVGrTGuxQU477bSYPHlynHLKKfHb3/52dUJW4txzz41tttkmVqxYEZ07d44mTZpEvmvQoEHsuOOO6TRLGvXcJZoPOipmP3dPLHjvhbWuU7x8aXz8mwOjUa+B0faQ8yMftOq/ZXzxypqlF7f7+X/FsVP/Ht0O32Ot2+x938Vx1Kd3R9MeHSKfiIGviYFsxcDaZLUvgFWcAwAA2ZbF+8EsfyY2NpLtGHD8v5bVGFibLPYD8E3OAQCAbHM/mE1ZHRcwNvQ1MfA1MZCtGACy4Zlnnomrr756dUJWUhXrpz/9aVx55ZUxdOjQtSZkJZKiPm3atIkDDjggrrvuujjhhBOifv366bLZs2dLyKohJGVtZO+9917cc8890aJFixgxYsRa11l1ciTJWas8++yzMWTIkGjbtm3Uq1cvzZI87LDD0v3VdB07doyRI0em06xpe9gvI2rVjil3/Wqtyz+78aQoXr4kOp9+W+SFgoKIgoiS4uI1Zo/97b0x+72JscNFx0SDtmt2Mr1O3Dfa7NI7xv72npgzflLkGzHwFTGQoRhYhyz3BZBwDgAAZFtW7wcz+ZnY2Ei2Y8DxLyVzMbAOWe0HYBXnAABAtmX9fjD5Qve99957jS92z4rMjQsYGypFDHxFDGQoBtYiy/0A5KtXXnklrZCVVL1K7Lzzzmky1vbbb58mXZVVkniV5I9cfvnlpQr9HHHEEXmTkNU4D6+DkrI2srvvvjuKi4vTE6FRo0ZrXWdVNuM3k7KSzMatt946zXh89NFH05Nr3Lhx6UmaVN2qyVauXBkLFixIp1lT1LZbNN/18Jj/1hMxf9yzayyb8X/XxdxXH4iuPx8dterlxzfBtNy2W8x848NS84uXr4hnT78+ChvUiwFX/WT1/CZdN4vtfvbD+OK1CfHOjf+MfCQGviIGshMD65LlvgASzgEAgGzL6v1gFj8TGxvJdgw4/qVlLQbWJav9AKziHAAAyLas3w+2a9cuLrnkknSaNVkbFzA2VJoY+IoYyE4MrE2W+wHIR19++WXcdNNNqxOy9tprrzj11FPXmTfyXZK8k6Qg0Lx589aY/9hjj8WyZcsiH7TLw+ugpKyN7Mknn0yngwcPXuc6q5KsvpmUtd9++6Ul7A455JDYfffd06SuUaNGxdy5c+O+++6LmuyDDz6IPfbYI51mUZtDLoioVWuNTP/5bz0Vk/9yXnQ593+jXuvOURO13qlnFNRe85LSbvC28flTY9e6/pdvfxJvjfxHtBvUN7Y4ckgU1KoVu153aros+cDx7W+HyCdi4CtiIP9iIBdZ7wvAOQAAkG1Zvh/M58/ExkayHQOOf9nlawzkIsv9ACScAwAA2Zb1+8GlS5fGpEmT0mkW5eu4gLGhshMDXxED+RcDZZX1fgDySZKIdfPNN8fChQvT1zvttFMce+yxUatWrXInZN1www3x/PPPr66c1aZNm/T51KlT02StfLA0D6+DhVXdgHw3ceLEdNqpU6e1Ll+xYsXqE+ebSVlrs+mmm6bTwkKHrTprvPWg6Hf/V9mua1O/Q8/o94+vv+ll6fRP4+MrD432x16ZblsTdd5vlxjwux/HE8f8Jqa9MG71/DpNGsTy+YvWud2bV/89Ou61fWz/q6Ojee/O0XK77vHyRbfFvI+mRE0mBsRAFmMAAAAAsvyZ2NhItmPA8V9TFmMAAAAAyuqTTz6Jo48+Ov7yl7/ElltuGfkmi+MCxobWJAbEQBZjIBf53g9Alrz66qvxxhtvpM+bNm0aJ5xwQoUmZJ111llpUtbPfvazWL58eTz00EMxaNCg6NChQ9Rkn+ThdVB2z0a2KvNx8eLFa12eZCzOnDkzGjduHJtvvnmp5UmZ5uQkS5K7fv7zn6cn1qGHHlqutmy//fYxbdq02BgOPvjgMq87Y8aMdPrwww/Ha6+9VubtDjjggKhsBXXrR+trNt63shQvXRQfjfhBbLLDftFq+CkVss8ttugeJcvWHm+5qlNSKy6MHb5zvU//+UI02bxNdBjaf/WHiobtWsTCyV+sd7uSFSvTb3XY9+HfxJbH7h3TX3ov3v3jgxvU5i26bxHLC4prxPHfGDFQkcc/IQbEwMboB8rbF1RFPwBl5RwAAMi2fL0fNDZWtnGR6jQ2UpHjIgkxYGzM2Fi2+wEoK+cAAEC2uR/0v3P5Oi5gbMjYkBgQA1nvByraAcedEQ0bNYmp06ZG+/btS73Od95/6fdb3X8HdevWjREjRqxz+ZgxY1Y/P+6446JRo0YVmpDVr1+/9PWBBx6Y5pwklbkee+yxOP7449e5ry222CKWLVsWle3gPLgOJnk6SaJdeUjK2siSgzN79ux4/fXXY+edd15jWVJG7pxzzkmf9+nTJwoKCkptv/vuu68+wbp16xZPPvlktGzZslxtSRKyPv/889iYyWdlsSpBLZnmst3Gavv61KrXIFpvxP3PfuG+WPzJm7Hk8wkx+7nSJQV7X/9u1G3ZMad9TpkyJb1RrQh1C2pHWX8BEx9+Ob5323nxyoW3pa877Ll9THr0uy9My+ctiuJlK6J23Tox+YnXk1qOG9TmKVOnxLKSr79FoTof/40RAxV5/BNiQAyUVS7X8/L2BVXRD0BZOQcAALItX+8HjY2VfVykuoyNVOS4SEIMGBszNpbtfgDKyjkAAJBt7gf971y+jgsYGzI2JAbEQNb7gYpWvHLl6mnyfr79Ot95/6Xfb3X/HdSrV2+dy5L2jhs3bnW+SP/+/TdKQlZi6NChMXr06Fi6dGk888wz8cMf/jDq16+/zutgsl5lW5jx66CkrI1syJAh8d5778Xll18ee+65Z5p9mHjllVfiqKOOSqtkJfr27bvW7f/0pz/FnDlz0jJtV155Zey1117pSdexY25/iF51wm8sDRs2LPO6q06e5GKQy3bt2rWLypZk+m9Mmw4+Kn1UpM0226xCvwk2yvilCXMnTI4oiWi6RfuYM2FyNN68Tcy/bfp3bjfgmpOjVp3CmDNhUvQ546D0WyPmT/zu7dZls7abVeg3PWxsFR0DFXn8E2JADJRVLtfz8vYFVdEPQFk5BwAAsi1f7weNjZV9XKS6jI1U5LhIQgwYG9vYjI1V734Ayso5AACQbe4H/e9cvo4LGBsyNiQGxEDW+4GKVqt27dXT5P18+3W+8/5Lv9/q/jtIKmWtywsvvLD6eZIjUqtWrY2SkJVo0KBBDBw4MJ544olYsmRJWixowIAB67wOVkWlrIZ5cB3ckFwbSVkb2bnnnht33XVXTJo0KXr37h1bbrllejJ8+OGHMWzYsOjcuXM88sgjsc0226x1+x49eqTTHXfcMfbee+90/SuuuCKuv/76nNtS3nJqZZEkmZXVihUr4thjj43GjRtHYWHZQ/Caa66JyrZ4RcSuD0WNMmHCB1G/gs7s5YuWxJ1djyzz+pMeezUtwbtg8sxYvuC7b2x7/mifaDtgq3htxF0xaczL8f1Hr4wBV/8kxhx4YbnbPOGDCVGnQVFUhKwf/4QYEAMbox8ob19QFf0AlJVzAAAg2/L1fjDrn4tzHRepDmMjFTkukhADxsayfPxzka/9AJSVcwAAINvcD+b2O3j//ffj7rvvTv93MPlfwrIyPvjd/N+UsSExIAZqwvhgTeoHKtplN9wZ8xYsjLZt2sbkyZNLvc533n/p91vdfwfJfet999231mUff/zx6uflqZJV1oSsVbbffvs0KWvVz15XUtaECRNyys+oKFm/DuaekkdO2rdvH88++2wMHz48ioqK4tNPP43mzZvHH/7wh3jwwQfTwE+sKynrm5o2bRrdunVLE7pqsuREb9asWZWc8GxcSbndDnttH5sN2iamPPPWetdNvgliu/P/K75444N45/rR6bdDjP3dvdFm597phw1qJjFAWekLyDrnAABAtrkfzF/GRrLN8aes9ANknXMAACDbsn4/mPzj6csvv5zTP6BSMxgbQgxQFvoBqPlKSkpWJ2UllZ5atmy5UROyEl26dFlrQlhNtGUeXgclZVWCnj17xgMPPBDz589PHy+99FKceOKJaem1JEkrKVe31VZbfed+ZsyYEePHj4+uXbtGTZZksp599tnVMqOVDTP9pfeiSZe20WnYDvHFK+PXvWJBQQy85pQ09p87/fooKf6qXO47N9wfM8d+mH7YaNypdeU1nAojBigrfQFZ5xwAAMg294P5y9hItjn+lJV+gKxzDgAAZJv7QfKVsSHEAEA2LFq0KObOnZs+79SpUxQUFGzUhKzEJptskn6xQWLKlCkb1H4qnqSsKjRu3Lg0U7J79+7RoEGDNZYdeeSRcdFFF8Xo0aPj6aefjptvvjkGDRqUfkPImWeeGTXZggUL0uphyZT8UrKyOD5/+s2vnv/ng8La9D7p+9F6hy3jjSvvibkffP719sXF6YeMWrVrp2V4qXnEAGWlLyDrnAMAANnmfjB/GRvJNsefstIPkHXOAQCAbMv6/eDEiRPj+OOPT6fkF2NDiAHKQj8ANd/KlSujdevWaZJUixYtyrxdkjdy44035pyQtUpSkat58+ark7Nqqol5eB3MZg3gauLtt99Op9tss02pZTvttFP85S9/iWuvvTaWLFkSHTp0iMGDB8f555+fZlRCdfXZwy8nvcY6l2/SvV1sd+7hMePV8THupv8rtXxVGd5+5x+RluF9708PbeQWU9HEAAAAAJBlxkayzfEHAAAA1mfx4sXxzjvvpFPyj7EhxADfRT8ANV+TJk3SHI9cJRW1unTpEs8991zOCVmJSy65JPLB4jy8DkrKqqZJWaecckr6oOZbMuWD+PSaY2LF/JlRu8Em0fn026J+x97fuWzu62Niyl9/ESUrlkWteg2i40/+EA02Lx0r1c3EB/693uXJNzvcsfl/rXedt0f+I33kg/Ud48/+eFrMfeWfsWzGxOh59RvRoEvfMm1X3YmBiomB9S0DAACAmv65uHjZkvj4t4fHkknvRq269aNwk1bR8ce/j6K23dLt3vvpjlGyYmn6vGTliljy2bjoee2b0aBzn6jujI1UTAwsnPByTLr5tChevjRKli+JTb93XLQ58Nyo7hz/Cjr+H7wSk245I4qXLEj+Shntj78qmvTZo6rfDgAAAJCDsvz/08zH/xwTRx4fXX/+j2i60w/SeeMvGJT+v0zthpukrzcdfEy03v/MqAmMDVVMDCSVRKb+7eL48pm7oqBOvShs3CJ6XPpU1ARioGJioCb/jQBgffbZZ580OatVq1Y5JWRRvdWq6gZk2fqSssgfn93439Fi6Imx1e8nRJsDz4tPrz32O5etWDA7PrnqiOh8xu3R67q3ot2xV6avya/j32zAwdFjxHNRt1WnnLYjGzGwvmUAAACQD5+LW+51YvS+cXz0uvbNaLrj/jHx+hNWL+v525ei1zVj08dmh18URZ228sfWjMXAxBtPjDYHnx+9rnkjevzm+Zg++rex+LN3q+hdUJnHP/mnm49GHBCb/fDidFmXc+5Ntytemj/fmAgAAABZ8F3//7R0+qcx89Gbo2GPnUpt2+FHV68eH6wpCVlUXAzMeOC6WPzpW9Hrunei93VvR5ef3l3JLaeqY8DfCIB8NmzYMAlZeUZSVhV68skn0z8uDh8+PLKkZcuWcfrpp6fTfPHa/gXx+V9/Ee+esW288+MtYtbTd6bzl8+ZEQs/fDU2HXRk+rrpLgfFspmTYsnUD9e7bOnUj6Kw8aarvxGgce9dY9kXn8Wij16vwndJRR7/ROPeu0XdFu1L7e+7tiP/Y+C7luWDfOwLIBfOAQCAbMu3+8HyfC6uVbcoNtn+q2+CSzTcYqdYNuPTte5/5uN/ihZDflSJ74jqEQMFsXLhnPRZ8ZKFUVBYNwobN6+Cd0dlH/+V82fFirlfRJO+Q9LXRe22iMKGTWPu6w9Hvsi3fgBy5RwAAMg294P5pbz/M1NSXJx+QUuHE0emlZCouTZGDEz/x5XR7ujfRK06ddPXdZq1qfT3RfW5DvgbAQDVXWFVN4Ds2XTTTeOII/Kw6lNBQfqtrUunfRzvnb19NOo5IFbMnxV1mrWNgtpfnWrJH5jrtuyYJlglpVjXtaxh137ptgveeyEa9dwl5rz0zyhePD+Wzvg0GnTdrorfKBVx/IvadlvnrpIPHuXZjvyJgSzI274Aysg5AACQbXl5P7iBn4tnPHBtNN1h/1K7XfbFpJj/zr9i8zPvqLS3QvWIgc6n/Tk+umz/+PzOX8SKeV9Epx//wT9fZOT4FzZpEXWat40vn7s3mg88NBZ+8Eos+Xz8OhM3a6K87AcgB84BAIBsy/r9YNu2bePiiy9Op1keF5h+/1Xpeg27rb1KxOS//Cw+v+uXUb99r2h39Iio16ZLJb8pqioGVi6aF8vnTI85L90fs1/4ezqv9f5nRfNdD6uSt0bVXQfy9W8EedkPAGT8OqhSFpVu3rx58fjjj6fTfNJizxPSafIBsFHv3WLBuGfKva/aDTeJruf+PT6/4+fx3ln9Yt7YR6OoQ68oqCWPMgvHn5pJDOQmX/sCKCvnAABAtuXj/eCGfC6e+r+XxdKpH6b/XPFts568LZr23zdN0iBbMTDtvt9Eu6NGRJ8/fRa9R46Lz/96QSz+7N2N0naq3/Hvev79MevxW9Nv153xf9dGo14D82p8PB/7AciFcwAAINuyfj+4ySabxLBhw9JpVscFFk98J+b8+75oe+gv1rp88zPuiK1ufD96XftWNOq9a3z4P/tulHZTPWOgZOWKiJUronjZ4uj525eiyzn3xOQ/nRmLPnlzo7Wf6ncdyOe/EeRjPwCQ9eugpCwq3ZQpU+L8889Pp3ktyepv0SGWz5761QeF5ANDSUma5Z9k+69vWaJxn8HR47J/Rc+rXov2x/8uln85JYo69qrSt0TFHf/1Ke925E8MZEFm+gJYB+cAAEC2ZeJ+sIyfi6f947cx59+jotuvHo5a9RqssYtk/ZlP/Dk2HfKjSm8+VRsDK+bNjDkv/iOa7/5fq/+Q37DHTrHg/eer6M1Q2deABptvE90vGpN+u+7mZ/31P+PjvSNfZKIfgPVwDgAAZFvW7wdnz54d//u//5tOszousODdZ2PpjE/jnR93j7f/X+dYOP7FmHjjifHFw79P163bssN/dlMQrYafEkunfxwr5s2q0rdE5cVAYePmUauoUWw66Mh0u3qtO0fDngNi0QevVPGbojKvA/n8N4JM9AMAGbsOSsqCCjLriT+n06XTP01vGBv12jXqNG0VDbpuF7Oe/mu6bM4L90XdTdunpVfXtyyx/Mupq/c99Z7/icZ99li9jJp//NenvNuRPzEAAAAAWfhcPP3+q2L2s3dH90sei8JGTUvtc/5bT6Z/rG3Sd89KfjdUdQzUbtgsahU1jHlvPbk6SWvhhJeifsetquS9UfnXgG+Oj3/x6M1Rq17DdIwcAAAAarrp06fHlVdemU6zOi7QctiPY5vbpsbWN3+aPpIv4+n0kz+m85PxwOVzvv7dzH7hvqjTtHUUNtm0yt4flRsDiea7/TDmvj4mfb5i/pex6IOXo37nPlX4DqnsGMjnvxHkYz8AkPXrYGFVNwDyRUnxynj3jG2jeOnC6HDCdek3NCQ6/fgP8el1x8a0v18Wtes3ic6nfXXz+V3Lptz1q5j/7rNpKd6GW+4cnU75U5W8Lzbe8Z9443/H3FcfjOWzp8UHFw2N2vUbx1Z/+PA7tyMbMbC+ZQAAAFDTPxcvmzk5Jt96dtRt0yUm/GJwOq+gsF70/O1Lq/c58/E/RYvvHRcFtXy3WNZioKB27ehyzr3x+W3nxOSVK6JkxfJovd8Z0WjLnav0PVJ514AvHv1jfPmvO5Ovw42i9j2j68//kX47NgAAAJAf/zOzLsXLl8aHlwyP4hVLo6CgVhQ2aRFdL/hnJbwLqksMJNodNSI+ve64+OLhG9PXrQ88LxpuscNGfQ9UrxhI+BsBADWFpCyoIK33PzvaHfE/peYXte8RW17x77Vus75lnU65ucLbSPU6/p1+8od17m9925GNGFjfMgAAAKjpn4vrtmgf/e4vWe8+u5x9V4W2kZoVA036DokmfV+r8HZSM47/ZodfmD4AAACA/PyfmW/qcenTq5/XLmoYPa96tcLbSM2JgURSGa3bLyTjZTkGEv5GAEBNIX2YSlevXr3o0aNHOgUgm/QFZJ1zAAAg29wPAmSbfoCscw4AAGSb+0EAACCfqJRFpdt8883jjjvuiHzyXd/qS35z/BEDucvHvgBy4RwAAMi2fLsf9LkYMZBtjn/u8q0fgFw5BwAAsi3r94MNGjSIHXfcMZ3mA+MCiAHEQLb7AYBc5eN1UFIWAAAAAAAAAAAAwEbWsWPHGDlyZFU3A4Aqoh8Asq5jHl4Ha1V1A8ie8ePHx4ABA9IpANmkLyDrnAMAANnmfhAg2/QDZJ1zAAAg27J+P7hy5cpYsGBBOgUge/QDQNatzMProKQsKl1JSUksX748nQKQTfoCss45AACQbe4HAbJNP0DWOQcAALIt6/eDH3zwQeyxxx7pFIDs0Q8AWfdBHl4HJWUBAAAAAAAAAAAAAAAA5KAwl5Uha4pqRzy7T9S4NleUwvr14oiP/ho1SdLmipL1458QA2IAAACA7Mr65+Ksj4skxEC2YyDrxx8AAACyrqaNDfi/KWNDYkAMGB8EKlLt2rXjoIMOqrD9XfmHe2L+woXRuGHDOOe/Dyv1uqLaTOWTlAXrUVAQUT/DZ0lBQUHUaVAUWZX1458QA2IAAACA7Mr65+Ksj4skxEC2YyDrxx8AAACyLutjA8aGsn38E2JADADZlvQDhYUVdyEsiYjikq+myX6//Zqay9Gj0nXu3DnuvvvuaNeuXVU3BYAqoi8g65wDAADZ5n4QINv0A2SdcwAAINvcDwIAAPlEUhaVrqioKLp27VrVzQCgCukLyDrnAABAtrkfBMg2/QBZ5xwAAMi2rN8PduvWLR555JFo3LhxVTcFgCqgHwCyrlseXgdrVXUDyJ6pU6fGr3/963QKQDbpC8g65wAAQLa5HwTINv0AWeccAADItqzfDxYWFkazZs3SKQDZox8Asq4wD6+DkrKodHPnzo1//vOf6RSAbNIXkHXOAQCAbHM/CJBt+gGyzjkAAJBtWb8fnDx5cpx99tnpFIDs0Q8AWTc5D6+DkrIAAAAAAAAAAAAANrIFCxbEs88+m04ByB79AJB1C/LwOigpCwAAAAAAAAAAAAAAACAHkrIAAAAAAAAAAAAAAAAAciApi0rXvHnzOOaYY9IpANmkLyDrnAMAANnmfhAg2/QDZJ1zAAAg29wPAgAA+aSwqhtAfujfv39O6w8fPnyjtQWA6t8PJPQF5BPnAABAtrkfBMg2/QBZ5xwAAMg294O5/Q46duwYv/vd72KvvfaK1q1bb9R2AVA59ANA1vXP+HVQUhYAAAAAAAAAAADARpb84+lZZ51V1c0AoIroB4Csa52H18FaVd0AAAAAAAAAAAAAAAAAgJpEUhYAAAAAAAAAAAAAAABADiRlAQAAAAAAAAAAAAAAAORAUhYAAAAAAAAAAAAAAABADiRlAQAAAAAAAAAAAAAAAORAUhYAAAAAAAAAAAAAAABADiRlAQAAAAAAAAAAAAAAAORAUhYAAAAAAAAAAAAAAABADiRlAQAAAAAAAAAAAAAAAORAUhYAAAAAAAAAAAAAAABADiRlAQAAAAAAAAAAAAAAAORAUhar3XHHHdGvX79o1qxZ1K9fP3r27BlXXXVVlJSUVHXTAAAAAAAAAAAAAAAg9dBDD0Xfvn2jXr160blz5/T/3rPkmWeeif333z86deoUBQUF8etf/zqy5Morr4ydd945zX1o2rRpDBw4MMaMGVPVzSKDCqu6AVQfrVq1il/+8pfRo0ePtHN69tln4yc/+UnUrl07Tj/99KpuHgAAAAAAAAAAAAAAGffqq6+mCUk//elP4+67746XXnopTjrppGjQoEE6zYIFCxZEr1694r/+67/ijDPOiKx58skn4/jjj4/+/funx/2WW26JfffdN/71r3/FgAEDqrp5ZIikLFYbOnToGq+7dOkSo0ePjqefflpSFgAAAAAAAAAAAAAAVS6pipUk44wYMSJ93bNnzxg3blz85je/yUxS1j777JM+Euedd15kzcMPP7zG6yuuuCKtlDVq1ChJWVSqWpX746gpSkpK4uWXX47nn38+Bg8eXNXNAQAAAAAAAAAAAACA9H/c99577zXmJa8nTpwYkydPrrJ2UXWKi4tj3rx50bBhw6puChmjUhZrmDt3brRr1y6WLVuWXpguvPDCOO2006q6WQAAAAAAAAAAAAAAVGOfTJoa/359XKn5i5csWT296/7HS71epX5RvdhvyICoXXv9tWemTp0abdq0WWPeqtfJsvbt20dVWL5iRdz/6POxbPnycr3/xG47bhPt27SMmuqlse/FRxM/X2Pe2t7vun4HyXtPfge5uuyyy2LOnDlx4oknbuA7gNxIymINjRs3jrFjx8aiRYvihRdeiJ///Oex2WabxY9+9KOqbhoAAAAAAAAAAAAAANVUx3at4+GnX4rPpsxY6/LlK1bGW+9/vM7Xh39/j+9MyKrO6hQWRvu2LWP0o8+V6/1379wuNmvdImqynl07xph/vRyLlywttezb7/fb8+oU1o49B26f88+88cYb06Ssf/7zn1WWkEd21dwrFhtFrVq1olu3btGnT5846aST4txzz40LLrigqpsFAAAAAAAAAAAAAEA1VrtWrTh038FRp07utWP6bNkl+vbqVqZ127ZtG9OmTVtj3vTp01cvq0o79u0ZPbp0yHm7pErYwfsMiloFBVGTNWncMA7Ya2C5tt1n8E7RctOmOW3z29/+Ns4555w0IWvIkCHl+rmwISRlsV7FxcWx5D+lAQEAAAAAAAAAAAAAYF1aNNsk9t1jp5y2adKoQfwgh0SeAQMGxCOPPLLGvDFjxkSnTp2qvFJSQUFBHDRs92hQVC+n7X6w54DYpHHDyAd9enYtc4LdKlts3j522rZXTtv86le/iosvvjgeeughCVlUmUwnZX366afpRa9z584Vts9jjz023edtt90WNc2FF14Yjz/+eHz88ccxfvz4uPnmm+Pyyy+PY445pqqbBgAAAAAAAAAAAABADbDDNrlVi0oqRDWoX1Tm9c8888x4+eWX44ILLoj3338/br/99hg5cmT87Gc/i+ogSTI7YOiuZV5/m55dY5sck5gWLFgQY8eOTR/Lli1LK4clzz/88MOoDvbPIcksrRI2bPc0D6OszjjjjLjyyivjjjvuiB49eqTvP3nMnTt3A1oNuct0UhZrmjdvXpx00knRu3fv2GmnneKmm26KESNGxFVXXVXVTQMAAAAAAAAAAAAAoAZIkmuSJJsG9b+7WtTO2/VOqyTlon///jF69Oh44IEHYptttkkrJl166aXp/8JXF1tv2SW27d39O9dr0qhh7J9DlbBVXn311dh2223Tx9SpU+OGG25In59wwglRHSSJVofsM6hM6x6w18BokmOVsGuvvTaWLFkSBxxwQLRt23b14/TTTy9ni6F8Csu5HXno6quvTh8AAAAAAAAAAAAAAFBejRs1iAOH7hZ/Hf3YOtdp2XyTGDZox3Ltf/jw4emjOkuqRX382ZSYO3/hOtc5ZJ/do0HRdyevfdugQYOipKQkqrNundvFgH5bxfOvvbPOdfr26hZ9enbNed/V/b2THSplkbPikpL434eejgmfTHYxAwAAAAAAAAAAAACglK16bB7bbbX2alG1Cgri0H0HR906+Vtnpqhe3Th0+OB1Lt+lX+/onmOVsJpm7913iFabNl3rsk0aN4z99hxQ6W2CiiQpi5y9+8Gn8drbE+LO0Y/FkqXLqro5AAAAAAAAAAAAAABUQ/sNGRBNmzQqNX+PXbaLDm1bRb7r2mmzGLj91qXmt2zeNPbevXxVwmqSOnUK47B994hatQpKLTtkn0HlqhIG1UleJWW98847cdFFF8WAAQOiXbt2Ubdu3WjVqlXsu+++8dhj6y57uDYFBQXpIzFq1KgYOHBgNGnSJH3sscceZdrf9OnT48c//nG0b98+6tWrF126dInzzz8/lixZUmrdlStXxv333x8/+tGPYquttopmzZpF/fr1o3v37nHqqafG559/HtWlStYTz7+ePt+l31ZR30UQAAAAAAAAAAAAAIB1VIs6ZPig+GZKToe2LWPwzttGVgzdvX+02rTZ6tdJgtJheV4l7JvatWkRQwb0W2PegH5bRbfO7aqsTVBR8iop64wzzoiLL744xo0blyZP9enTJ2rXrh0PPvhg7LXXXnHttdfmvM9rrrkmDjrooBg/fnz06NEjTfR66qmn0v3ddNNN69xu0qRJsd1228Wf/vSnaNmyZZqY9emnn8aIESPikEMOKbX+1KlT4wc/+EHcdtttMWvWrNh8883TJK4pU6bE9ddfn+7rgw8+iOpQJWvqjFlRr26dGNi/dMYuAAAAAAAAAAAAAACs0rXjZjGwf5/0eZ3C2nHovoOjdu28SmVYrzqFhXHY9wdH7Vpfvefv7dIv2rdtGVmy+059o+NmX1VGa7VpUiVsh6puElSIvLqSnXTSSfHmm2/GnDlz4r333otXX301TXZKkqjatGkTP/3pT9PEqFyce+65cdlll8W0adPilVdeSatfJdW4EqeddlqaALY2//M//5MmUiUVrt5444346KOP0nY0bNgwHnjggVKVtho3bhx//vOf0/0nbX799dfTfc+YMSMuueSSdPqTn/wkqlOVrIb1i6q0PQAAAAAAAAAAAAAAVH977bZ9tG7RLPYZvFO0bN40sqZd6xYxZGC/6NC2VQzauW9kTZKQliTjJZXTkmmdjFQJI/8VlJSUlEQGJBWrTjjhhLRS1c9+9rN0XpKglVSk6tSpU6lkrYKCrwokDh8+PE2i+rY999wzHn/88TjuuOPi1ltvXT3/2GOPjdtvvz1atWoVH374YZps9U2nn356XHfddek0qcJVVrvuums899xzaeWstm3bRnmMvH1UzF+wOMprxYoVsWjJ0vR544YNVv+OAAAAAAAAAAAAAABgfYqLi9P/Qc/q/6EnqRvJo9Z/KmZlNQay+P7nL1yUHvsk9pNcjG+/pmo1blQ/Tj3mwHJtm3fphUllqrvuuitee+21+OKLL2Lp0q+SiObOnZtOx44dm9P+Tj311LXOT6pkJUlZY8aMWevyH/7wh6USshI77bRTmpSVVM5am2effTbuv//+GD9+fMybNy9WrlyZzv/ggw/SaVIJrLxJWUlC1rwFC8u1bal9LVxUIfsBAAAAAAAAAAAAAADId0ki1jdzOr79mponr5Ky7r777rQa1qJF604YmjVrVk777NWr13rnT506NU2eatKkyRrLu3fvvtbtWrdunU4XLFiwxvzly5fHkUceGffee+9625Nr+7+dvVdeqmQBAAAAAAAAAAAAAADkRqWs6m1Dcm3yJinrk08+iWOPPTaWLVsWZ5xxRhx11FHRtWvXtFpVUt7uySefjO9973tp8lMuWrVqtd7kqsT8+fNLJWU1bNhwrdutKrWXnEDfdMUVV6QJWcl+L7/88thtt93SilhFRUXp8qOPPjruuOOOnNv/TeUtp1ZcUhIjbxuVJmUN3nnbGLpb/3K3AQAAAAAAAAAAAAAAICsuu+HOtCJWkoB1/slHlHpNzZU3SVn33HNPmpB16KGHxtVXX11hFaZmzJgRHTp0KDV/+vTpq58niV8bKkm4Svz5z3+OYcOGVWiFrFVG3j4q5i9YvEFVsl59a3y89vaEDW4LAAAAAAAAAAAAAABAvksqY62aJglZ335N1VfKKm8RpLyqlJUYOHDgWpe/+OKL5drvu+++u9akrGR+ok2bNqWqZFV0+1euXBmvvvrqBv+MJCEryabcoH385+QHAAAAAAAAAAAAAACgbEpKStbI6fj2a2qevEnKql+/fjqdNm3aWqtM3X777eXa7w033BBDhw4tNX/kyJHpdO+9946Kan9S6Stp/7crb/31r39NK3ZVRPbehlTJSkrjFRQUbHA7AAAAAAAAAAAAAAAAsiApjpMkYCX5GElexrdfU7XKk2uTd0lZu+66a1x77bVx4403xoEHHhj9+vVL50+aNCkOO+ywWLiwfNmDY8aMiSuuuCLOPvvsqF27dlq1asSIEfHYY49FnTp10vkV1f4HHnggzjrrrLjzzjtXV9+6//774+STT46ioqJYsmTJBv2MXMupFZeUxMjbRqVJWYN33jaG7tZ/g34+AAAAAAAAAAAAAABAllx2w51pRawkAev8k48o9Zqaq1bkiR/84Aexyy67xJw5c2KHHXaILbfcMvr27Rubb755jBs3Li6//PJy7TdJyDrvvPOibdu26X7btGkTv/zlL9NlV199dWy11VYV0v5LLrkkTbxKErPatWuXJpV17NgxfV877bRTHHzwwVHZ3v3g05g6Y1bUq1snBvbfutJ/PgAAAAAAAAAAAAAAAFRHeZOUlVSxeuSRR+LMM8+MzTbbLD7++OOYMWNGHH744fHaa69Fnz59yrXfM844I+67777YYost4v3330+rVQ0aNCitoJVUsKoo2267bTz33HMxbNiwtATde++9l1bLuvTSS+Phhx9O319lSkrhPfnC6+nzXfptFQ3rF1XqzwcAAAAAAAAAAAAAAIDqqqAkyb6hlCQxKpHlX8/0mbPjXy+9GcP32ElSFgAAAAAAAAAAAAAAQI4uu+HOmLdgYTRp1DDOP/mIUq+puQqrugFUX61bNItDhw+q6mYAAAAAAAAAAAAAAABAtVKrqhsAAAAAAAAAAAAAAAAAUJNIygIAAAAAAAAAAAAAAADIgaQsAAAAAAAAAAAAAAAAgBwU5rJylpSUlFR1EwAAAAAAAAAAAAAAAIBqSKUsAAAAAAAAAAAAAAAAgBxIygIAAAAAAAAAAAAAAADIgaQsAAAAAAAAAAAAAAAAgBxIygIAAAAAAAAAAAAAAADIgaQsAAAAAAAAAAAAAAAAgBxIygIAAAAAAAAAAAAAAADIgaQsAAAAAAAAAAAAAAAAgBxIygIAAAAAAAAAAAAAAADIgaQsAAAAAAAAAAAAAAAAgBxIygIAAAAAAAAAAAAAAADIgaQsAAAAAAAAAAAAAAAAgBxIygIAAAAAAAAAAAAAAADIgaQsAAAAAAAAAAAAAAAAgBxIygIAAAAAAAAAAAAAAADIgaQsAAAAAAAAAAAAAAAAgBxIygIAAAAAAAAAAAAAAADIgaQsAAAAAAAAAAAAAAAAgBxIygIAAAAAAAAAAAAAAADIgaQsAAAAAAAAAAAAAAAAgBxIygIAAAAAAAAAAAAAAADIgaQsAAAAAAAAAAAAAAAAgBxIygIAAAAAAAAAAAAAAADIgaQsAAAAAAAAAAAAAAAAgBxIygIAAAAAAAAAAAAAAADIgaQsAAAAAAAAAAAAAAAAgBxIygIAAAAAAAAAAAAAAADIgaQsAAAAAAAAAAAAAAAAgBxIygIAAAAAAAAAAAAAAADIgaQsAAAAAAAAAAAAAAAAgBxIygIAAAAAAAAAAAAAAADIgaQsAAAAAAAAAAAAAAAAgBxIygIAAAAAAAAAAAAAAADIgaQs1vDMM8/E/vvvH506dYqCgoL49a9/XdVNAgAAAAAAAAAAAAAA4D8eeuih6Nu3b9SrVy86d+4cV111VVU3KZMkZbGGBQsWRK9eveKKK66INm3aVHVzAAAAAAAAAAAAAAAA+I9XX301LcYzbNiwGDt2bFx00UVx/vnnx0033VTVTcucwqpuANXLPvvskz4S5513XlU3BwAAAAAAAAAAAAAAgP9IqmL1798/RowYkb7u2bNnjBs3Ln7zm9/ESSedVNXNyxSVsgAAAAAAAAAAAAAAAKAGeP7552PvvfdeY17yeuLEiTF58uQqa1cWqZQFAAAAAAAAAAAAAAAAG2DegkUx7YsvS81fsXLl6umETyaXev1NHTdrFUX16q7350ydOjXatGmzxrxVr5Nl7du33+D3QtlIygIAAAAAAAAAAAAAAIANUK9OYYx+5Nn4cu78tS5ftHhJ3HrvQ+t83aVj2zjh8H0rpa1UjFoVtB8AAAAAAAAAAAAAAADIpHr16sah+w6OgoKC3LetWycO2WdQ1CrDtm3bto1p06atMW/69Omrl1F5JGUBAAAAAAAAAAAAAADABurcvk3svuM2OW+3354Dotkmjcu07oABA+KRRx5ZY96YMWOiU6dO0b59+5x/NuVXGBm1KvOwpKSkqptSrSxYsCA+/PDD9PmyZcvS7MmxY8dGo0aNolu3blXdPAAAAAAAAAAAAAAAgGpryMB+Mf7jSTF1xqwyrd97i86xXe/uZd7/mWeeGbvssktccMEFcdRRR8VLL70UI0eOjKuvvnoDWk15FJRkNCupspOynn766fQxaNCg9FFdJW0cPHhwqfm77757ugwAAAAAAAAAAAAAAIB1m/bFlzHy9lGxcmXxetdr1LB+nHn8IdGwQVFO+3/wwQfj/PPPj/fffz/atGkTp59+epx11lkb2GpyldlKWZUtSWi6+OKL0+fVOSkraVtG8/QAAAAAAAAAAAAAAAA2WJuWzWPv3XaIB596cb3rHTxs95wTshLDhw9PH1StWlX886mhPvpsSqxYubKqmwEAAAAAAAAAAAAAAFDtDOi/dXTp2Hady3fs2zO27NqxUttExZKURc5mzp4bf/rbg/G7m++NxUuWVnVzAAAAAAAAAAAAAAAAqpVaBQVxyD6Dol7dOqWWbdq0SewzeKcqaRcVR1JWRIwaNSoGDhwYTZo0SR977LFHPPbYY+vd5s0334xjjjkmOnXqFPXq1YvmzZvH0KFD48EHHyy1bkFBQVx88cXp82SavF71GDRo0Or1pk2bFtdff30MGzYsunTpEkVFRdG0adMYMGBA3HTTTVFcXBzVwZMvvBHFJSXRukWzqF9Ur6qbAwAAAAAAAAAAAAAAUO0026Rx7LfngDXmJbkkh+47eK3JWtQsmU/Kuuaaa+Kggw6K8ePHR48ePaJu3brx1FNPxV577ZUmQq3N73//++jXr1/85S9/idmzZ0evXr3SBKpHH3009t133/jFL36xxvpJUlWHDh3S58k0eb3qsfXWW69e75ZbbolTTz01nn766fQk69OnT5rs9e9//zt+/OMfxyGHHBIlJSVR1VWyxo77IH3+vQHbVWlbAAAAAAAAAAAAAAAAqrPtenePrbbYfPXrQTv1jU7tWldpm6gYmU/KOvfcc+Oyyy5Lq1S98sorMX369LjooovSZaeddlqMGzdujfWfeOKJOPnkk6NBgwbx5z//OebMmRNvvPFGTJkyJV3Wpk2buPTSS+ORRx5Zvc1zzz0Xxx9/fPo8mSavVz1Gjhy5er2kalayj/nz58dHH30UL7/8cnz88ccxYcKEtJJXUtHrrrvuiupQJWvLrh2jQ9tWVdoWAAAAAAAAAAAAAACA6iwp2nPA0F2jUcP60a51CwVy8khBSVWXXqrCoE4MHz48HnjggVLL99xzz3j88cfjuOOOi1tvvXX1/B122CFN3vrrX/8aRxxxRKntRo8eHQcccEAMGTIkHnvssdXzk0Sviy++OC688MLVSV+5SJK0unXrFkOHDo0xY8ZEeYy8fVTMX7A4yqu4pDgWLPxq+4YNiqJ2rdrl3hcAAAAAAAAAAAAAAEBWrFixIgpq1YratTJfX6laadyofpx6zIHl2rYwMu7UU09d6/ykSlaSlPXNBKhJkyalCVmbbLJJHH744Wvdbt999406deqkVbBWrlwZtWvnlri0cOHCuPfee+OZZ56Jzz//PBYvXhzfzJsbO3ZslFeSkDVvwcJyb79GOxctqZD9AAAAAAAAAAAAAAAAQE2T+aSsXr16rXf+1KlTY968edGkSZN466230nlJstXuu+++3ipcS5YsiVmzZkWrVq3K3Ja33347rdyVJH+tS7LPDcneKy9VsgAAAAAAAAAAAAAAAMgnjTcg1ybzSVnrSppq3br16ufz589Pk7LmzJmTvl6wYEE8//zz37nvRYsWlbkdSaLXIYcckiZkDR06NM4777zYeuuto2nTplFYWBjFxcVp1a2kXF15lbecWuLeB5+O19+ZEFt27RjHHrx3ufcDAAAAAAAAAAAAAAAANV3mk7JmzJgRHTp0KDV/+vTpq583btw4nTZq1CidbrfddvHaa69VaDteeeWVGD9+fHTs2DFGjx4dRUVFFVYha5WRt4+K+Qu+qnZV3ipZk6bOiMtuuHOD2wIAAAAAAAAAAAAAAABVXSmrvEWQMp+U9e677641KSuZn2jTpk1aJSvRu3fvdDphwoRYvnx51KlTp8w/p6CgYL3LP/nkk3S6/fbbl0rISrz44ouxoZKErHkLFm7QPhYuWrLB7QAAAAAAAAAAAAAAAICaLPNJWTfccEMMHTq01PyRI0em07333nv1vG7dusU222wTb775ZvzhD3+IU045pcw/p379+ul08eLF610+bdq0tS6/+uqroyKy9zakSlbDBkVRu1btDW4HAAAAAAAAAAAAAAAAVLXy5NqskvmkrDFjxsQVV1wRZ599dtSuXTtWrlwZI0aMiMceeyythJXM/6Yrr7wyTdRK5q9YsSJOOumkNSpbzZw5M0aPHp0mV/3iF79YPb9r167p9Lnnnltrla2dd945CgsL44UXXohbb701jj/++HT+woUL46yzzop///vfG/xey1NO7d4Hn47X35kQW3btGMce/HWCGgAAAAAAAAAAAAAAAGRVQUlJSUlkUEFBweoKVGeeeWa0bNkyOnfuHJ988kmaWJW4/vrr4+STTy617W233Rb//d//HcuWLUsrXPXo0SPq1q0b06dPj4kTJ6brHHbYYfG3v/1t9Tbz5s2LLl26xKxZs6J169ZpklaSmNW3b9+45ppr0nV+9rOfxeWXX54+b9++fbRp0ybef//9NDHrlltuiR/96Efpsso6ZDNnz42rbr43iktK4uSjfxAd2raqlJ8LAAAAAAAAAAAAAAAA1Vnmk7KStz9q1Ki46qqr4q233kpfb7/99mmC1NChQ9e5/YcffhjXXnttWlFr0qRJafWrVq1axTbbbBP77bdfHHDAAenrb3r99dfjwgsvjBdffDG+/PLLKC4ujt133z2efvrp1W258cYb00ey/0aNGkW/fv3inHPOiT333HONNlcGVbIAAAAAAAAAAAAAAACgtMwmZbF+SVg8+uyr8fyrb8f/++G+qmQBAAAAAAAAAAAAAADAf0jKYr2WLF0WRfXqVnUzAAAAAAAAAAAAAAAAoNqQlAUAAAAAAAAAAAAAAACQg1q5rAwAAAAAAAAAAAAAAACQdZKyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgB5KyAAAAAAAAAAAAAAAAAHIgKQsAAAAAAAAAAAAAAAAgyu7/A5a1UyThBFFmAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "template, samplex = build(circuit)\n", "\n", "template.draw(\"mpl\", fold=100)" ] }, { "cell_type": "markdown", "id": "c3540a34", "metadata": {}, "source": [ "Plotting the samplex DAG and hovering over the nodes we see that \n", " - All of the sampling nodes (stars) are responsible for generating randomizations for twirling, sampling from noise models, or injecting basis changes.\n", " - All of the collection nodes (bow ties) are responsible for rendering slices of outputs, which are either measurement flips or parameter angles.\n", " - All of the intermediate nodes (circles) are responsible for various kinds of data manipulation." ] }, { "cell_type": "code", "execution_count": 4, "id": "f9febfb0", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "samplex.draw()" ] }, { "cell_type": "markdown", "id": "50e7afc6", "metadata": {}, "source": [ "## Querying the required inputs and expected outputs\n", "\n", "The easiest way to see the required inputs and expected outputs is to print the {class}`~.Samplex` object. Array items are formatted as `'{name}' <{type}[{shape}...]>`, and the required inputs precede the optional inputs." ] }, { "cell_type": "code", "execution_count": 5, "id": "b438811f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Samplex(<57 nodes>)\n", " Inputs:\n", " - 'basis_changes.conclude' : Basis changing gates, in the symplectic ordering\n", " I=0, Z=1, X=2, and Y=3.\n", " - 'parameter_values' : Input parameter values to use during sampling.\n", " - 'pauli_lindblad_maps.ref1' : A PauliLindblad map acting on 2 qubits,\n", " with 'num_terms_ref1' terms.\n", " - 'pauli_lindblad_maps.ref2' : A PauliLindblad map acting on 4 qubits,\n", " with 'num_terms_ref2' terms.\n", "\n", " - 'local_scales.mod_ref1' : (Optional) An array of factors by\n", " which to scale individual rates of a Pauli Lindblad map, where the order should match the\n", " corresponding list of terms.\n", " - 'local_scales.mod_ref2' : (Optional) An array of factors by\n", " which to scale individual rates of a Pauli Lindblad map, where the order should match the\n", " corresponding list of terms.\n", " - 'local_scales.mod_ref3' : (Optional) An array of factors by\n", " which to scale individual rates of a Pauli Lindblad map, where the order should match the\n", " corresponding list of terms.\n", " - 'noise_scales.mod_ref1' : (Optional) A scalar factor by which to scale rates\n", " of a Pauli Lindblad map.\n", " - 'noise_scales.mod_ref2' : (Optional) A scalar factor by which to scale rates\n", " of a Pauli Lindblad map.\n", " - 'noise_scales.mod_ref3' : (Optional) A scalar factor by which to scale rates\n", " of a Pauli Lindblad map.\n", " Outputs:\n", " * 'measurement_flips.alpha' : Bit-flip corrections\n", " for measurement twirling.\n", " * 'measurement_flips.beta' : Bit-flip corrections for\n", " measurement twirling.\n", " * 'parameter_values' : Parameter values valid for an\n", " associated template circuit.\n", " * 'pauli_signs' : Signs from sampled Pauli Lindblad\n", " maps. The order matches the iteration order of injected noise in the circuit.\n", "\n" ] } ], "source": [ "print(samplex)" ] }, { "cell_type": "markdown", "id": "3a45dbea", "metadata": {}, "source": [ "The {meth}`~.Samplex.inputs` and {meth}`~.Samplex.outputs` of the samplex, as well as more detailed information like their names, shapes, types, and descriptions, can also be queried programatically. The return type of both of these methods is a {class}`~.TensorInterface`. For example, we list here all specifications of the input interface:" ] }, { "cell_type": "code", "execution_count": 6, "id": "11348b44", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[TensorSpecification('basis_changes.conclude', (3,), dtype('uint8'), 'Basis changing gates, in the symplectic ordering I=0, Z=1, X=2, and Y=3. '),\n", " TensorSpecification('local_scales.mod_ref1', ('num_terms_ref1',), dtype('float64'), 'An array of factors by which to scale individual rates of a Pauli Lindblad map, where the order should match the corresponding list of terms.', optional=True),\n", " TensorSpecification('local_scales.mod_ref2', ('num_terms_ref2',), dtype('float64'), 'An array of factors by which to scale individual rates of a Pauli Lindblad map, where the order should match the corresponding list of terms.', optional=True),\n", " TensorSpecification('local_scales.mod_ref3', ('num_terms_ref1',), dtype('float64'), 'An array of factors by which to scale individual rates of a Pauli Lindblad map, where the order should match the corresponding list of terms.', optional=True),\n", " TensorSpecification('noise_scales.mod_ref1', (), dtype('float64'), 'A scalar factor by which to scale rates of a Pauli Lindblad map.', optional=True),\n", " TensorSpecification('noise_scales.mod_ref2', (), dtype('float64'), 'A scalar factor by which to scale rates of a Pauli Lindblad map.', optional=True),\n", " TensorSpecification('noise_scales.mod_ref3', (), dtype('float64'), 'A scalar factor by which to scale rates of a Pauli Lindblad map.', optional=True),\n", " TensorSpecification('parameter_values', (4,), dtype('float64'), 'Input parameter values to use during sampling.'),\n", " PauliLindbladMapSpecification('pauli_lindblad_maps.ref1', num_qubits=2, num_terms=num_terms_ref1),\n", " PauliLindbladMapSpecification('pauli_lindblad_maps.ref2', num_qubits=4, num_terms=num_terms_ref2)]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "samplex.inputs().specs" ] }, { "cell_type": "markdown", "id": "46a95cda", "metadata": {}, "source": [ "Next, as an example, we choose to print some information about those output specifiers whose names contain the string `\"flips\"`." ] }, { "cell_type": "code", "execution_count": 7, "id": "d764761d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "measurement_flips.alpha ('num_randomizations', 1, 3) bool\n", "measurement_flips.beta ('num_randomizations', 1, 1) bool\n" ] } ], "source": [ "for spec in samplex.outputs().get_specs(\"flips\"):\n", " print(spec.name, spec.shape, spec.dtype)" ] }, { "cell_type": "markdown", "id": "6da925d5", "metadata": {}, "source": [ "## Binding input values and sampling\n", "\n", "In order to {meth}`~.Samplex.sample`, the samplex needs to be provided with values for at least those {meth}`~.Samplex.inputs` that are marked as required.\n", "These values are first bound to an input interface so that it can perform all necessary type checking (or type coercion in some cases) and shape analysis. \n", "If anything is wrong with the types or shapes, or if a required value is missing, a verbose error is raised.\n", "\n", "### Binding input\n", "\n", "In the following example, we pass the {meth}`~.Samplex.sample` method its bare minimum requirements, and use it to draw 3 randomizations from the samplex.\n", "The required bindings arising from the dressings are the Pauli Lindblad maps for noise injection and the basis change array. In addition to these, values for the four parameters in the original boxed-up circuit are required, which in this case we set to `np.linspace(0, 1, 4)`. The samplex will compose these parameters into the dressings, so that they effectively end up as modifications to the output parameter values of the samplex.\n" ] }, { "cell_type": "code", "execution_count": 8, "id": "674498e7", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "SamplexOutput(<\n", " - Dimension constraints: num_randomizations=3\n", "\n", " * 'measurement_flips.alpha' : Bit-flip corrections for\n", " measurement twirling.\n", " * 'measurement_flips.beta' : Bit-flip corrections for\n", " measurement twirling.\n", " * 'parameter_values' : Parameter values valid for an\n", " associated template circuit.\n", " * 'pauli_signs' : Signs from sampled Pauli Lindblad maps.\n", " The order matches the iteration order of injected noise in the circuit.\n", ">)\n" ] } ], "source": [ "inputs = samplex.inputs().bind(\n", " # bind() concatenates nested dicts with a '.' so that we can\n", " # set 'pauli_lindblad_maps.noise0/1' as follows. note that the\n", " # names 'ref1' and 'ref2' derive from the names in the InjectNoise\n", " # annotation.\n", " pauli_lindblad_maps={\n", " \"ref1\": PauliLindbladMap.identity(2),\n", " \"ref2\": PauliLindbladMap.identity(4),\n", " },\n", " # likewise, we can set all basis changes as follows, where\n", " # the name 'conclude' comes from our basis change annotation\n", " basis_changes={\"conclude\": [0, 1, 2]},\n", " # we must provide values for all parameters in the original circuit\n", " parameter_values=np.linspace(0, 1, 4),\n", ")\n", "\n", "outputs = samplex.sample(inputs, num_randomizations=3)\n", "print(outputs)" ] }, { "cell_type": "markdown", "id": "4a212742", "metadata": {}, "source": [ "Inputs can be bound to the interface through multiple calls to {meth}`~.TensorInterface.bind` or by direct item assignment.\n", "Despite the nested dictionary format that {meth}`~.TensorInterface.bind` allows for convenience, it is a flat mapping object, and supports all of the usual mapping syntax.\n", "Once all required inputs have been found, {attr}`~.TensorInterface.fully_bound` becomes true." ] }, { "cell_type": "code", "execution_count": null, "id": "898d2d00", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fully bound? False\n", "Fully bound? True\n", "Fully bound? True\n" ] } ], "source": [ "inputs = (\n", " samplex.inputs()\n", " .bind(\n", " pauli_lindblad_maps={\n", " \"ref1\": PauliLindbladMap.identity(2),\n", " \"ref2\": PauliLindbladMap.identity(4),\n", " }\n", " )\n", " .bind(parameter_values=np.linspace(0, 1, 4))\n", ")\n", "\n", "# once the final requirement is bound, fully_bound becomes True\n", "print(\"Fully bound?\", inputs.fully_bound)\n", "inputs[\"basis_changes.conclude\"] = [0, 2, 3]\n", "print(\"Fully bound?\", inputs.fully_bound)\n", "\n", "# setting optional values does not affect whether the interface is fully bound\n", "inputs[\"noise_scales.mod_ref1\"] = 3\n", "print(\"Fully bound?\", inputs.fully_bound)" ] }, { "cell_type": "markdown", "id": "af2782a0", "metadata": {}, "source": [ "All {class}`~.TensorInterface` objects, including the {class}`~.SamplexOutput` subclass, are mapping objects against data that has been bound to them.\n", "This means that we can get, for example, the template parameter values as follows, which in this case has shape `(3, 48)` since we asked for 3 randomizations and the template circuit has 48 parameters." ] }, { "cell_type": "code", "execution_count": 10, "id": "de081625", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(num_randomizations, num_template_params) = (3, 48)\n", "[ 3.1415927 3.1415927 0. 1.5707964 0.33333334 -1.5707964\n", " 1.5707964 0.6666667 1.5707964 -1.5707964 2.1415927 -1.5707964\n", " 0. 1.5707964 3.1415927 3.1415927 3.1415927 0.\n", " -1.5707964 0.1 1.5707964 -1.5707964 0.1 1.5707964\n", " -1.5707964 0.1 1.5707964 1.5707964 0.1 1.5707964\n", " 3.1415927 1.5707964 0. 3.1415927 3.1415927 0.\n", " -1.5707964 3.1415927 1.5707964 -1.5707964 3.1415927 1.5707964\n", " 0. 1.5707964 0. 3.1415927 3.1415927 0. ]\n" ] } ], "source": [ "print(\"(num_randomizations, num_template_params) =\", outputs[\"parameter_values\"].shape)\n", "print(outputs[\"parameter_values\"][0, :])" ] }, { "cell_type": "markdown", "id": "611cbea9", "metadata": {}, "source": [ "### Specifying input as a dictionary\n", "\n", "Instead of providing a fully-bound {class}`~.TensorInterface`, we can specify the inputs as a standard dictionary, as is shown in the cell below. In this case, the {meth}`~.Samplex.sample` method internally binds the items of the dictionary to the samplex' input interface to validate all required inputs are present and compatible." ] }, { "cell_type": "code", "execution_count": null, "id": "ba9ac951", "metadata": {}, "outputs": [], "source": [ "inputs = {\n", " \"pauli_lindblad_maps\": {\n", " \"ref1\": PauliLindbladMap.identity(2),\n", " \"ref2\": PauliLindbladMap.identity(4),\n", " },\n", " \"basis_changes\": {\"conclude\": [0, 1, 2]},\n", " \"parameter_values\": np.linspace(0, 1, 4),\n", "}\n", "outputs = samplex.sample(inputs, num_randomizations=3)" ] }, { "cell_type": "markdown", "id": "aeae6d5c", "metadata": {}, "source": [ "### Input types\n", "\n", "Presently, there are two distinct interface value types, though this may grow:\n", " - Array-valued: These have a shape and a data type. Bound values are coerced into the data type if possible. Any dimension can be a free dimension.\n", " - Pauli Lindblad maps: These must be of type {class}`qiskit.quantum_info.PauliLindbladMap` and must act on the prescribed number of qubits. The number of terms in the map is a free dimension." ] }, { "cell_type": "code", "execution_count": 11, "id": "482b839f", "metadata": {}, "outputs": [], "source": [ "# up to precision loss, these are equivalent via automatic type coersion of array inputs\n", "samplex.inputs()[\"parameter_values\"] = [1, 2, 8, 9]\n", "samplex.inputs()[\"parameter_values\"] = np.array([1, 2, 8, 9], dtype=np.float16)" ] }, { "cell_type": "markdown", "id": "23b10694", "metadata": {}, "source": [ "### Free dimensions" ] }, { "cell_type": "markdown", "id": "e2b10f7d", "metadata": {}, "source": [ "The {class}`~.TensorInterface` class has a notion of _free dimensions_, which are named integer sizes whose values are undetermined until some data has been bound to the interface that constrains them.\n", "All free dimensions of the same name must resolve to a consistent size when binding data or an error will be raised.\n", "For example, in the {meth}`~.Samplex.outputs` of any samplex, the array axis corresponding to randomizations is a free parameter that has the name `\"num_randomizations\"` by convention.\n", "When {func}`~.Samplex.sample` is called, it binds values to the outputs" ] }, { "cell_type": "code", "execution_count": 12, "id": "1b5588dd", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "All free dimensions: {'num_randomizations'}\n", "Current constraints: {'num_randomizations': 3}\n" ] } ], "source": [ "print(\"All free dimensions:\", outputs.free_dimensions)\n", "print(\"Current constraints:\", outputs.bound_dimensions)" ] }, { "cell_type": "markdown", "id": "b0f4f7a3", "metadata": {}, "source": [ "Another common free-dimension scenario is the sharing of term constraints between Pauli lindblad map specifications and their modifiers.\n", "A {class}`qiskit.quantum_info.PauliLindbladMap` is an ordered sequence of terms, where each term contains a floating point rate and a sparse Pauli representation.\n", "The {func}`~.build` function adds a specifier `\"pauli_lindblad_maps.\"` for this type for each {class}`~.InjectNoise` annotation, and if it contains a {attr}`~.InjectNoise.modifier_ref`,\n", "then a `\"local_scales.\"` specifier is also added.\n", "Both of these share the free dimension called `\"num_terms_\"` that specifies how many Pauli Lindblad terms are present in the noise model, for the latter needs to zip against the rates of the former in order to scale them." ] }, { "cell_type": "code", "execution_count": null, "id": "6b8febe7", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "All free dimensions: {'num_terms_ref2', 'num_terms_ref1'}\n", "Current constraints: {'num_terms_ref2': 2}\n" ] } ], "source": [ "# both the PauliLindbladMap and the local scales imply 2 terms, so that the free dimension\n", "# 'num_terms_noise2' is satisfied\n", "inputs = samplex.inputs().bind(\n", " pauli_lindblad_maps={\"ref2\": PauliLindbladMap.from_list([(\"XXYZ\", 0.1), (\"IIXX\", 0.2)])},\n", " local_scales={\"mod_ref2\": [1, 2]},\n", ")\n", "print(\"All free dimensions:\", inputs.free_dimensions)\n", "print(\"Current constraints:\", inputs.bound_dimensions)" ] }, { "cell_type": "markdown", "id": "4ae1cf61", "metadata": {}, "source": [ "## Qubit ordering convention\n", "\n", "Samplexes constructed from boxed-up circuits by the {func}`~.build` function can require array-valued inputs to {meth}`~.Samplex.sample` where one index corresponds to qubits of some box of the circuit.\n", "This section explains the ordering convention that should be used for such axes.\n", "In short: use the qubit order of the boxed-up circuit, restricted to the qubits of the box.\n", "\n", "As an example, suppose we are trying to figure out how to specify a Pauli Lindblad map for `\"noise1\"`.\n", "Then the order of qubits in the noise map is with respect to these qubits:" ] }, { "cell_type": "code", "execution_count": 14, "id": "ff6b8981", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[, ]" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "box_of_interest = circuit[1]\n", "qubit_ordering_convention = [qubit for qubit in circuit.qubits if qubit in box_of_interest.qubits]\n", "qubit_ordering_convention" ] }, { "cell_type": "markdown", "id": "7cb8cfbb", "metadata": {}, "source": [ "That is, if we want `` to be noisy with `X` noise, then we should define a Pauli Lindblad map like this one because it is at index `1` of `qubit_ordering_convention`." ] }, { "cell_type": "code", "execution_count": 15, "id": "a0214a6c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "samplex.inputs().bind(\n", " pauli_lindblad_maps={\n", " \"ref1\": (noise1 := PauliLindbladMap.from_sparse_list([(\"X\", [1], 0.12)], num_qubits=2))\n", " }\n", ")\n", "noise1" ] }, { "cell_type": "markdown", "id": "13015694", "metadata": {}, "source": [ "The same holds true for basis changes. If we want to rotate into the +1 eigenstates of the operators X, Y, and Z for qubits 0, 1, and 2 of `circuit` respectively, then we should do so with the following array, recalling the symplectic convention {math}`I=0`, {math}`Z=1`, {math}`X=2`, and {math}`Y=3` is used in this library, as well as qiskit." ] }, { "cell_type": "code", "execution_count": 16, "id": "e99ff659", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[2, 3, 1]" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "samplex.inputs().bind(basis_changes={\"conclude\": (basis_change := [2, 3, 1])})\n", "basis_change" ] }, { "cell_type": "markdown", "id": "7db1a4ed", "metadata": {}, "source": [ "Note that the qubit ordering convention is _not_ the order defined by:\n", " - `box_instruction.qubits`, where `box_instruction` is a {class}`qiskit.circuit.CircuitInstruction` whose operation is a {class}`qiskit.circuit.BoxOp`, because the order of this list of qubits may depend on the order in which instructions were added to the box context, which would be a confusing convention. For example, `with box(): circuit.x([0, 1])` and `with box(): circuit.x([1, 0])` would result in different orderings.\n", " - `box_instruction.operation.body.qubits` because these qubits might not even appear in the outer circuit; qubits inside of the actual body of `BoxOp` instructions (or any other control flow operation like `IfElseOp`) are only promised to have a consisent meaning within that scope. This would be an ill-defined convention, and hard to use in general." ] }, { "cell_type": "markdown", "id": "57d97f42", "metadata": {}, "source": [ "## Local testing with the template circuit\n", "\n", "If a {class}`~.Samplex` is constructed via the {func}`~.build` function, then the parameter values that it outputs should be directly compatible with the parameters of the associated template circuit.\n", "For example, we can bind values for one of the randomizations to the template for local inspection." ] }, { "cell_type": "code", "execution_count": 17, "id": "563885fa", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAADWUAAAGwCAYAAAB7bObgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAA0hdJREFUeJzs3Qd8FHX6x/FvCmkQIBBq6L0oICgWQFFRATuIHSx3omcvJ576V2wn1pMT+ylyWBAVe+93IFJUVECkt9ADARJa2v5fMzkSQgq7YbObnefzfr32NWR3ZpnZeWaeZ387v/lF+Xw+nwAAAAAAAAAAAAAAAAAAAAAAAAAAfon2bzYAAAAAAAAAAAAAAAAAAAAAAAAAgINOWQAAAAAAAAAAAAAAAAAAAAAAAAAQADplAQAAAAAAAAAAAAAAAAAAAAAAAEAA6JQFAAAAAAAAAAAAAAAAAAAAAAAAAAGgUxYAAAAAAAAAAAAAAAAAAAAAAAAABIBOWQAAAAAAAAAAAAAAAAAAAAAAAAAQADplAQAAAAAAAAAAAAAAAAAAAAAAAEAA6JQFAAAAAAAAAAAAAAAAAAAAAAAAAAGgUxYAAAAAAAAAAAAAAAAAAAAAAAAABIBOWQAAAAAAAAAAAAAAAAAAAAAAAAAQADplAQAAAAAAAAAAAAAAAAAAAAAAAEAA6JQFAAAAAAAAAAAAAAAAAAAAAAAAAAGgUxYAAAAAAAAAAAAAAAAAAAAAAAAABIBOWQAAAAAAAAAAAAAAAAAAAAAAAAAQADplAQAAAAAAAAAAAAAAAAAAAAAAAEAA6JQFAAAAAAAAAAAAAAAAAAAAAAAAAAGgUxYAAAAAAAAAAAAAAAAAAAAAAAAABIBOWQAAAAAAAAAAAAAAAAAAAAAAAAAQADplAQAAAAAAAAAAAAAAAAAAAAAAAEAA6JQFAAAAAAAAAAAAAAAAAAAAAAAAAAGgUxYAAAAAAAAAAAAAAAAAAAAAAAAABIBOWQAAAAAAAAAAAAAAAAAAAAAAAAAQADplAQAAAAAAAAAAAAAAAAAAAAAAAEAA6JQFAAAAAAAAAAAAAAAAAAAAAAAAAAGgUxYAAAAAAAAAAAAAAAAAAAAAAAAABIBOWQAAAAAAAAAAAAAAAAAAAAAAAAAQADplAQAAAAAAAAAAAAAAAAAAAAAAAEAA6JQFAAAAAAAAAAAAAAAAAAAAAAAAAAGIDWRmAAAAAAAAAAAAAAAAAAAAx+zZswOaPyMjQ++8846GDBmi1NRUv5Y54ogjKrl2AAAAAFC1GCkLAAAAAAAAAAAAAAAAAABUOadT1osvvuhOAQAAACDS0SkLAAAAAAAAAAAAAAAAAAAAAAAAAAJApywAAAAAAAAAAAAAAAAAAAAAAAAACACdsgAAAAAAAAAAAAAAAAAAAAAAAAAgAHTKAgAAAAAAAAAAAAAAAAAAVS45OVkDBw50pwAAAAAQ6eiUhaD77rvvFBUVpccee6zC+QoKCvTEE0+oU6dOSkhIUPPmzXXLLbdox44dIVtXAEDwz//O49prry1zno0bNyouLs6dp3///iVeW7hwoc466yylpKSoZs2a6tevn7755psQrT1QNcfC3ketWrXUs2dPt/bJy8srtQzxDwAAYK99bNGiRbr77rt11FFHqUGDBu5FKD169NDf//532scAwFDbmM/n06uvvqrzzz9f7dq1U1JSklq0aKEzzjhDM2fODPFWAKFtGyP+AQAAbEpLS9N9993nTi1fO7evnTt3qk2bNhV+pwQAePvauX09++yzRe+VkZFRhWsNoDpcO7gvjv/IRKcshM1NN92km2++WV26dNG4ceM0bNgwPfnkkzr99NPdDlsAgMjkdLR9/fXXtWfPnlKvvfLKK+4P7bGxsSWeX7p0qY455hj98MMPGjVqlB599FFlZ2frlFNO0VdffRXCtQeC54ILLnBjfuLEiRo9erRyc3Pd2ufqq68uMR/xDwAAYNP48ePdhve2bdu6nbOcOrBjx476v//7P7c+3LVrV7hXEQAQgrYxZ77hw4e7N2xxOqY4v5eMHDlSP//8s44++mi3wwrg1bYx4h8AAMAmpw5cvXp1md+brHLaBzdt2hTu1QAAhOnauX2tXbtWf/vb39xOHAC8f+3gvjj+IxedshAW8+fPd39YGTJkiN555x1dccUV+sc//uE+vv32W73xxhvhXkUAQCWdffbZyszM1Pvvv1/qtZdfflmDBw9WfHx8iedvv/12bd26VZ9//rn7b6fwnDp1qpo2baprrrnG/TIKRBrn7hYXX3yxe2HJrbfeqhkzZqhZs2Z68cUXSzSoE/8AAAA2nXPOOUpPT9drr72m6667TldddZUmT56sO++8U7/99pteeumlcK8iACAEbWPOBRjOnTPnzJmjBx54QH/605/cDro//fST6tWrp1tuuYUb2cGzbWPEPwAAgE3Lly/X0KFD3Snk3pRg7Nixuvfee8O9KgCAMF07ty/nWiHnhn5nnXVWFa8pgOpw7eC+OP4jF52yEBaTJk1yLzC+8cYbSzzvdM5KSkrizncAEOHFZLdu3dwvkfuaNWuW2yn3sssuK/H8jh079MEHH7hDMvfo0aPoeae3/5///GctWrRIs2fPDtn6A1WlZs2aOuqoo9wayBkdy0H8AwAA2HX44YerTp06pZ4/77zz3Om8efPCsFYAgFC3jTmdUo477rhS79OoUSP3+Y0bN7oPwIttY8Q/AAAArMvPz3evlxs4cKB7c3MAgL32wX29++677nVEzz33nGJiYkKwtgDC2T66L47/yFb++IdAFXIuLo6Ojlbv3r1LDdvpXJBcXS4+dgam2J2viJIQI0VFBee9nBN/3q7IGio8NjFeUUH6AKzvfwcxQAxU1uWXX+4OtbpmzRqlpaW5z40fP14NGzbUaaedVmJe5w7wznDNRx99dKn3cYpQh5MX9s8ZQCTa+4XKudOvg/gHAADA/pzRs/ZejBxu1r8XW28XcRADtmPA+v4PVdvYgXJCXFyc6tatW4VrC4SvbawixD8AAAAseOKJJ/THH39oypQpqo4irW2A66ZoGyIGiIFIbh/cvn27rr32Wl155ZXudULPPPOMws05BpwOxJHE6cwSzN9JgFC0j1bH4x+BoVMWwmLt2rVKTU0tcwhOpwCZPn26cnJy3B9bwskpKPt9oogydbCUGKQj2/lC8VrbixVJLlr6qmokJQTlvazvfwcxQAxUljPs6qhRo/Tvf/9bd9xxh3bt2qU33njDHfnHufvp/jnBsfcL6L72Pud8QQUizc6dO5WRkeE2UKxfv969i8WcOXPcL04dOnRw5yH+AQAAsC/nh63777/f/d504YUXhnt1zH8vtt4u4iAGbMeA9f0fqrax8nzyySfu3XOHDx/u3tAO8GLbWHmIfwAAAFiwfPlyjR49WnfffbdatWqlFStWqLqJtLYBrpuibYgYIAYiuX3wtttuU0FBgcaMGaPq9LtVde04XJ6hQ4f63QYLVJf20ep4/CMw0QHODwTtRFNWhyzH3h9XnHkAAJGpfv36OuOMMzRhwgT373feeUfbtm1z7wKyv73n+7LyAjkBkcxpQG/QoIF7lxtnWHLnDhZDhgzR+++/XzQP8Q8AAIB93Xjjjfrhhx903333qWPHjuFeHQBACNrGyrJ48WK3M4pzw5bHH3+8itcWCF/bWFmIfwAAAFhx1VVXqU2bNu5IKgAA2+2D33//vZ5//nn94x//UJ06dUK8tgDC2T7K8e8NdAVFWCQlJWnjxo1lvrZ79+6ieQAAkeuyyy7TqaeeqmnTprnDLzs9/Lt06VJqvr3n+z17Sg/3TU5AJBs5cqSGDRum3NxczZ07Vw8//LDS09NL3N2X+AcAAMBed911l5566im3jrz99tvDvToAgBC1jZV1p/QTTzxRUVFR+vTTT90fbQGvto3tj/gHAACwoVOnTu7IqJa9+uqr+vLLL/Xf//5XNWrUCPfqAADC2D6Yk5PjtqMMGDBAF1xwQVjWFUB42kc5/r2DTlkIi6ZNm+r33393L0Def2SINWvWKDU1VXFxcWFbPwDAwTvllFPcu5nee++9+vbbb/Xss8+WmxP2nv/3t/c5532ASNO+fXv3C5Nj0KBB6tu3r/tw7njmDEnuIP4BAADguOeee/TAAw+4P9A999xz4V4dAEAI28b2tWLFCh1//PHKzs7W119/rUMPPTQk6wqEq21sX8Q/AAAArHCul3NGxxo8eLAaN26sJUuWlPh92BlJxXnOuX6ubt26YV5bAEBVtw8+/fTT+uOPP9wRw/fmBEdWVlbRTWy2b9/ujq4IwFvtoxz/3hEd7hWATUcccYQKCgpK3fXEGRHil19+0eGHHx62dQMABEdMTIxGjBihr776yu3dX15PfufHdaeD7g8//FDqtRkzZrhT8gK84JhjjtHw4cM1efJkTZ8+3X2O+AcAAIDTIcv5Qe6SSy7Riy++6I4MAQCw0za2b4eU/v37uxffOXdLP+yww0K2rkC42sb2Iv4BAABsWblypS6//HJ3atGuXbu0adMmffzxx+7FunsfTk28dxQt52+nrRAA4P32QScfOtdTO5029s0L77zzjvu6M8JWt27dQrz2AELRPsrx7x2MlIWwOO+88/Tggw9q7Nix6tevX9Hz//rXv7Rz505ddNFFYV0/AEBwOL36nZEPnZ76tWvXLnOeWrVq6fTTT3cLyV9//VXdu3d3n3fuiOo0MjpFplNcAl5w11136bXXXtPdd9/tNroQ/wAAALbdd999bocspwF+/Pjxio7mHloAYK1tbO8Pr84IQVu3bnU7pPTq1Suk6wmEq23MQfwDAADY7JQ0b948d2pRzZo19dZbb5V63umodfXVV2vgwIH605/+xAW4AGCkffCyyy5zR8/ZnzOCznfffef+fpSSkhKCtQUQ6vZRjn/voFMWqszXX3/tjny1P2doZafQuOaaa/TUU09pyJAh7nDMCxYs0JNPPqnjjjtOF154YVjWGQAQXC1atHDv+n4gY8aMcfPGySefrJtuusn9Eup01F2zZo17dyjuFA+vaNeunc4//3z3y9XUqVPdzunEPwAAgM32sfz8fI0ePdr93jRgwAC9/vrrJeZp1KiRTjrppBCuLQAgHG1jWVlZbocUZ6Sg6667TgsXLnQf+3LygZMXAK+1jfXo0YP4BwAAgNlr5/bn1MWOtm3b6pxzzgnJOgIAwt8+6NzAee9NnPf10UcfuVPnZs9O7gDgzWsHOf69gU5ZqDKfffaZ+9hfx44d3S+WzihZrVq10gsvvOBecOycNJwfXJw7BEfyXYGz5n6nRf93fInnohNqKr5pB9XvP1wNT7tOUTEcel5GDIAYqFyx+f333+tvf/ubHnroIeXk5Khnz55uHnEuTgS85M4779SkSZPcO158++23xD8AAIDR9rGjjjrK/feqVat0ySWXlJrHuXFRJHbK4jsxiAEQA4HZvHmzli9f7v573LhxZc7jtB/QKQVebBt7+eWXiX8AAACYvXbOq2gXADEAYgAA/L92EN5AVkPQ9e/fXz6f74DzxcTE6JZbbnEfXpRy7AWq02uw5PMpN3O9Nn83Uenjb9bu9AVqec0L4V49hAAxAGsx4O/535GdnV3quc6dO+v999+vgjUDqtex4MS6MyrC/s8R/wAAAPa+H02YMEFeZe07MUojBmAtBirbNubcvM7f5QAvto0R/wAAALD8/XBfXvt+aK1dAKURA7AWAwd77VxZvyF5+XckwKsqc+3g/jj+Iw+dsoAqktSmp+r3v7jo7waDr9b8qzsp48sX1fTiv6tGnQZhXT9UPWIAxAAAAAAAwCq+E4MYADEAAAAAAChLkyZNdO+997pTeBftAiAGQAwAAKygUxYQIjEJNVWz41HaOv1t7Vm/1FxBeem6t4P2XhOanKNIRAwQA9ZjAAAAAABgF9+JaRuxHgPW97/DegwAAAAAAArVqVNHgwYNCvdqIMSstwvQNkQMEAPEAADAu+iUBYSQU0g6YmvVkyU101I1a/QE/f7CR7KOGCAGrMYAAAAAAACWvxPTNmI7Btj/xazGAAAAAACgWGZmpr766isNGDBAKSkp4V4dhJDVdgHahooRA8SA1RiA5PP53Bpg3bp1ys3NVXR0tGrWrKnmzZsrLi7Or/dwln/zzTd1ySWXKCEhocrXGQD8RacsBMXs2bP9njcjI0PvvPOOhgwZotTUVL+XO+KIIxRJCvbsVN72DLeQyMtcr02fPaddy+YoqX1vJaR1kCXNTzpcq7/4UdYQA8WIAe/HQCB5oLK5INLyAGzhGAAAALCNetD2d2J/WGwbIQZs739rMUAegHUcAwAAAAjEhg0b9Oijj+rQQw/1TKcsrp2z3S5wILQNEQPEgPdjgDxQtpycHE2fPl0zZ87UsmXLtG3btlLzOJ2zmjVrpo4dO+qEE05Q69aty+2Qdf/992vt2rVav369brvtNjpmodqgfRR0ygoR5+B55JFH3AMoPT1dDRo0cA+kBx98UNdff73Gjx+vcePG6dprr5WFz+LFF1/UscceG1BBEWnWTRrtPvZV9+ghanHl07KmdpvG+mPCellDDBQjBopZjQGruQAoD8cAAACAbRbqQb4Tl2SxbYQYsL3/HcSA7TwAVIRjAAAAAJZZqYdpFyhG21AxYsAWYsBuHtixY4fee+89ffPNN+6/K1JQUKBVq1a5jy+//FLt27fXGWecUaIDyr4dsvZ+htnZ2XTKQsSycB6whk5ZIfDLL79o0KBBbs9cZ6jFLl26uInhySef1NKlS7VlyxZ3vh49eoR7VRFEqaeMVMoxw+TLz9WulXO1/p2HlZORrqgaxUVA1vypWnLfoFLL+vJy5CvIV6938xXpYpMSlJu9WxYRA4WIAWIAhfbkS1+vlT5JlzbtlqIkNUmSzmwh9WssxThPAAAAAIBH8J24mNW2EWLA9v53EAPYl88nzc6Q3l0prcyW8nxSSpx0cpo0qJmUxC+WAAAAAOAptAsUom2IGCAGiAFr5syZo3/9619F18bv5Vw/36ZNG7Vo0cLtTOV0xnI6WzkjaDmDnTh/OxYvXqzHH39cRx11lC6//HLl5+eX6JDlDIpy11130ZEFQLXCTxwh6Ml4+umnux2ybrnlFo0ePVrJycnua87IWc7wibGxsYqKilK3bt3CvboIovgm7VW7xwD333V6DVKtzn218Pa+WvXsVWpz6xvu88ld++mwydkllsvZvFZ/3HK4GpzqjVHTmh7XTWv+86ssIgYKEQPEAKRP06XH50lbc0o+vyRLmrpBapwo/V936aiG4VpDAAAAAAguvhMXs9o2QgzY3v8OYgB7/b5VuvtnaUXJXe36abP05O/SlR2lC9pIUdy4CAAAAAA8gXaBQrQNEQPEADFghdOpauLEifrss8+KnnOujz/66KN10kknuSNgOdfKl2XXrl36/vvv9cUXX7gjZjlmzJihefPmuR24nGvx9+2Q1bAhF9kBqF6iw70CXnf99de7PXivvfZaPfbYY0UdshyjRo1S9+7dlZeXp1atWql27dphXVdUrVqdj1G9/sOVOW2yshdML3Oegtw9WvbQENXq0ldNht0hL2h4RCdtmr2wxHM9b79Ql657W+3OP6HMZQZOuVfDV0xS3Y7N5SXEQDFiwFYMWPfWcumun0t3yNrX+l3SDTOl79aFcs0AAAAAIHQsfyembcR2DLD/i1mNAet+3SKN/L7sDll77ciT/jFfeuaPUK4ZAAAAgHBJSkrSkUce6U5hh9V2AdqGihEDxYgBWzFgpUPWs88+W6JDlnN9/NixY3XNNdeoQ4cO5XbIciQmJmrAgAF6+OGHdd1116lWrVru89nZ2XTIAhAR6JRVhRYsWKDJkye7QySOGTOmzHl69epVlHz2tXz5cp1xxhluJ66UlBSNGDFCmzdvlhc42zRw4MASHdSsaHLeXVJ0jNa+fneZr6965ioV5O5WqxsmyBOcIipK8v1vWNG9fnnsTWUuWKne91yipCb1SrzWZeRpanxMV/3y2GRtXbhaXkMMFCIGDMWA8VzgXHTyyFz/5s33SXf+JKXvqOq1QnVg5RgAAABA2azWgya/E9M2YjsG2P+lmIsB43lge45080xpd75/87+8WPp6bVWvFaoDK8cAAAAAytaiRQuNGzfOnVpkuR421y5A21ApxEAhYsBQDBjJA6+88oqmTp3q/js6Olp/+tOf9Le//c29fj4QTsetPn36uJ2v4uLiSjzvvCcdsuAVXjwPWEenrCo0adIkt/fvRRddVNRrt6zevft3ysrKytLxxx/vjrDlvMcLL7zgJqvTTjvNfb9Il5aWpvvuu8+dWpPQpJ3q9TtfWb99raz5hQXIXhs/fFLbfvxIbW9/T9Hx3rgTTIPD2iljzpJSzxfk5mnqDU8pNileff5xddHztds2Vc+/XaBNPy3SvGc+kBcRA4WIATsxYD0XvL5U8gUw/54CacqKKlwhVBtWjgEAAACUzWo9aPE7MW0jtmOA/V+atRiwngc+Wi1tyw1smdeWVtXaoDqxcgwAAACgbPn5+e7IF87UIsv1sLV2AdqGSiMGChEDdmLAQh749ddf9emnnxZ1yLrpppt00kknVTgyVkUyMzP1z3/+Uzk5OUXP+Xw+93r6vLy8oK03EE5eOw+ATllV6ptvvnGnTger8jgdr/bvlOV0wlqzZo3ee+89tyPWsGHD9Prrr2vGjBn64IPIL7T27Nmj1atXu1OLGg+706k8SvT0z/rtW6VPvE1tRr2l+EatFIkaHdVZUTElTylpxx+mNd/+Uub8W+Yu12/j3lVa/x7qcPEARUVHq9+T17mvOV849r87hJcQA4WIAe/FQCAs5IJNu6Xv1ge+3Aer/L97MCKXhWMAAAAA5bNcD3r5OzFtI7ZjgP3vP6/GQCAs5AGfT3q7Ejcf+i1T+mNbVawRqhMLxwAAAADKt3jxYp1wwgnu1CLr9bBX2wVoG/IfMVCIGPBeDFjMAzt37tTzzz9f9Pcll1yiI444otLv53TIuv/++7V27Vr3b2ekraZNm7r/Xrlypd59990grDUQfl46D6BQ7P+mqAJOAnC0bNmyzNedHrvff/99qU5ZH330kfr27VtiiOajjz5abdq00YcffqizzjqrUutz+OGHa/36Slwd7odzzjnH73k3btzo9li+4IILAhpK8uyzz1aoRcUlqtHYwBoAkg/tr17vlz8uSmLzzur1bvHV9ns2rNCyR89Vs0sfdZc9WB06tJcvZ5eCoYYvWqPV+4DztTrjGPV5/C/6+pKHtH76/OLlaycpN2tnucv9+sTbanHy4Tr87hGq17WVGvRsr1n3TND2pYUFVWV0aN9BuVEFYdv/4Y6BYO5/BzFADFRFHqhsLghHHjgY8T0GKWXkvwJezrl7cKe+g5S3em6VrBeqBscAAACAbV6tB2kb869dpDq1jQSzXcRBDNA2RtuY7TxwMKKTU9Xw4V/cu9gGelfcM665Wzu/G19l64bg4xgAAACwrTL1oMMZVeOnn37yRD3ItXPebBegbYi2IWKAGLCeB+Li4jRmzJhyX3///fe1ZcsW99+HHnqoTj755KB1yGrQoIHuuusu7dixQ3feeacKCgrcwU5OPPFE1atXr9z36dChQ4lRtoBQoH3UGxo3bqwff/yxUsvSKasKOYnAsWtX2Ql+8uTJysjIUHJyslq3bl30/O+//+6OjrW/rl27uq9VltMhyxmBqyq31R97Pw9nGshyVbXuFXGGQG1Uhe9fsGenlo45S3V6n6GGp14blPd0ChLnfYMhLipG/nwAKz6YrtqtG6v5KUcUfamomZaqHembKlzOl5fv3tXhtE8fUqdLB2rDzAX6/YWPD2qd165bqxxffkTs/6qIgWDufwcxQAz4K5DzeWVzQTjywMGo12GPUiq57OasncqOsO21jmMAAADANq/Wg7SN+dcuUp3aRoLZLuIgBmgbo23Mdh44GHGN4+X8lBxohyxH1p48rY+w7bWOYwAAAMA26kGunfNquwBtQ7QNEQPEgPU8EB8fX+5rubm5+uabb9x/x8TE6IorrqhUW2BFHbL2dlY59dRT3UFN8vPz9fXXX5d5jf1eznsw+hBCjXoYdMqq4t5yTqL4+eef3ZGu9rVu3Trdeuut7r+7detWIhE5y9StW7fU+zk9excuXHhQ61NVatas6fe8e08eiYmJAS2XlpamUHN6+lelzOlTtGv5r9q9ZpEyp00u9XrXp35XXIPiEdP84QzVGcw7wcrPmyas/HSWTpxwm2aPnuD+3fykw7X6iwP3Fs3dvlMFOXmKiauh9K9/lnzl3yHBH02bNA3qnR6qWrBjIJj730EMEAP+CuR8XtlcEI48cDDiE2tUetn6yYmqE2Hbax3HAAAAgG1erQdpG/O/XaS6tI0Es13EQQzQNlbVaBur3nngYETVCuwz2VdyfIxiImx7reMYAAAAsI16kGvnvNouQNsQbUPEADFgPQ84I2WVZ+bMmcrKynL/feSRRwY06lcgHbIcAwcO1Mcff+yOluV0BHNGDIqNjS03BhgpC6FGPewNB9PXhk5ZVWjAgAFasGCBHn74YZ100knukIiO2bNna/jw4e4oWY4ePXqEZH0qO5yaP5xt8tcff/zhDrk3aNAgderUye/lxo4dq1DblSf1+6Tq3r/+8cPdRzAtWrRYiUE6snN37tZrbS/2a95ti9Iln1S3QzNtXZSu5NaNlTVhwwGX6zP2GkXXiNXWRavV7cah7l0jslYeeLnyLFq8SDWSEhQJ+78qYiCY+99BDBADVZEHKpsLwpEHDsaWPdKpX0q5AbZz1IuTpk/7THExVbVmqAocAwAAALZ5tR6kbcz/dpHq0jYSzHYRBzFA2xhtY7bzwMFwrh86/ztpaeF1GQH59Jn71bb2/VWxWqgiHAMAAAC2UQ9y7ZxX2wVoG6JtiBggBqzngby8PE2ZMqXM12bNmlX0b+ca+arqkOWoX7++evXq5X7OzjKLFy9W586dy3zPRYsWldthC6gq1MOIDvcKeNmoUaPcRLB69Wp17dpVhx56qNq3b6/evXurTZs2OuGEE9z5unfvXmK5lJQUbd26tdT7bdmyxR0tC6iuVn/5ozsEb2xSgnKzD3y3gc5/GqwmfQ7RL/94S99d8biiY2LU54mrQ7KuqBrEAFCsXrw0oEngy53ZUnTIAgAAAIAIRduIbex/oFhUlDSsVeDL9awvta1dFWsEAAAAoLpo166dPv/8c3cKeAltQyAGYMmyZcvcaUJCgjp27FhlHbL22vda++XLl1d6vQGgKtApqwo1a9ZMU6dO1amnnuomnRUrVridqp5//nl3GEWnN25ZnbKc3ru///57qfdzniuvZ28kcXp0Oj2kA+nhjcjgDLfb/OTD1bR/d639728VzuvcCaLnHRdq05zFmvfUe+7dIX55/E01Prqr+2UDkYkYgL+s5IIL20oxUf7PXzNWGlqJi1UQeawcAwAAACgb9aB30TZiG/sf/rKSBwY1l1LjA1tmBNdkmmDlGAAAAEDZnNErnJuWWx3FgnrYu2gbAjEAK3lg+/btysjIcP/dqlUrRUdHV2mHLIczGMr+HcKASOWF8wBKolNWFXM6UX300UfKyspyHzNnztTIkSO1Y8cOt5OWk4gOOeSQEsucdtppmjZtmtLT04uec5ZbunSpTj/99DBsBeCfDTMXqHabJmo5qLc2zV5Y/oxRUeo79lo3/qfd8JR8BQXu0/Oefl8Zvyxxv2wkt2wUuhVH0BADQEmd60p39/Cv4IqLlh45QmqcGIIVAwAAAABUCdpGbGP/A6VvQDT2KCm5hn/zX9dZ6kvoAwAAAJ7nXBN3yy23lLg2DvAC2oZADMCKDRs2FP27RYsWVd4ha///Z9//HwCqAzplhcn8+fPl8/nUvn17JSUllXjN6bTVpEkTnXnmmW6HrrffflsXXHCBevfu7T4X6VauXKnLL7/cncJbfPkFWvPdr4X//t8XhbJ0vep0NerdSXMenaxti9cUL19Q4H7JYBjeyEUMwF+WcsGpzaXHektNS6b7EtokS88dIx3ZIJRrhnCydAwAAACgNOpB76JtxDb2P/xlKQ90qiON7ysdklL+PPXjpdE9pEvah3LNEE6WjgEAAACUlp2dralTp7pTi6iHvYu2IRADsJIHEhIS1K1bN3eUn6ZNm/q9XE5OTqU6ZDmcETad/69r164lRs0CIpEXzgMoiU5ZYTJ37lx32r1791Kv1a5dW998843bMev888/Xn//8Zx1zzDFuB61Ah3isjnbt2qV58+a5U3jPqk9nadVns8t9vU77NPUcdb42/rhQ85/7sNTrDMMb+YgB+MNaLji2sfTuidLYI6WT9vse+kIfaXJ/qVu9cK0dwsHaMQAAAICSqAe9jbYR29j/8Ie1PNA6WZrQT3rlWOnsliVfe7CX9NFJ0umB3VAXEc7aMQAAAADsi3rY22gbAjEAC3mgefPmuuOOO3TPPfdo4MCBfi8XFxenAQMGBNwhay/n/3OWueyyyyq13kB14YXzAEqK3e9vVINOWY62bdu6nbAQWRaNPll5meul6GjFJCar+RVPKqnNYSXm2bNhhVY8eal2Lpuj+Eat1WXsL6XexxlFbfFdJ2rnsp/V4/WtiiQrP/qhwtedOzu80vrCCueZO+5d9xGJiAFi4EB2r12sFWMvUV5WhmKS6qjVDROU2KJruFcLIRATJfVtVPj4+gPJuR+O09W6Z/1wrxkAAAAAIJhoGwmsHcSftrJIYnn/r3rhem2b/YFyNq5U5yfmKKlNj1LzZM39TovvG6SEtI5Fz3V6+AdFxycq46uXtfGjfxY9n5ORruSux6rt7e+EbBtQtTrXle6sK72/srht7OS0cK8VAAAAACCUvH7djOW2IX8RA96NAa6dhD8GDx7sjrR1yCGHBNQhCwCqMzplVdNOWYhMbW59U7G16rr/zvzhXa3456Xq8s/C4Wj3ikmqrbSLHlD+zm1a8+qdZb7Pxg+eUHzjtm5RichCDOBAVj1zpVJPGanUEy9V5vdvuzHS+fHy744CAAAAAEAk86eThmPuFa0UFRvvdsxwNB56u+r1O0952zdr0d0nFs1XsGen9qxfpu4TNyo2mSGHvdAO4k9bGSJDSp9z1HjIKC28vW+F8zkdssq62CJ1wGXuY6/51x2iesddVCXrCgAAAAAAwoPrZkAMeBfXTsJfJ5xwQrhXAQCCyrkJHcLgm2++cXtzn3rqqeFeFQTR3oLS4RSNiooqPU9yPdXq0lfR8TXLfI9dq+Zr64z31Hjo36p0XVE1iAFUJHfrRu1Y8qPq97/Y/bvuMUOVk7Fau9ctCfeqAQAAAABQZZ00Oo6ZpriGLQ84b5tbJ7sdNZyH0yHLEVu7ftFzziP15JGq02sQHbI81A5yoLYyRA5nVKu41GZBea8dC2cqb9tG1e19RlDeDwAAAABQfTRo0EA33HCDO4UtXDcDYsDbuHYSAGAVI2Uh5Jo0aaJ7773XnXrR8idGKGvut+6/29/9SUDL+vJytfKpK9Tyupek6JgqWkNUNWIA5XEaEWqkNFFUTGH6jYqKUlyDFsrZtEoJTdrJEq/nAuBAOAYAAABss1QPOp00gmnzVy8pbfiYoL4nqgbtICjPnnVL9ftNPRUVHaP6J16mhoOvLjVPxlcvqV7/4YqKrSEvspQHgLJwDAAAANhWv359XXSR3ZGRLdfDtBeBGPA+rp08MMt5AEAhzgPeQ6cshFydOnU0aNAgeVXrmya6083f/FvpE28LqLBc+8a9qnv0ECU276w9G1ZU4VqiKhEDwIF5PRcAB8IxAAAAYBv1YNlWjB0hn3yq2b630kY8pBp1St4tOXvBdOVlZ6rOEaeFbR0BHJyktj3VbXy6YmrWUU5GupbcN1ixtVNVr++5RfPk796hLVPfUKdHZsiryAOwjmMAAADAtu3bt2vWrFnq3bu3ateuLWuohwF4GddOHhh5AADnAe+JDvcKwJ7MzEy99dZb7tTL6p9widvjP2/7Zr+XyZ7/H236eJzmXtFKC2/vq/yd291/527bVKXriqpBDGB/canNlZu5Tr78PPdvn8/n3unFueOLNVZyAVAejgEAAADbvFIP/jHqaP1ycWqZj5xNqwN6r44P/lddnvxNXf7xs9tBY8U/Lylz5Jz6x48ouosqqjfaQVCWmKTabocsR1xqM6Uce4Gyf59aYp7M799SYouuSmzRRV7llTwAVBbHAAAAgG1r167VHXfc4U4tslwP014EYsAOrp0sn+U8AKAQ5wHv4ddrhNyGDRv06KOP6tBDD1VKSoq8Ii97qwr27FRc/abu31tnvKfY5PqKSa7n93t0HFP847PT03/BTT106L+82+Pfa4gBHEiNug3duwFv/u5VpZ54qbZOn6K4+s1MDr/t1VwA+ItjAAAAwDav1IOdHvkhaO+190f3qNgaanT6jZr3lw4lXs/fla3MaW+q8+Ozg/Z/omrRDoKy5G5Zp9i6jRQVHa38nVnaNvsjpZ70pxLzbP7qJaUOKPmc13glDwCVxTEAAAAAyyzXw7QXgRjwLq6d9J/lPACgEOcB76FTFhAk+Tu3adkjw1SQs0tRUdGKrd1A7f7vI0VFRWnFuD+rbu8zVPfIM9zC07moxJe7x13mt8ubqX7/4UobMSbcm4CDRAzAHy3/8rxWPHmp1r/9oGISa6vV9S+He5UAAAAAAAir/N075MvLVWytuu7fW6ZOUlKbw0rMkzltshJbd1dCs05hWksEsx2EtjJvWvnMldr248fKzVyvxfecopjEZB3y/JIS+zvzhyna9Omz7oh3zh2RU/oMU/0TLyt6j93pC7Vz2S9qd9cnYd0WAAAAAABQNbhuBsSAN3HtJADAMjplAUES37ClOj82q8zXWl33YtG/o+OT1G18+oHfr1Er9Xh9a1DXEVWLGIA/Epp1DOqdxAEAAAAAiMROGo69P8QmtjxESx8aKhXkyyef4hu1UasbJ5Z4n4wvX1LqyVeEaSsQ7HaQyrSVofprefXzZT6/7/5ueOq17qOimDlsclaVrB8AAAAAAAg/rpsBMeBNXDsJALCMTlkAAAAAAAAAgJB20tj/h9guY+dU+D6dHpke1PUCAAAAAABAeMTHx6tjx47uFAAAAAAiHZ2yEHJJSUk68sgj3SkAwCZyAazjGAAAALCNehAAbCMPwDqOAQAAANtat26tV155RVZRDwOAbeQBAJwHvIdOWQi5Fi1aaNy4ceFeDQBAGJELYB3HAAAAgG3UgwBgG3kA1nEMAAAAwDLqYQCwjTwAgPOA90SHewVgT35+vrKzs90pAMAmcgGs4xgAAACwjXoQAGwjD8A6jgEAAADbFi5cqD59+rhTi6iHAcA28gAAzgPeQ6cshNzixYt1wgknuFMAgE3kAljHMQAAAGAb9SAA2EYegHUcAwAAALb5fD7l5ua6U4uohwHANvIAAM4D3hMb7hUAqrOEGGnqYEXcOgdLbGK8Llr6qiKJs87BYn3/O4gBYgAAAAAAYJf178XW20UcxIDtGLC+/wEAAAAAsC7S2ga4boq2IWKAGKB9MLhiYmI0dOjQoL3fo89PVtaOHUquWVO3Xnleqb+Dtc4AEGp0ygIqEBUlJRo+SqKiolQjKUFWWd//DmKAGAAAAAAA2GX9e7H1dhEHMWA7BqzvfwAAAAAArLPeNkDbkO397yAGiAHrnGMgNjZ4QeCMkVngK5w677v/3wAQqaLDvQIAAAAAAAAAAAAAAAAAAAAAAAAAEEnoVgoAAAAAAAAAAAAAAAAAAKpcq1atNGnSJKWlpYV7VQAAAADgoNEpCyHXrl07ff7550pOTg73qgAAwoRcAOs4BgAAAGyjHgQA28gDsI5jAAAAwLaEhAS1bdtWVlEPA4Bt5AEAnAe8JzrcKwB7YmNjlZKS4k4BADaRC2AdxwAAAIBt1IMAYBt5ANZxDAAAANi2bt06PfDAA+7UIuphALCNPACA84D30CkLIZeenq5bbrnFnQIAbCIXwDqOAQAAANuoBwHANvIArOMYAAAAsG3btm364IMP3KlF1MMAYBt5AADnAe+hUxZCLjs7W1OnTnWnAACbyAWwjmMAAADANupBALCNPADrOAYAAABgGfUwANhGHgDAecB76JQFAAAAAAAAAAAAAAAAAAAAAAAAAAGgUxYAAAAAAAAAAAAAAAAAAAAAAAAABIBOWQAAAAAAAAAAAAAAAAAAoMrVq1dPl1xyiTsFAAAAgEhHpyyEXExMjI488kh3CgCwiVwA6zgGAAAAbKMeBADbyAOwjmMAAADAtujoaNWoUcOdWkQ9DAC2kQcAcB7wHpvfbBBW+fn5mjlzpjsFANhELoB1HAMAAAC2UQ8CgG3kAVjHMQAAAGBbRkaGXnzxRXdqEfUwANhGHgDAecB76JQFAAAAAAAAAAAAAAAAAAAAAAAAAAGgUxYAAAAAAAAAAAAAAAAAAAAAAAAABIBOWQAAAAAAAAAAAAAAAAAAAAAAAAAQADplIeSSk5M1cOBAdwoAsIlcAOs4BgAAAGyjHgQA28gDsI5jAAAAwDbr9aD17QcA68gDADgPeA+dshByaWlpuu+++9wpAMAmcgGs8/ox8N133ykqKkqPPfZYhfONGTNGw4YNU5s2bdz5W7VqFbJ1BABU3fnfeVx77bVlzrNx40bFxcW58/Tv37/o+VmzZun6669Xnz59VKtWLff1CRMmhHDtURVxsPfh7NOePXvqiSeeUF5eXon5re57r9eDAICKkQdgndePAX/axhYuXKiLLrpInTt3Vp06dZSUlKROnTrp5ptv1rp160K6vgCA8LeNPf744+7fTZo0UXx8vDs9/vjj9e6774ZwCxCOtjGr+97r9eCBWN9+ALCOPACA84D30CkLIbdnzx6tXr3anQIAbCIXwDqOgUJ33HGHvvnmG7Vt21YpKSnhXh0AQJAkJCTo9ddfLzPPvfLKK/L5fIqNjS3x/CeffKKnn35aW7duVffu3UO4tqgqF1xwgbu/J06cqNGjRys3N9e9wPTqq68uMZ/VfU89CAC2kQdgHceAlJ6e7na+Ovvss90bF40dO1YnnXSSXnjhBfXq1cu9aB8AYKdtzLlpjXPjuptuuknPPvusbrnlFu3cuVNDhgzR/fffH8K1R6jbxqzue+v1oPXtBwDryAMAOA94D52yEHLLly/X0KFD3SkAwCZyAazjGCi0dOlSbd68WV9++aWaNm0a7tUBAASJc1FhZmam3n///VKvvfzyyxo8eLB719d9/eUvf9H27ds1f/589wIERD7n7r8XX3yxhg8frltvvVUzZsxQs2bN9OKLL2rTpk2yvu+pBwHANvIArOMYkE488UT3ZkUPPvige3H2yJEjNW7cOPc7k9NZy8LosQDgVZVpG5s8ebJ77h81apQuv/xy/fWvf9X333+vbt266ZFHHlF+fn4ItwChbBuzuu+t14PWtx8ArCMPAOA84D0lb70CoASfT9odYe0bCTFSVFRw3su5Q1PersjqhRubGO8O/x4M1ve/gxggBgCgKrVp00bVXaTlAmoBagFigBioDvWgc8GB08HGucjk3HPPLXHXV+f5Bx54QF9//XWJZRo1ahSGNUUo1axZU0cddZTefvttt2N2gwYN3OfZ99Wb9fOg9TzoIAZsx4D1/Q8A4dCyZUt36lzMXx1YzwXWa4FIjAHaxqgHI7VtrCzOaFppaWmaO3euO8pSTExMFa85wtE2Vhb2PaqTSMsF1ALUAsQAMVAd6kF4h3MOiLRO8k7tGMx2AQD+oVMWUAGnoOz3iSLK1MFSYpCObOcLxWttL1YkuWjpq6qRlBCU97K+/x3EADEAANZFWi6gFqAWIAaIgepSDzp3db355pu1Zs0a9wICx/jx49WwYUOddtpp4V49hIlzwYmjXr164V4V+Mn6edB6HnQQA7ZjwPr+B4BQ2L17t7Kzs93p77//rttuu8193hlFpTqwngus1wKRGAO0jVEPRnrb2JYtW9yLPjMyMvTWW2/ps88+0/HHH6+EhOAd16iebWPse1RXkZYLqAWoBYgBYqC61IPwBqc+mzJliiKJM/qS08kfQGhFh/j/AwAAAAAAgMddfPHFbmPvv//9b/fvXbt26Y033tDw4cNpBDZi586d7kUkmzZtcu/qe80112jOnDnq3bu3OnToEO7VAwAAAKqFF1980R0po3nz5jrllFO0detWvfrqq+rXr1+4Vw0AEIa2MafNxOm41aVLF91///3uBZXOcvB+2xj7HgAAAAAiF1fBAAAAAAAAIKjq16+vM844QxMmTNAdd9yhd955R9u2bXPvEgwbRo8e7T72NWTIED399NNhWycAAACgujnrrLPUqVMnd7Qs50LtDz74wL2AGwBgs23Mmc8ZPdEZYcsZLcnpzJWVleV24IW328bY9wAAAAAQueiUhZBzfliYNWtWuFcDABBG5AJYxzEAALDgsssu06mnnqpp06Zp/Pjx7l1gnTu9woaRI0dq2LBhys3Nde8G/PDDDys9PV0JCQnhXrVqgXoQAGwjD8A6joFizZo1cx97O2g5o2IcccQR7ugat99+e7hXDwAQ4raxY489tsTyF1xwgfr06aPff/9dKSkpIVhrhKttzNq+t14PWt9+ALCOPACA84D3RId7BQAAAAAAAOA9p5xyitLS0nTvvffq22+/ZZQsY9q3b68BAwZo0KBBGjVqlD788EPNnj1bV111VbhXDQAAAKi2unXrpsMOO0zPPPNMuFcFAFAN2sYuueQSrV+/3h1FCbbaxtj3AAAAABA56JSFkFu5cqXb2ORMAQA2kQtgHccAAMCCmJgYjRgxQl999ZV7B1jn7q6w65hjjtHw4cM1efJkTZ8+XdZRDwKAbeQBWMcxULFdu3Zpy5Yt4V4NAEA1aBtzcoKDvGCvbczr+956PWh9+wHAOvIAAM4D3hMb7hWAPU7Dwbx584oaEAAA9pALYB3HAADACufOr3FxcWrTpo1q164d7tVBmN1111167bXXdPfdd7sXJFlGPQgAtpEHYB3HgNyRLxo3blzqeWckFeez6d+/f1jWCwAQ+raxHTt2yOfzqVatWiWez8/P19NPP+3++6ijjgrJ+iK0bWOW9731etD69gOAdeQBAJwHvIdOWQAAAACqxNdff63du3eXej41NdX9IfKVV14puuPHpk2blJOTowceeMD9u2XLlu4dAwEAka1Fixa65557Djifkw+cvOCYP3++O/3www+Vnp7u/tvJCU5uQGRr166dzj//fPfik6lTp6pfv37sewAAAJhsG/v888+1bt06nXDCCW6968z3008/6Y033lBycrIef/zxsKwzACD0bWOLFy/Wcccdp3POOUcdO3ZUvXr1tGbNGk2aNEkLFy7UJZdc4rahwHttY07OZ98DAAAAQOSjUxYQZFlzv9Oi/zu+xHPRCTUV37SD6vcfroanXaeoGA49LyMGQAwAQKHPPvvMfezP+WHJ6ZT10ksv6T//+U+puwQ6nB+hIrVTFnkAxACIgcAtX768KAfs9c4777gPR9++femY4xF33nmne2GJc0dgZxQA9r33cA4EMQBiAAAO3DZ23333aeLEie4NCpybFUVFRbl175VXXqlbb73VvYg/UpEHQAyAGAhMs2bN3N9DnE467777rrKyslSnTh0ddthhbpvJhRdeGO5VRBW1jb311lvse3gSeQDEAIgBAIA1ZDWgiqQce4Hq9Bos+XzKzVyvzd9NVPr4m7U7fYFaXvNCuFcPIUAMgBgAYFX//v3l8/kOON93330nLyMPgBiAtRjw9/zvyM7OrvSyqN4OtC87d+6s/Px8v+dH5LJ2DkRpxACIAQBW+VvjnnvuufIy8gCIAViLgcq2jTkjKD711FNVuGaozm1j7Ht4mbU8gNKIARADAAAr6JSFkGvSpInuvfded+plSW16qn7/i4v+bjD4as2/upMyvnxRTS/+u2rUaSBLLl33dtDea0KTcxQJiIGSiAFiwGIuAMrDMWADeaAkagFigBggBgDYqgc5B5ZmLRcSA7b3v4MYsJ0HgIpwDNhAHiiJWoAYIAaIAQDFrNeDVrafPFAStQAxQAwQA9byAIDycR7wHjplIeScobYHDRoka2ISaqpmx6O0dfrb2rN+qamCsmZaqmaNnqDfX/hIlhEDxIDlGNif1VwA7MUxYJPlPEAtUIgYIAYsxwCAkizWg9bPgeRC2zHA/i9kOQb2ZzEPAPviGLDJch6gFihEDBADlmMAQEnW60Gr2285D1ALFCIGiAHLMbAvq3kAwbF8+XK3I09CQkK4VwUHgfOA99ApCyGXmZmpr776SgMGDFBKSooscQpJR2yterKk+UmHa/UXP4Z7NaoFYgBWY2B/lnMB4NVjYPbs2X7Pm5GRoXfeeUdDhgxRamqq38sdccQRinRW8wC1QDFiAF6NAfIAiIHAeLEetHwO9Ae50HYMsP+LWY2B/VnNA4CXjwHqYf9YzQPUAsWIAXg1BgLJA5XNBV7IA15GLRAYL9aDgbC8/V7NAwdCLVCMGIDVGNiX5Txgkc/n0+LFi7Vo0SItW7ZMq1at0s6dO93na9So4XawatOmjdq2batDDz1U8fHx5b7XwoULNWbMGLVu3Vq33XYbHbMiGOcB74kO9wpY4nypHjVqlNq1a+eeCJs3b64bbrhBO3bs0J/+9CdFRUXpqaeeCvdqVrkNGzbo0UcfdadeVrBnp/K2Zyh32ybtWjFXq567RruWzVFS+95KSOsgS2q3aaysFetlDTFQjBggBqzmAqA81o8Bpy5+8cUX3amXkQeKUQsQA8QAMWAxD6B8xICNepBzYEkWcyExYHv/O4gB23kAqIj1Y8BKPUweKEYtQAwQA8SA1VyAsrH/qQetbD95oBi1ADFADBADFvOAdU7Hq88++0x//etfdffdd+vVV1/V9OnTlZ6eri1btridcjZu3Khff/1V7777rh577DFdffXVmjhxotauXVtuh6zdu3drwYIF7jKIXJwHvIeRskLkl19+cYeZW79+vWrWrKkuXbq4J80nn3xSS5cudU+wjh49eoR7VREk6yaNdh/7qnv0ELW48mlZEpuUoNzs3bKIGChEDBADKLYrT5q6QfL9729nmlsg1TDSTd7nk37dIi3aLu3Ol2rXkPo0khpw0w54FHmgELUAMUAMEAMotmWPNG2DtC1HiouR2iZLvepLUVHhXjMg+DgHFrOaC4kB2/vfQQxgf/k+aeamkm1j23Ok2nEyY1W2NDtD2pEnJcVI3etJ7euEe62AqkEeKEQtQAwQA8QAijm/DzptYxt2Ff7dJFHq26iwnQyA95AHClELEAPEADEAe2bNmqWXXnpJ27ZtK/VabGysateu7f57165d7mMvZ5CXTz75RJ9++qlOO+00DRs2THFxcSU6ZDm6deumoUOHhnCLABwInbJCwLmzyemnn+52yLrllls0evRoJScnu6898sgj7hCCzknWGSnLOVHCG1JPGamUY4bJl5+rXSvnav07DysnI11RNYqvPM+aP1VL7htUallfXo58Bfnq9W6+Il3T47ppzX9+lUXEQCFigBiAlLFb+vcS6cNVUnZe8fPOhSenfSmd1VIa3laqVUOe7Yz1/irpjWXSkqySr8VEScc1li5tL3WpG641BKoGeaAQtQAxQAwQA5CWbJcmLJa+Wivl7b0K+X9a1pKGtZKGtS6sjQCv4BxYzGouJAZs738HMYC9cvKl15dJU1ZI63aVbBsb9IU0sJl0WXupWU15ltMZ7ZUl0oxNpV9zOmZd1EY6oWk41gyoOuSBQtQCxAAxQAxAytxT+FvpB6uk7bklX0uJk85sIY1oZ6uzPmABeaAQtQAxQAwQA7A1OpYzIqozIta+OnXqpL59+6pdu3Zq1qyZ22fA4fP53D4Gy5cv148//qgffvhBubm57vMffvihfvrpJ7f/wb///e8SHbKc0beczloAqg86ZYXA9ddf7w43eO2117rDC+5r1KhRev31193hB1u3bl3U+xWRL75Je9XuMcD9d51eg1Src18tvL2vVj17ldrc+ob7fHLXfjpscnaJ5XI2r9UftxyuBqdeKy9oeEQn/fTAqyWe63n7hep2/RBNu+kZLXnjm1LLDJxyrxr06qAPTxmlrQtXK1IRA4WIAWLAuhXZ0rU/SOv3ueBkX5v3SC8tkv67Xhp3lJTqsVGj8gqke3+RPk0v/w7J36wrvCveAz25+ATeQh4oRC1ADBADxIB1MzZKt86WdpXzm9HKbOmxeYUjJozpxZ2B4R2cA4tZzYXEgO397yAG4HBGhLpppvTz5rJf31NQeDOfb9dJTx4lHZIiz3FuVPT4vOIRwvbnjCzvPJyOaVd3YhRVeAd5oBC1ADFADBAD1qXvkK75QVqzs+zXM3OkCUuk/6yXnjpaapQY6jUEUFXIA4WoBYgBYoAYgA1ZWVnuaFbLli0req5Xr14677zz1KJFizKXcQZzadCggfvo3bu3hg8frs8++0zvvfee8vPztXbtWj3//PNF89MhC6i+osO9Al63YMECTZ48Wampqe7JtizOSdfRvXv3ouf2duJyTrLx8fHuidcrkpKSdOSRR7pTS2p1Pkb1+g9X5rTJyl5Qshf0XgW5e7TsoSGq1aWvmgy7QxHPidsoyVdQUOLpXx57U5kLVqr3PZcoqUm9Eq91GXmaGh/TVb88Njmiv1CUhRgoRgwYigHjucC569t1FXTI2tfi7dKNM6XdHrvByxPzy++Qta+cAumOn8q/QMdrrBwD5XFGjR04cGDR6LFWmMwD1AIlEAPFiAFDMWA8D/yxTfprBR2y9uVceHK/kRslWoqB8lisB82eA8mFtmOA/V+CyRgwngcKfNLfZvvX3uOMmHD9DGl1yWtwIt5n6YUd8MvrkLWvlxdLrxVfs+FpVo6B8lith03mAWqBEoiBYsSAoRgwngu25xTWeOV1yNrX8mzphhnSzjx5npX9XxHr9aDV7TeZB6gFSiAGihEDhmKgDFbzgNdHyNq3Q1bNmjV1zTXXuB2oyuuQVRanPhw2bJgeeughNW1a8s7mzihbdMjyDs4D3kOnrCo2adIkFRQU6KKLLlKtWrXKnCcxMbFUp6wlS5ZoypQpaty4sY444gh5iZNgxo0bF1Ci8Yom590lRcdo7et3l/n6qmeuUkHubrW6YYK8oMFh7ZQxZ0mp5wty8zT1hqcUmxSvPv+4uuj52m2bquffLtCmnxZp3jMfyIuIgULEgJ0YsJ4L3lgurfOjQ9a+F+06F2p46c53k5f7P3+eT3rqd5lg5RgoT1pamu677z53ao21PEAtUBoxUIgYsBMD1vPAc38E1une6cz+x1Z5nqUYKI/VetDiOZBcaDsG2P+lWYsB63lgxibph03+z+90zBq/WJ4aQX5cgG1dL/whZefK86wcA+WxXA9bywPUAqURA4WIATsxYD0XTFkprdrh//xLsqQPvXXtuen9XxHr9aDl7beWB6gFSiMGChEDdmKgLJbzgFeNHz++qENWSkqK7r33XvXr16/SA7I4nby2bNlS4rmMjAzl5OQEZX0RfpwHvIdOWVXsm28KhxY9/vjjy53HGRVr/05Zxx57rNatW6cPPvhAAwYUDt/pFc6QitnZ2e7UmoQm7VSv3/nK+u1rZc2fWuK1jR8+qW0/fqS2t7+n6PjI6/na6KjOioopeUpJO/4wrfn2lzLn3zJ3uX4b967S+vdQh4sHKCo6Wv2evM59zfnCsf/dIbyCGChGDHgvBgJhIRfkFkjvrQx8ubdWSD5/bp0bAaasCHyZ3zKlhdvkeRaOgYrs2bNHq1evdqfWeDkPUAv4hxgoRgx4Lwb8ZSUPrNkhfb8h8OXerkQNFWmsxEBFrNaDXj8HkgttxwD73z9ejoFAWMkDbwVws569vlgjbfPItQXTNkgbdge2zM58/0adj3RWjoHyWK6HvZwHqAX8QwwUIwa8FwOBsJAL8n2V+63w7eXe+a3U8v4/EOv1oOXt93IeoBbwDzFQjBjwXgz4y3Ie8KIff/xR06ZNc//tjHp0xx13qFmzZpV+v4ULF7qjbu3evbto1C3H1q1bNXHixCCtNcKN84D30Cmriq1cWXg1dsuWLct8PS8vT99//32pTlnR0d7dNYsXL9YJJ5zgTi1qPOxOZweX6Omf9du3Sp94m9qMekvxjVop0rQ64xgNeOUONTqyc4nna9ROUm5W+ePQ//rE29oyb7kOv3uEjvz75WrQs71+fniSti9dKy8jBooRA96JgUBZyAU/ZUibK9GO7nRICuSOcdXZ52sqt5xz8Y3XWTgGKrJ8+XINHTrUnVrkxTxALRAYYqAYMeCdGAiElTzw5VrJV8kayusXnliJgYpYrge9eg4kF9qOAfZ/YLwYA4GykAd25BV2SgrUngLpP+tlum2ssstFEgvHQEWs18NezAPUAoEhBooRA96JgUBZyAVzt0jrdwW+3PJsafF2eZqF/X8g1utB69vvxTxALRAYYqAYMeCdGAiE9TzgJU7HqRdffLHo70suuUTNmzcPWoesbt266YEHHlBiYqL793//+1/9+uuvQVhzhBvnAe+JDfcKeN2OHYVXVe/aVXZLw+TJk90hBZOTk9W6desqXZfDDz9c69dXzS9Z55xzjt/zbty40Z1++umn+umnn/xe7uyzz1aoRcUlqtHYwE54yYf2V6/3y796KrF5Z/V6t7hn654NK7Ts0XPV7NJH3WUPVocO7eXLqUTLVhlq+KI1Wr0PON+KD6arduvGan7KEVo/fb77XM20VO1I31Thcr68fPeuDqd9+pA6XTpQG2Yu0O8vfHxQ69yhfQflRhWEbf+HOwaCuf8dxAAxUBV5oLK5IBx54GAkHHG26l42rlLL9j91iHKXzlKka/TkMkXFxgW83LMT39DDr/5VkYRjgHrQq3mAWoBagBggBqzngYORPOQu1RxwZcDL7cqXWrQNz348GNZjwKv1YKTVQuFqG6tOuTCYedBBDFALUQvZzgMHI6ZeMzV4YEallr31njG6+ounFelSbnxT8R2OCXi5HxcsVbPzj1Mk4Rjwbj1MLWC7FojEGKBtjHqQerD6iO8xSCkj/1WpZQeec6FyFvxXkcSrtYC/OAa8GwPUAtQC1msBYoAYsJ4Hgu3sy25UzVq1tW79Onc0qf3/rm7i4uLcTlLlcUbIckawchx22GE69thjg9oh669//au7DiNGjNDzzz/vPv/xxx+XGARmfx06dFBOTk6l1wOVQz3sDY0bN3ZHv6sMOmWFYOdkZmbq559/1tFHH13itXXr1unWW28tOnlGRUVV6bo4HbLWrFlTpZ3P/LG3g5ozDWS5qlr3ijhDoDaqwvcv2LNTS8ecpTq9z1DDU68NynuuXbvWfd9giIuKkb8fwMpPZ+nECbdp9ugJ7t/NTzpcq7848Ikpd/tOFeTkKSauhtK//vmgbwe+dt1a5fjyI2L/V0UMBHP/O4gBYsBfgZzPK5sLwpEHDkZK642qW8llN61fqx0Rtr1laZifV6lOWTu2b4u4/c0xQD3o1TxALUAtQAwQA9bzwMFI27ZVNSu57JrVK+XLy1UksR4DXq0HI60WCmfbWHXJhcHMgw5igFqIWsh2HjgYNXZLDSq57NYtGdoYYdtblqSdOxRfieVyd++KuP3NMeDdephawHYtEIkxQNsY9SD1YPVRJ22DUiq57KYN65QdYdvr1VrAXxwD3o0BagFqAeu1ADFADFjPA8FWkJ9fNHW2Z/+/q5v4+PJb93w+n7744ouiv88999xK9wOoqEOW47jjjtO7777rduT57bff3P4HTZo0KfcY2LNnT6XWA5VHPQw6ZVWxAQMGaMGCBXr44Yd10kknuT1QHbNnz9bw4cPdUbIcPXr0CEkHsapSs6b/lxntPXk4wykGslxaWppCzenpX5Uyp0/RruW/aveaRcqcNrnU612f+l1xDVoE9J5NmzYN6t3f5OdNE7YtSpd8Ut0OzbR1UbqSWzdW1oQNB1yuz9hrFF0jVlsXrVa3G4e6d43IWnng5crTtEnToN7poaoFOwaCuf8dxAAx4K9AzueVzQXhyAMHIzZvW9EXsEC+cPny81QverfqRtj2liV/0wpFN+sS8HLxOzdG3P7mGKAe9GoeoBagFiAGiAHreeBgJO4qbPMJVP7mdDVt1FCRxnoMeLUejLRaKJxtY9UlFwYzDzqIAWqhqmaxFoqkPHBQYuNUsGu7ohNrB7xorT1bVCPStrcMsdvXVmq5qMz0iNvfHAPerYepBWzXApEYA7SNUQ9SD1YfMfnbK/dbaUGBUnw7VCfCttertYC/OAa8GwPUAtQCVY0YIAaqewxYzwPBFh0TUzR1tmf/v6ubvZ2iyrJ8+XKtWrXK/Xf79u3VunXrKumQ5YiOjnb7ILz22mvu3//5z390/vnnl3sMMFJW6FEPe8PB9LWhU1YVGzVqlF5//XWtXr1aXbt2VadOndwT55IlSzRo0CC1atVKn3/+eYVDCQZLZYdT84fTycxff/zxhyZNmuRuv/N5+Gvs2LEKtV15Ur9Pqu796x8/3H0E06JFi5UYpCM7d+duvdb2Yr/nX/3lj+4QvNnpGcrNPnBh2/lPg9WkzyH6aczrWv3ZLJ3+xaPq88TV+mzI6Eqv86LFi1QjKUGRsP+rIgaCuf8dxAAxUBV5oLK5IBx54GA4N64Z/l/pj22B3QHjhGaxenTBL/KCN5dLj8wNbJnYKGnG83epXvxdiiQcA9SDXs0D1ALUAsQAMWA9DxyMHXnS4C8Kp4G4tk8z/Sk9XZHGegx4tR6MtFoo3G1j1SEXBjMPOogBaiFqIdt54GA9OleavDywZRokSDM+flmx0Yp4C7dJF/0n8OWeu3Kg+t4dWfUgx4B362FqAdu1QCTGAG1j1IPUg9XLn6dJv2wJ7LfSPo2j9eTcWYo0Xq0F/MUx4N0YoBagFrBeCxADxID1PBBsDz79mrZn71CTxk2Unp5e6u/qJi8vT1OmTCnztUWLFhX9u0+fPlXWIWvf/2Nvp6zFixeX+57OesXG0j0k1KiH4YGfNKq3Zs2aaerUqTr11FOVkJCgFStWqF69enr++ef18ccfF52UQ9Epq7po166d2xHNmcJbnOF2m598uJr27661//2twnmdO0H0vONCbZqzWPOees+9O8Qvj7+pxkd3db9sIDIRA/CXhVzg3PDtnFaBLzesEstUV4ObSUmFNzTx24CmUr3yR372DAvHQEWcL5OzZs0KqHEJkYFaAMQA/GElD9SMLayHAu2gfmZgN4GPSFZioCLW60EvIxfaxv6Hv6zkgcq0jQ1pKU90yHJ0rCN1SwlsmbQk6ejIGzQ1YFaOgfJQD3sXtQCIAfjLSi6w/lup9f1fEev1oPXt9zJqARAD8Ad5wBuckbL2atu2bZV2yHI4fQ9SUlKK/m9nRFpELs4D3uORnzWqt86dO+ujjz5SVlaW+5g5c6ZGjhzpDj3ndNJyhhU85JBDZIXTA9dJDPTE9Z4NMxeodpsmajmotzbNXlj+jFFR6jv2Wjf2p93wlDv8vGPe0+8r45cl7peN5JaNQrfiCBpiAP6ykgtObyEd2ziwHxmOSJVn1Koh3X2Y5O/975omSTd1lQlWjgHYQy0AYgAo6erOUptk/+e/vbuUGrwbmqMaox70LnKhbex/+MtKHmidLF3T2f/5nQ5Mwz32G/RdPaTkGv7NGxct3d9TiglsMImIZOUYgD3UAiAGgJJOTpNOaur//M7NivoS+iZYrwetb7+XUQuAGIA/yAPesGrVKncaFRWlli1bVmmHrL3atGnjTnfu3KlNmzZVet0RfpwHvIdOWWE0f/58t6dq+/btlZSUVOr1t99+2338/vvvJf7+8ccfFcmcISZvueWWajnUJA6OL79Aa777tfDf//uiUJauV52uRr07ac6jk7Vt8Zri5QsK3C8Z0TEx7jC8iDzEAPxlJRc4F1A82Es6scmB5z2/tfTXQwtH2PISZ+Qr52KSGgeoOlvXkp47Rqpv5CJkK8dAeVauXKnLL7/cncJbqAVADMAflvKAcwHuM0dLneocuG68o5uNUbKsxUB5rNeDXkYutI39D39ZygOXtvOvY1av+tI/j5ISAhx1PRI6pj17jJR6gJHha8VKTx4ldasnEywdA2WhHvYuagEQA/CXlVwQHSXd11Ma5Mdo8me3lG7v5r3fSi3v/4pYrwetb7+XUQuAGIA/yAPesGvXLndas2bNA3amCkaHLEedOsU/Ou9dHpGJ84D30CkrjObOnetOu3fvXubrw4YNcx9vvfVWib+feuopRbLs7GxNnTrVncJ7Vn06S6s+m13u63Xap6nnqPO18ceFmv/ch6VeZxjeyEcMwB+WcoFzIclDh0vPHi2d0KTknW7jo6XTm0sT+km3HOLdu+AObCa9e4J0eXup3n7fHw9Jke45THrluMKRsqywdAyU1zAxb968ogYKeAu1AIgBHIi1POCMfPVyv8LO+j3rl359eFvp7eOlIa1khrUYKIv1etDryIW2sf/hD0t5wLmo9rL20uT+haPE19zvxp9HN5Ae7y09c4z/I0pFGqeD/tsnSKMOLXsU1es6S++eKB2eKjMsHQNloR72NmoBEAPwh6Vc4Ny48b7DpBf6FI6atf/voU6HrfF9C29YFGvkKjZL+7881utB69vvddQCIAZwIOQBb7j33nv15JNP6v777w9oOadjfmU6ZDmcPgRjx47VM888o6ZNAxiSFtUO5wHvYcyzatwpyxlFC5Fj1QvXa9vsD5SzcaU6PzFHSW16lJona+53WnzfICWkdSx6rtPDPyg6PlEZX72sjR/9s+j5nIx0JXc9Vm1vf0eRZOVHP1T4unNnh1daX1jhPHPHves+IsHutYu1YuwlysvKUExSHbW6YYISW3QtMU/2Hz9o1XN/cf/ty8tVrS591fyKJxVdI77Sr1Vn1mIA8PfikyMaFD6yc6XMPYXP1Y+XEo1UY42TpKs7SyM7Skd/JDlVjvObi9MhDbDGn/ohklmuBfhOUMhyDCwafbLyMtdL0dGKSUx26/ekNoeVmGfPhhVa8eSl2rlsjuIbtVaXsb+U2R6w+K4TtXPZz+rx+tYQbgGq8uKTk9MKH1v3SCd9XlwP3eCdFACQC//Hci6sTO3rT26MJOx/oGxta0u3dZNu7Cpt3iPlFkgpcVJt/28iG9Fq1ZDObV3YMS1jjzT4i+J68JL24V47ILRoG/NuLcD3gUKWY8BB+xjK4vwu6tysyHnsyJP6f1JcC93fM9xrByDUqAe9XQv4gxjwbgxQC8KSfUetCsTJJ5+s/Px8zZkzJ6AOWY6UlJRK/Z8Aqp6Ry4Ajs1MWIktKn3PUeMgoLby9b4XzOQ3MZRWSqQMucx97zb/uENU77qIqWVcEz6pnrlTqKSOVeuKlyvz+ba3456Xq/HjJO10kte6uzo/NVlRsDXeI4WUPDdWmT55RozNvqvRr8NYPUI65V7RSVGy8+6OTo/HQ21Wv33nK275Zi+4+sWi+gj07tWf9MnWfuFGxyfVCth0I7gUYzsMq5w53zg8se39oASzyp35AZOI7Adrc+qZia9V1/535w7vu8d3ln7+WmCcmqbbSLnpA+Tu3ac2rd5b5Phs/eELxjdu6PzTAe+rGUw/Bu8iFqEzt609uROSibQz7i4+xNVp6WRckN0igHoRttI15F98H4KB9DAfijJxKLQTYRj0IYsC7qAUB/wwaNEinnHKKoqONDBULGMDRHEbffPON26P71FNPDfeqIAicu3TFpTYLynvtWDhTeds2qm7vM4LyfqgauVs3aseSH1W//8Xu33WPGaqcjNXavW5Jifmi45PcjlUOX16OCnJ2Ff7yehCvIbJ+gOo4ZpriGrY84Lxtbp3s/gjlPJyLThyxtesXPec8Uk8eqTq9BnHRCQB4vH5AZOI7Afb+yOBwfkgoq3536jhnFNzo+JplvseuVfO1dcZ7ajz0b1W6rgBQFciFqEzte6DciMhG2xgAYF+0jXkb3wfgoH0MAFAR6kEQA95GLQj4jw5ZgLcwUhZCrkGDBrrhhhvcqUV71i3V7zf1VFR0jOqfeJkaDr661DwZX72kev2HF3XIQfXkfCGskdJEUTGFp9KoqCjFNWihnE2rlNCkXalhd5c+eKb2rF+qOr1OVYNBVx/0a4icH6CCafNXLylt+Jigvmc4WM8FgPVjoEmTJrr33nvdqTWB1A/wLr4TeNvyJ0Yoa+637r/b3/1JQMv68nK18qkr1PK6l6ToGHmV5TyAQsQA9SC50AZqXzhoGyub9TwAWD8GLNfD1Adw8H3A+2gfOzDLuQDsf4f1etDy9lMPghjwPmrBA7OcBwAU4jzgPXTKQsjVr19fF110kSxKattT3canK6ZmHeVkpGvJfYMVWztV9fqeWzRP/u4d2jL1DXV6ZEZY1xXBFd+olTsUb/6ubC1/4mJt/eEd1Tv2/IN6Dd6zYuwI+eRTzfa9lTbiIdWoU7Lgyl4wXXnZmapzxGmKdJZzAeCwfgzUqVPHHYobsIjvBN7X+qaJ7nTzN/9W+sTbAvqxYe0b96ru0UOU2Lyze4MGryIPgBiwXQ+SCwGUh7YxwA7rxwD1MCzj+4ANtI8dGLnANvY/9aD17QfgbdSCB0YeAMB5wHsY+w4ht337dn311Vfu1JqYpNpuA7MjLrWZUo69QNm/Ty0xT+b3bymxRVcltugSprWEv+JSmys3c518+Xnu3z6fz71rh3P3jvLEJNZSvb7na8t/XwvaawifP0YdrV8uTi3zkbNpdUDv1fHB/6rLk7+pyz9+dn98WvHPS8q8K2D940cU3S0mklnOBYDD+jGQmZmpt956y51aU5n6Ad7CdwI76p9wiXsXuLztm/1eJnv+f7Tp43Gae0UrLby9r/J3bnf/nbttk7zEch5AIWLAdj1ILrSD2tf7aBurPMt5AHBYPwYs18PUB+D7gC20j5XPci4A+99hvR60vP3UgyAG7KAWLJ/lPACgEOcB76FTFkJu7dq1uuOOO9ypNblb1slXUOD+O39nlrbN/khJbQ4rMc/mr15S6oA/hWkNEYgadRu6d3Pb/N2r7t9bp09RXP1mpYZS3r1uiTu0rqMgN0dbZ7yrxJbdDuo1VA+dHvlBPV7NKPMR16B5QO+1t3EhKraGGp1+o7Lnl/wByhktLXPam0odcLm8wHIuABzWj4ENGzbo0UcfdafW+Fs/wLv4TuBdedlblbO5+Ly+dcZ7ik2ur5jken6/R8cxU3Xoiyt16L9WqOOYae6FSs6/9x8lItJZzgMoRAzYrgfJhXZQ+3ofbWOVZzkPAA7rx4Dlepj6AHwf8Dbax/xnOReA/e+wXg9a3n7qQRAD3kUt6D/LeQBAIc4D3hP5txMEqomVz1ypbT9+rNzM9Vp8zymKSUzWIc8v0Ypxf1bd3meo7pFnKPOHKdr06bPunTyduz2k9Bmm+ideVvQeu9MXaueyX9TuLv+HbEV4tfzL81rx5KVa//aDikmsrVbXv+w+v+9+z/rtGy396ElFRce4+z2524lqct5d7nyVfQ3ekr97h9sBL7ZWXffvLVMnlfoBKnPaZCW27q6EZp3CtJYAgKquHxD5+E5gW/7ObVr2yDAV5OxSVFS0Yms3ULv/+0hRUVElYqBgz07N+0sH+XL3uMv8dnkz1e8/XGkjxoR7EwDgoJELUZm2M3IjaBsDAFtoG/Muvg+A9jEAgD+oB0EMeBO1IADAMjplAUHS8urny3y+1XUvFv274anXuo/yJDTrqMMmZ1XJ+qFqOPvMuSNsRfu9wSkj3UdZKvsaIv8HKMfeL5yJLQ/R0oeGSgX58smn+EZt1OrGiSXeJ+PLl5R68hVh2goAQCjqB0Q+vhPYFt+wpTo/NuuAMRAdn6Ru49MP/H6NWqnH61uDuo4AUNXIhahM25m/uRGRibYxAMD+aBvzLr4PgPYxAIA/qAdBDHgTtSAAwDI6ZQEAEIYfoPb/wtll7JwK36fTI9ODul4AAAAAAABAVaNtDAAAAAAAAAAAAF4WHe4VgD3x8fHq2LGjOwUA2EQugHXWj4GkpCQdeeSR7hQAYA95AMQA9SAAWEcegHXWjwHqYQAAucA29j/1oPXtBwDryAMAOA94DyNlIeRat26tV155JdyrAQAII3IBrLN+DLRo0ULjxo0L92oAAMKEPABigHoQAKwjD8A668cA9TAAgFxgG/ufetD69gOAdeQBAJwHvIeRsgAAAACEVH5+vrKzs90pAMAe8gCIAQAAAFhGPQwAIBfYxv4HAAAAAG+hUxZCbuHCherTp487BQDYRC6AddaPgcWLF+uEE05wpwAAe8gDIAaoBwHAOvIArLN+DFAPAwDIBbax/6kHrW8/AFhHHgDAecB76JSFkPP5fMrNzXWnAACbyAWwjmMAAADANupBALCNPADrOAYAAABss14PWt9+ALCOPACA84D3xIZ7BYDqLCFGmjpYEbfOwRKbGK+Llr6qSOKsc7BY3/8OYoAYAADrIi0XUAtQCxADxAD1IIBgsn4etJ4HHcSA7Riwvv8BAOQC67VAJMYAbWPUg9SDABBckZYLqAWoBYgBYoB6EMEUExOjoUOHBu39Hn1+srJ27FByzZq69crzSv0drHUGEHp0ygIqEBUlJRo+SqKiolQjKUFWWd//DmKAGAAA66znAmoB2/vfQQwQAwBss34etJ4HHcSA7Riwvv8BAOQC67WAgxiwHQPW9z8AgFxALWB7/zuIAWIAtjnngNjY4B0EzphIBb7CqfO++/8NIHJFh3sFAAAAAAAAAAAAAAAAAAAAAAAAACCS0K0SIdeqVStNmjRJaWlp4V4VAECYkAtgnfVjoF27dvr888+VnJwc7lUBAIQBeQDEAPUgAFhHHoB11o8B6mEAALnANvY/9aD17QcA68gDADgPeA+dshByCQkJatu2bbhXAwAQRuQCWGf9GHCG3E5JSQn3agAAwoQ8AGKAehAArCMPwDrrxwD1MACAXGAb+5960Pr2A4B15AEAnAe8JzrcKwB71q1bpwceeMCdAgBsIhfAOuvHQHp6um655RZ3CgCwhzwAYoB6EACsIw/AOuvHAPUwAIBcYBv7n3rQ+vYDgHXkAQCcB7yHTlkIuW3btumDDz5wpwAAm8gFsM76MZCdna2pU6e6UwCAPeQBEAPUgwBgHXkA1lk/BqiHAQDkAtvY/9SD1rcfAKwjDwDgPOA9dMoCAAAAAAAAAAAAAAAAAAAAAAAAgADQKQsAAAAAAAAAAAAAAAAAAAAAAAAAAkCnLAAAAAAAAAAAAAAAAAAAAAAAAAAIAJ2yEHLR0dE67LDD3CkAwCZyAayzfgzExMToyCOPdKcAAHvIAyAGqAcBwDryAKyzfgxQDwMAyAW2sf+pB61vPwBYRx4AwHnAe9iTCLmCggLNmTPHnQIAbCIXwDrrx0B+fr5mzpzpTgEA9pAHQAxQDwKAdeQBWGf9GKAeBgCQC2xj/1MPWt9+ALCOPACA84D30CkLAAAAAAAAAAAAAAAAAAAAAAAAAAJApywAAAAAAAAAAAAAAAAAAAAAAAAACACdsgAAAAAAAAAAAAAAAAAAAAAAAAAgAHTKQsglJydr4MCB7hQAYBO5ANZZPwasbz8AWEceADHAZwAA1pEHYJ31Y8D69gMAyAXWsf/5DKxvPwBYRx4AwHnAe2LDvQKwJy0tTffdd1+4VwMAEEbkAlhn/Riwvv0AYB15AMQAnwEAWEcegHXWjwHr2w8AIBdYx/7nM7C+/QBgHXkAAOcB72GkLITcnj17tHr1ancKALCJXADrrB8D1rcfAKwjD4AY4DMAAOvIA7DO+jFgffsBAOQC69j/fAbWtx8ArCMPAOA84D10ykLILV++XEOHDnWnAACbyAWwzvoxYH37AcA68gCIAT4DALCOPADrrB8D1rcfAEAusI79z2dgffsBwDryAADOA94TG+4VAKozn0/ana+IkhAjRUUF5718Pp/ydkVWL9zYxHhFBekDsL7/HcQAMQAA1kVaLqAWoBYgBogB6kEAwWT9PGg9DzqIAdsxYH3/AwDIBdZrgUiMAdrGqAepBwEguCItF1ALUAsQA8QA9SAQXM55MD8/ck4EMTExQW0XAfxFpyygAk5B2e8TRZSpg6XEIB3ZzheK19perEhy0dJXVSMpISjvZX3/O4gBYgAArIu0XEAtQC1ADBAD1IMAgsn6edB6HnQQA7ZjwPr+BwCQC6zXApEYA7SNUQ9SDwJAcEVaLqAWoBYgBogB6kEguJwOWVOmTFGkcEafio3lJIDQiw7D/wkAAAAAAAAAAAAAAAAAAAAAAAAAEYtOWQAAAAAAAAAAAAAAAAAAAAAAAAAQAMZnQ8h16tRJs2bNCvdqAADCiFwA66wfA9a3HwCsIw+AGOAzAADryAOwzvoxYH37AQDkAuvY/3wG1rcfAKwjDwDgPOA9jJQFAAAAAAAAAAAAAAAAAAAAAAAAAAGgUxZCbuXKlbr88svdKQDAJnIBrLN+DFjffgCwjjwAYoDPAACsIw/AOuvHgPXtBwCQC6xj//MZWN9+ALCOPACA84D30CkLIbdr1y7NmzfPnQIAbCIXwDrrx4D17QcA68gDIAb4DADAOvIArLN+DFjffgAAucA69j+fgfXtBwDryAMAOA94D52yAAAAAAAAAAAAAAAAAAAAAAAAACAAsYHMDODAsuZ+p0X/d3yJ56ITaiq+aQfV7z9cDU+7TlExHHpeRgyAGAAA28gDIAZADACwjHMgiAEQAwBgG3kAxACIAQCwjTwAYgDEAADAGrIaUEVSjr1AdXoNlnw+5Wau1+bvJip9/M3anb5ALa95IdyrhxAgBkAMAIBt5AEQAyAGAFjGORDEAIgBALCNPABiAMQAANhGHgAxAGIAAGAFnbIQck2aNNG9997rTr0sqU1P1e9/cdHfDQZfrflXd1LGly+q6cV/V406DWTJpeveDtp7TWhyjiIBMVASMUAMWMwFQHmsHwNWtp88UBK1ADFADBAD1vIAykcM2PgMOAeWZi0XEgO297+DGLCdB4CKWD8GrGw/eaAkagFigBggBizmApSN/c9nYGX7yQMlUQsQA8QAMWAtDwAoH+cB76FTFkKuTp06GjRokKyJSaipmh2P0tbpb2vP+qWmCsqaaamaNXqCfn/hI1lGDBADlmNgf1ZzAbCX9WPA6vZbzgPUAoWIAWLAcgzsy2oeQDFiwOZnYP0cSC60HQPs/0KWY2B/FvMAsC/rx4DV7becB6gFChEDxIDlGNif1VyAQux/PgOr2285D1ALFCIGiAHLMbAvq3kACJaCggJFR0crknEe8J7IjkhEpMzMTL311lvu1BqnkHTE1qonS5qfdLhWf/FjuFejWiAGYDUG9mc5FwAO68eA5e23mgeoBYoRA7AaA/uynAdQiBiw+xlYPgeSC23HAPu/mNUY2J/VPADsZf0YsLz9VvMAtUAxYgBWY2B/lnMB2P8O65+B5e23mgeoBYoRA7AaA/uynAdgV15enpYvX66vv/5ab7/9tiZNmuQeB1988YWWLFminJwcv97n888/1/3336/du3crknEe8B5GykLIbdiwQY8++qgOPfRQpaSkyKsK9uxU3vYM+Xw+5WWu16bPntOuZXOU1L63EtI6yJLabRrrjwnrZQ0xUIwYIAas5gKgPNaPASvbTx4oRi1ADBADxIDFPIDyEQM2PgPOgSVZzIXEgO397yAGbOcBoCLWjwEr208eKEYtQAwQA8SA1VyAsrH/+QysbD95oBi1ADFADBADFvMA4IxoNWfOHH355ZeaN2+e2zGrPDExMerUqZNOOukkHX744YqNjS2zQ9bLL7/s/vvhhx/WnXfeWeZ8kYDzgPdEZiRGqIyMDD3yyCN65513lJ6ergYNGmjIkCF68MEHdf3112v8+PEaN26crr322nCvKoJg3aTR7mNfdY8eohZXPi1LYpMSlJsd2T2SK4sYKEQMEAPAvnw+ybf332FeF6CqkQcKUQsQA8QAMYCS8gqoh2AD58BiVnMhMWB7/zuIAaBsufvUg4CXkQcKUQsQA8QAMYCSCvitEDCDPFCIWoAYIAaIAcAapyPm9OnT3dGwnL4T/sjPz9f8+fPdh9NJaejQoTrxxBMVFRVVqkOWw+nA5XTkAqoLOmWFyC+//KJBgwZp/fr1qlmzprp06aK1a9fqySef1NKlS7VlyxZ3vh49eoR7VREkqaeMVMoxw+TLz9WulXO1/p2HlZORrqgaCUXzZM2fqiX3DSq1rC8vR76CfPV6N1+Rrulx3bTmP7/KImKgEDFADACO7TnSR6ult1eU/KHlxpnSOa2koxtKMYXfoQDPIA8UohYgBogBYgCFHdNnZ0hvrZD+u75kPTRhsXRmCyklPswrCQQZ58BiVnMhMWB7/zuIAaBkR6xv1klvL5fmFP4k6CqQ9N5KaWCalMCvtvAY8kAhagFigBggBlBo6fbC3wk/SS/ZNvb4vMLfClvWCvMKAgg68kAhagFigBggBgBLtm7dqpdeekmzZ88u8Xy9evXUuXNntWnTRk2aNFFcXJxyc3PdEaOWLVumP/74Qxs3bnTnzczM1IsvvqgZM2boyiuv1M8//1yiQ9bZZ5+tc889t6jDFlAd0LwfAk4vz9NPP93tkHXLLbdo9OjRSk5Odl9zRs667bbb3OHznJNDt27dwr26CJL4Ju1Vu8cA9991eg1Src59tfD2vlr17FVqc+sb7vPJXfvpsMnZJZbL2bxWf9xyuBqc6o0R0xoe0Uk/PfBqied63n6hul0/RNNuekZL3vim1DIDp9yrBr066MNTRmnrwtWKVMRAIWKAGAB+2Cjd9qO0s4wRiKdtKHwckiL9o7dUj4uR4SHkgULUAsQAMUAMWJeVK902W5pVzk3Anlog/WuhdF9P6cSmoV47oOpwDixmNRcSA7b3v4MYAAqtzpZumCmt2lH26w/8Kj33hzT2SKlT3VCvHVB1yAOFqAWIAWKAGLAu3yeNnS9NWlb2687zzuPy9tJfOklcVwl4B3mgELUAMUAMEAOAFStXrtSDDz6obdu2FT3n9Is45ZRTdNhhhyk6OrrC0bXmzZunL774oqhDl/P3zTff7Hbe2osOWaiuyo9uBM3111+v9PR0XXvttXrssceKOmQ5Ro0ape7duysvL0+tWrVS7dq15XVJSUk68sgj3akltTofo3r9hytz2mRlL5he5jwFuXu07KEhqtWlr5oMu0MRz0l6UZKvwLnXY7FfHntTmQtWqvc9lyipSb0Sr3UZeZoaH9NVvzw2OaK/UJSFGChGDBiKgXJYzQUWzdhYOBpWWR2y9jUvU7pqeuFFyxZYPwasbr/JPEAtUAIxUIwYMBQDxvPArjzp2h/K75C1154C6W8/Sl+vlQmWYqA8Fj8Ds+dAcqHtGGD/l2AyBsphMQ9YtW6ndMX35XfI2itjj3TldGlx8fUKnmb9GLC6/SbzALVACcRAMWLAUAwYzwXO6PEP/1Z+h6x9jV8sPfm7TLCy/yti/TOwuv0m8wC1QAnEQDFiwFAMlMFqHoD3O2Tdd999RR2ynP4QN954o+644w716tWrwg5ZDqeT1aGHHuoOfnP77berfv367vNe7ZDFecB76JRVxRYsWKDJkycrNTVVY8aMKXMe52TjcDpn7fX2229r6NChatmypXvAderUSXfeeaeys0v2CI9ELVq00Lhx49ypNU3Ou0uKjtHa1+8u8/VVz1ylgtzdanXDBHlBg8PaKWPOklLPF+TmaeoNTyk2KV59/nF10fO12zZVz79doE0/LdK8Zz6QFxEDhYgBOzFQHsu5wJLdedIdPxXeAc8fy7IK75RngfVjwPL2W8sD1AKlEQOFiAE7MWA9D7ywUJq/1b95nZLp7p+lrTnyPEsxUB6rn4HFcyC50HYMsP9LsxYD5bGaByy6/5fCDlf+2PG/tjTn4mWvs34MWN5+a3mAWqA0YqAQMWAnBqzngv+sl95Z6f/8ryyVZm2S51nZ/xWx/hlY3n5reYBaoDRioBAxYCcGymI5D8CbnI5YTh+JHTsK70zVvn17dxCbo446qlLv5/SnGDhwYInnYmNjddxxx3miQ5aD84D30Cmrik2aNEkFBQW66KKLVKtWrTLnSUxMLNUpyzkZxcTEuMP4ffrpp/rLX/6iZ5991j3JOO8XyfLz893OZc7UmoQm7VSv3/nK+u1rZc2fWuK1jR8+qW0/fqS2t7+n6PjI6/na6KjOioopeUpJO/4wrfn2lzLn3zJ3uX4b967S+vdQh4sHKCo6Wv2evM59zfnCsf/dIbyCGChGDHgvBgJhORdY8tkaaXuAI199li5tN3AhsvVjwPL2ezkPUAv4hxgoRgx4Lwb8ZSUP7M6X3l8V2DLOiFkfBbhMJLISAxWx+hl4/RxILrQdA+x//3g5BgJhNQ9YszzrwCOmllomW/ppszzP+jFgefu9nAeoBfxDDBQjBrwXA4GwkgveXB74Mm9VYplIY2X/V8T6Z2B5+72cB6gF/EMMFCMGvBcD/rKcB+A9Pp9PL730krZu3VrUIcsZhMYZKauyPv/8c7322mslnsvLy9Pzzz8f8X0o9uI84D10yqpi33zzjTs9/vjjy50nPT29VKesDz/8UG+++abbmcvp2XnDDTfoqaee0vfff69p06Ypki1evFgnnHCCO7Wo8bA7pejoEj39s377VukTb1ObUW8pvlErRZpWZxyjAa/coUZHdi7xfI3aScrN2lnucr8+8ba2zFuuw+8eoSP/frka9Gyvnx+epO1L18rLiIFixIB3YiBQ1nOBFYHc+W7fC5E/KSyNPM36MWB9+72YB6gFAkMMFCMGvBMDgbCSB75eG3gHdceUStRQkcZKDFTE8mfg1XMgudB2DLD/A+PFGAiU5TxgSWXaxhxTVsjzrB8D1rffi3mAWiAwxEAxYsA7MRAoC7lgdXbgHdT3jq61abc8zcL+PxDrn4H17fdiHqAWCAwxUIwY8E4MBMJ6HoC3zJgxQ7NmzXL/nZycrL/+9a9KSEg4qA5ZL7/8ctHfp59+ulJTU91/L1iwQF988YW8gPOA98SGewW8buXKwl9cWrZsWebrTs9Np6PV/p2yGjRoUGreww8/3J2uWbOmUuviLL9+/XpVhXPOOcfveTdu3OhOnRHAfvrpJ7+XO/vssxVqUXGJajQ2sBNe8qH91et9X7mvJzbvrF7vFvds3bNhhZY9eq6aXfqou+zB6tChvXw5uxQMNXzRGq3eB5xvxQfTVbt1YzU/5Qitnz7ffa5mWqp2pFc8rrwvL9+9q8Npnz6kTpcO1IaZC/T7Cx8f1Dp3aN9BuVEFYdv/4Y6BYO5/BzFADFRFHqhsLghHHsDBafjEokrduea+Z1/RXyfdrkjCMUA96NU8QC1ALUAMEAPW88DBqHXm7ap1yjUBL7d6h9SsRSupIE+RxHoMeLUejLRaKFxtY9UpFwYzDzqIAWohaiHbeQAHJ+W61xTf+biAl/tk9h965awBiiQcA96th6kFbNcCkRgDtI1RD1IPVh/xhw5Qyl8mBLycE71HDhqmnMU/KJJ4tRbwF8eAd2OAWoBawHotQAwQA9bzQLCdfdmNqlmrttatX6dmzZqV+tvrInH74+LiNGbMmDJfc0ateuONN4r+vvzyy1WnTp2gdchyYv7cc891+1c88MAD7nNTpkxxOzM561WWDh06KCcnR6FGPewNjRs31o8//lipZemUVcV27NjhTnftKjvJT548WRkZGW7v0NatW1f4Xt9++6077dy5ZG96fzkdsirbocvf7fTH3s/CmQayXFWte0WcC8kbVeH7F+zZqaVjzlKd3meo4anXBuU9165d675vMMRFxcjfD2Dlp7N04oTbNHt0YaNa85MO1+ovDnxiyt2+UwU5eYqJq6H0r392xrI8qHVeu26tcnz5EbH/qyIGgrn/HcQAMeCvQM7nlc0F4cgDODiNYsv+8nMgO3PyIm5/cwxQD3o1D1ALUAsQA8SA9TxwMJrtyVGtSi67blOGCnYHVl+Em/UY8Go9GGm1UDjbxqpLLgxmHnQQA9RC1EK28wAOTs18Kb4Sy+UrOuL2N8eAd+thagHbtUAkxgBtY9SD1IPVR92W2Uqp5LKbt23X9gjbXq/WAv7iGPBuDFALUAtYrwWIAWLAeh4ItoL8/KKpsz37/+11kbj98fHlt3DOnTtXGzZscP/dtWtXHXXUUUHvkBUVFaVDDjlERx99tH744QdlZWVp5syZ6tevX7nngD179ijUqIdBp6wQ9JjLzMzUzz//7J4Q9rVu3Trdeuut7r+7devmnjgqOpDuuusuDRw4UD169Kj0ulSVmjVr+j3v3pNHYmJiQMulpaUp1Jye/lUpc/oU7Vr+q3avWaTMaZNLvd71qd8V16BFQO/ZtGnToN79zb0NkR+2LUqXfFLdDs20dVG6kls3VtaEwmRbkT5jr1F0jVhtXbRa3W4c6t41ImvlgZcrT9MmTYN6p4eqFuwYCOb+dxADxIC/AjmfVzYXhCMP4OAUZG9RTJ2GAS+XWLAn4vY3xwD1oFfzALUAtQAxQAxYzwMHI0mVuwOXL3e3mtSv61y6okhiPQa8Wg9GWi0Uzrax6pILg5kHHcQAtVBVs1gLRVIewMGpkVu5TvbRe7ZH3P7mGPBuPUwtYLsWiMQYoG2MepB6sPqIiyv/GqgDSYmPVnKEba9XawF/cQx4NwaoBagFqhoxQAxU9xiwngeCLTompmjqbM/+f3tdJG5/eSNSOb788suif59yyikV9oOobIesfd/f6ZTl+OKLL8rtlOWcA8IxUhb1sDccTF8bOmVVsQEDBmjBggV6+OGHddJJJ7nD4jlmz56t4cOHu6NkOSrqaJWdna0zzzzTPbGNHz++0utS2eHU/OFsj7/++OMPTZo0SYMGDVKnTp38Xm7s2LEKtV15Ur9Pqu796x8/3H0E06JFi5UYpCM7d+duvdb2Yr/nX/3lj+4QvNnpGcrNPnBh2/lPg9WkzyH6aczrWv3ZLJ3+xaPq88TV+mzI6Eqv86LFi1QjKUGRsP+rIgaCuf8dxAAxUBV5oLK5IBx5AAfn4d+kt1YEvtxb912lQ8ZdpUjCMUA96NU8QC1ALUAMEAPW88DBWJElnVM46HlABrdK0P3p6Yo01mPAq/VgpNVC4W4bqw65MJh50EEMUAtRC9nOAzg4n6VL//dz4MuNOv1wXXxjZNWDHAPerYepBWzXApEYA7SNUQ9SD1YfuQXSaV9KmwO8SX1akjRr+qeKrnyfrrDwai3gL44B78YAtQC1gPVagBggBqzngWB78OnXtD17h5o0bqL09PRSf3tdJG5/Xl6epkyZUur5goICd6QsR926ddWrV68q65Dl6Nixo5o1a+Z+TosXL9bOnTuVlJRU6v0WLVqk2NjQnwSohxEd7hXwulGjRql+/fpavXq1OzTfoYceqvbt26t3795q06aNTjjhBHe+7t27l7m8Myzd6aefruXLl7s9O5s0aaJI165dO/ck6kzhLc5wu81PPlxN+3fX2v/+VuG8zp0get5xoTbNWax5T73n3h3il8ffVOOju7pfNhCZiAH4i1xgw7DWgS/TqY7UNbIGhagU68eA9e33MmoBEAPwh5U80CpZ6p0a+HLnVKKGijRWYqAifAbeRS60jf0Pf5EHbDixqVSv/BvJlik+Wjq9uTzP+jFgffu9jFoAxAD8ZSEX1IiWhrQMfLmhrRRxHbICZWH/H4j1z8D69nsZtQCIAfiDPAAvWLt2rfbsKbwDgzNgTcz/Rv2qig5ZDue5fTsvrVhRiTvFVyOcB7yHTllVzOmVOXXqVJ166qlKSEhwTwL16tXT888/r48//tjtkVlep6zc3Fydc8457ghXn376qbp06SIvcHqgpqSkhKUnKqrWhpkLVLtNE7Uc1FubZi8sf8aoKPUde62io6M17Yan5CsoHC533tPvK+OXJe6XjeSWjUK34ggaYgD+IhfY0CZZOrVZYIXpXzq5pwjPs34MWN9+L6MWADEAf1jKAyM7SrEB1Db9GkndUuR5lmKgPHwG3kUutI39D3+RB2xwLkS+yv+bHbtGtJPqBNiRKxJZPwasb7+XUQuAGIC/rOQC5waOjRICGyXrrBbyPCv7vyLWPwPr2+9l1AIgBuAP8gC8YNmyZUX/dgapqcoOWWX9P/v+/5GI84D30CkrBDp37qyPPvpIWVlZ7mPmzJkaOXKkduzY4XbScgqrQw45pNSwfhdddJG+/vprvf/+++7IWl7hDB14yy23VNuhFlF5vvwCrfnu18J//++LQlm6XnW6GvXupDmPTta2xWuKly8ocL9kRMfEuMPwIvIQA/AXucCOO7tLfRv5V5Te2UPqY6RNyfoxYH37vYxaAMQA/GEpD/SoLz3Qy7+OWT3rSw/2stFB3VIMlIfPwLvIhbax/+Ev8oAdQ1pJV3Twc96WhZ36LbB+DFjffi+jFgAxAH9ZyQX14qV/HiXVjz/wvI0TpXFHSbUNdFC3sv8rYv0zsL79XkYtAGIA/iAPwAsyMzOL/t2kSZMq75C1//+z7/8fiTgPeA+dssJo/vz58vl8at++vZKSkkq8ds011+itt97STTfd5L42Y8aMosemTZsUybKzs93Rw5wpvGfVp7O06rPZ5b5ep32aeo46Xxt/XKj5z31Y6nWG4Y18xAD8QS6wIy5GeuwI6drO5d8Jr1d96amjpTMN3PluL+vHgPXt9zpqARADOBBreWBAU+n5PtLRDcp+3bkoxblQ96mjpEQjN8KyFgNl4TPwNnKhbex/+IM8YMuVnaQxvaSOdcp+vVWtwhsb3d7NRgd9h/VjwPr2ex21AIgB+MNSLmhXW/p3P+m05lJcGVepJcRIZ7eUJvSTWtSSCZb2f3msfwbWt9/rqAVADOBAyAPwgk6dOmnYsGE688wzlZaW5vdyK1eurFSHLEeDBg10xhln6JxzzlH37t0VyTgPeI+RSz2qp7lz57rTsk4Mn376qTt96KGH3Me+nJPRpZdeGqK1BAKz8qMfKnzdubPDK60vrHCeuePedR+ITMQAgP3FRkuXtpcubitN2yAt2i7tyZeSa0jHNpbaJId7DQEEE7UAiAGgtO71pHFHS6uype/WS9tyCi9CaVtbOq6xVIPbJgGeQi60jf0PoCwnpRV21p+/VZq5SdqRJyXFFNaJh6fa6YwFWEAtAGIAKK1xknTPYdKNXaWv1kgbdktR/xsdy6mTnN8MAcArqAVADACwoGPHju4jUC1bttSIESM0ceLEgDpkOVJTU3XhhRWfP4FwoVNWNe2UtWLFijCsEQ7Gqheu17bZHyhn40p1fmKOktr0KDVP1tzvtPi+QUpIK05EnR7+QdHxicr46mVt/OifRc/nZKQrueuxanv7OyHbBgRu99rFWjH2EuVlZSgmqY5a3TBBiS26lppv14q5WvWv65S3dYP7d9OL/66Uo4dU+BoxAcCLnbP6Nyl8AJb5Wz/Am9j/3rZo9MnKy1wvRUcrJjFZza94UkltDisxz54NK7TiyUu1c9kcxTdqrS5jfyn1Ps6o2ovvOlE7l/2sHq9vDeEWoKo5d/sd0S7cawFUHdrH4E8udGR8+ZLWT3lIPl+Bah96glpc9YyiYouvwiMXAvAi59qCQ1IKHwDgVbSN2MZ3QhxI3TjpnNbhXgsAQFWiHrSNehCAPwYPHqx27dqpffv2fnfIAqo7OmVV005ZiDwpfc5R4yGjtPD2vhXO5xSTZX2RSB1wmfvYa/51h6jecRdVyboieFY9c6VSTxmp1BMvVeb3b2vFPy9V58dLDj9csGenljx4plrfOFG1uvSVLz9fedlbDvgaMWHny6Zj7hWtFBUb737BdDQeervq9TtPeds3a9HdJxbN58TMnvXL1H3iRsUm1wvZdgAAQls/wLvY/97W5tY3FVurrvvvzB/edfdvl3/+WmKemKTaSrvoAeXv3KY1r95Z5vts/OAJxTdu6/7QBACRhPYx+JML92xYrrWv3aXOT/ys2LqNtPTvZ2rT5y+o4anXFM1DLvQO2sYAwDbygD20jdjGd0IAwP6oB+2hHrSNehCAvzp06BDuVQCCik5ZYfTNN9/IogYNGuiGG25wp17i9MgPlh0LZypv20bV7X1G0N4TwZe7daN2LPlR7e/9wv277jFDteqFa7V73RIlNCm+9fmW/7yumh2PcjtdOaJiYlSjToMDvrYvYsL7XzYdbW6dXKoBKrZ2/RJfQte/+5iy5/8n4huXvJoLAH9ZPwYsb7+/9QO8if3vfXt/ZHI4PyS5t8Lff57kem7979wFriy7Vs3X1hnvqdX1Lytz+lvyIst5AIWIAe9+BrSPwZ9c6HRMr9P7DNVIaez+3WDgVVr39oNFnbIs5EJLaBuzlQcAf1k/BixtP3nAHtpGbOM7of8s5QKUxv7nM7C0/dSD9lAP2kY96B9LeQBA2TgPeA+dshBy9evX10UX2e29vmfdUv1+U09FRceo/omXqeHgq0vNk/HVS6rXf7iiYmuEZR3hn5yM1aqR0kRRMYWnUmcYzbgGLZSzaVWJi2p3rf5d0bHxWnL/acrZnK7Elt3U7PLH3c5XFb22L2IicgXzy6Zj81cvKW34GEU667kAsH4MWN5+f+sHeBP734blT4xQ1txv3X+3v/uTgJb15eVq5VNXqOV1L0nRMfIqy3kAhYgBPgPax2znwpyMVYpr2LLo77iGrdx6yFIutIS2sbJZzwOA9WPA0vaTB2yibQQHwndCW7kApbH/+QwsbT/1oE3UgzgQ6/WgpTwAoGycB7wnOtwrAHu2b9+ur776yp1ak9S2p7qNT1eXJ35W29vfVcZnz2nLtDdLzJO/e4e2TH1DqQP+FLb1RHD58vO0/dev1OLq592huOPqp2nVs3854Gt7ERN2rBg7QvOvP1Qrxv1Juds2lXo9e8F05WVnqs4RpynSWc4FgMP6MWB9+wF4W+ubJqrb+NVKu/gBpU+8LaBl175xr+oePUSJzTvLy8gDIAZsfwa0j3kfuRCVRdsYYIf1Y8D69pfHUh7wOupBVITvhIXIBbax//kMrG9/eagHvYN6EBWhHiQPAOA84EV0ykLIrV27VnfccYc7tSYmqbZiatZx/x2X2kwpx16g7N+nlpgn8/u3lNiiqxJbdAnTWsJfcanNlZu5zu1Y5fD5fO5dfZ3RDkrM16CFkg893u1w5YyGUK//xdqxaMYBX9uLmKi+/hh1tH65OLXMR86m1QG9V8cH/6suT/6mLv/4WbG1U7Xin5eUeQeQ+sePKBpdI5JZzgWAw/oxYHn7/a0f4E3sf1vqn3CJexfAvO2b/V4me/5/tOnjcZp7RSstvL2v8ndud/9d1o+PkcxyHkAhYsD2Z0D7mB3l5cK41BbK2biy6O+cjSuK6iErudAraBurPMt5AHBYPwa8sv3kARwIbSMoC98JvZULUDnsfz4Dr2w/9SAOhHoQZaEe9E4eAFB5nAe8hwoVCKHcLesUW7eRoqKjlb8zS9tmf6TUk/5Uaphlr/bw95oadRu6d27Y/N2rSj3xUm2dPkVx9ZspoUm7EvPV63uuFn/1kvsl0flSse3HT5TYqvsBX9uLmKi+Oj3yQ9Dea+/FR86Qy41Ov1Hz/tKhxOv5u7KVOe1NdX58dtD+TwBA9a0f4E3sf2/Ly96qgj07FVe/qfv31hnvKTa5vmKS6/n9Hh3HFP/gsGfDCi24qYcO/deKKllfAAgX2se8y99cmHLMUC38W1/lXnCPGwubPntO9fqd775GLowstI0BgG3kAeyPthH4g++EAOAd1IPYH/Ug/EE9CADwIjplAUGy8pkrte3Hj5WbuV6L7zlFMYnJOuT5JVox7s+q2/sM1T3yDGX+MEWbPn3WvWOHc3f8lD7DVP/Ey4reY3f6Qu1c9ova3fVJWLcF/mv5l+e14slLtf7tBxWTWFutrn/ZfX7f/e40HDQ+5w79cdsxioqKVo36aWp59QvufBW95iAmbHCGXPbl5Sq2Vl337y1TJympzWEl5smcNlmJrbsroVmnMK0lAKCq6wfYwP73rvyd27TskWEqyNnl1vaxtRuo3f995I6Iu+/3A+fHKOfHRF/uHneZ3y5vpvr9hyttxJhwbwIAHDTax2zzNxfGN26jJhfeqz/+1sddLvmQ/mpwypXhXn2EEW1jAGAbecA7aBsB3wkBAJVBPegd1IOgHgQAWEWnLCBIWl79fJnPt7ruxaJ/Nzz1WvdRnoRmHXXY5KwqWT9UDWeflXXnl333u6P+8cPdR1kqeo2Y8O6XTcfeL5yJLQ/R0oeGSgX58smn+EZt1OrGiSXeJ+PLl5R68hVh2goAQCjqB9jA/veu+IYt1fmxWWW+tu/3g+j4JHUbn37g92vUSj1e3xrUdQSAqkb7mG3+5kJHg5OvcB8Vvh+50BNoGwMA28gDttA2Ar4TAgD2Rz1oC/UgqAcBAFbRKQshFx8fr44dO7pTALD6ZXP/L5xdxs6p8H06PTJdXkIugHXWjwHr2w8A1pEHQAzwGQCwg7axspEHYJ31Y8DS9pMHAKBslnIBSmP/8xlY2n7qQQCwnQcAlI3zgPfQKQsh17p1a73yyivhXg0AQBiRC2Cd9WPA+vYDgHXkARADfAYAYB15ANZZPwasbz8AgFxgHfufz8D69gOAdeQBAJwHvCc63CsAAAAAAAAAAAAAAAAAAAAAAAAAAJGETlkIuYULF6pPnz7uFABgE7kA1lk/BqxvPwBYRx4AMcBnAADWkQdgnfVjwPr2AwDIBdax//kMrG8/AFhHHgDAecB76JSFkPP5fMrNzXWnAACbyAWwzvoxYH37AcA68gCIAT4DALCOPADrrB8D1rcfAEAusI79z2dgffsBwDryAADOA94TG+4VAKqzhBhp6mBF3DoHS2xivC5a+qoiibPOwWJ9/zuIAWIAAKyLtFxALUAtQAwQA9SDAILJ+nnQeh50EAO2Y8D6/gcAkAus1wKRGAO0jVEPUg8CQHBFWi6gFqAWIAaIAepBILhiYmI0dOjQoLzXo89PVtaOHUquWVO3Xnleuc8d7PoC4UCnLKACUVFSouGjJCoqSjWSEmSV9f3vIAaIAQCwznouoBawvf8dxAAxAMA26+dB63nQQQzYjgHr+x8AQC6wXgs4iAHbMWB9/wMAyAXUArb3v4MYIAYA65zzYGxscE4EzphQBb7C6d73LOs5IBJFh3sFAAAAAAAAAAAAAAAAAAAAAAAAACCS0KUQIdeqVStNmjRJaWlp4V4VAECYkAtgnfVjwPr2A4B15AEQA3wGAGAdeQDWWT8GrG8/AIBcYB37n8/A+vYDgHXkAQCcB7yHTlkIuYSEBLVt2zbcqwEACCNyAayzfgxY334AsI48AGKAzwAArCMPwDrrx4D17QcAkAusY//zGVjffgCwjjwAgPOA90SHewVgz7p16/TAAw+4UwCATeQCWGf9GLC+/QBgHXkAxACfAQBYRx6AddaPAevbDwAgF1jH/uczsL79AGAdeQAA5wHvoVMWQm7btm364IMP3CkAwCZyAayzfgxY334AsI48AGKAzwAArCMPwDrrx4D17QcAkAusY//zGVjffgCwjjwAgPOA99ApCwAAAAAAAAAAAAAAAAAAAAAAAAACQKcsAAAAAAAAAAAAAAAAAAAAAAAAAAgAnbIAAAAAAAAAAAAAAAAAAAAAAAAAIACxgcwMBEN0dLQOO+wwdwoAsIlcAOu8eAwcccQRfs/brFkzjR49WgMGDFCTJk2qdL0AAKFBHgAxEBgv1oMAAP+RB2CdF48B6mEAsC2QPOAgF3gPtUBgqAeJAQDwGvIAYBvfCUGnLIRcQUGB5syZ404BADaRC2Cd9WPA+TJ5zz33hHs1AABhQh4AMUA9CADWkQdgnfVjgHoYAEAusI39Tz1IDACAbeQBAJwHvMc7t5sAAAAAAAAAAAAAAAAAAAAAAAAAgBCgUxYAAAAAAAAAAAAAAAAAAAAAAAAABIBOWQAAAAAAAAAAAAAAAAAAAAAAAAAQADplIeSSk5M1cOBAdwoAsIlcAOs4BgAAAGyjHgQA28gDsI5jAAAAwDbqQQAAAABeQqcshFxaWpruu+8+dwoAsIlcAOs4BgAAAGyjHgQA28gDsI5jAAAAwDav14PfffedoqKi9Nhjj1U4nzNPWY9atWqFbF0BAME//zuPa6+9tsx5Nm7cqLi4OHee/v37Fz1/zz33lJsXDpRPAKC6nguj9qlve/bsqSeeeEJ5eXkl5vfK+S823CsAe/bs2eMWFg0bNlR8fHy4VwcAEAbkAljHMQAAAGAb9SAA2EYegHUcAwAAALZRDxbr16+fRo4cWeK5GjVqhG19AAAHLyEhQa+//roef/zxUnnulVdekc/nU2xs2ZfvOx0WUlNTSzzXq1evKl1fAKgKF1xwgQYPHuye89avX6+JEyfq5ptv1oIFC/TCCy947vxHpyyE3PLlyzVixAj34OrUqVO4VwcAEAbkAljHMQAAAGAb9SAA2EYegHUcAwAAALZRDxZr06aNLr744nCvBgAgiM4++2xNmjRJ77//vs4999wSr7388stuJ4Wvv/66zGXPOusstWrVKkRrCgBVp2fPniXq3Kuvvtqt/V988UX9/e9/V4MGDTx1/osO9woAAAAAAAAAAAAAAAAAAABYk5OTo+zs7HCvBgAgiB0RunXr5nbA2tesWbM0f/58XXbZZRUuv337duXl5VXxWgJAaNWsWVNHHXWUO3LW0qVLPXf+Y6QsoAI+n7Q7XxElIUaKigrOezknvrxdexRJYhPjFRWkD8D6/ncQA8QAAAAAAMAu69+LrbeLOIgB2zFgff8DAAAAAFDV3n77bb366qvKz893Rws477zz9MADD6hOnTqqDiKtbYDrpmgbIgaIgerSPnj55Zfr5ptv1po1a5SWluY+N378eDVs2FCnnXZaucs5nbmysrIUExOj3r1766677tKgQYNCuOYA9s8DTp0WSZzzRzB/Kwympf/rjFWvXj3Pnf/olAVUwCko+32iiDJ1sJQYpCPb+ULxWtvIGiL7oqWvqkZSQlDey/r+dxADxAAAAAAAwC7r34utt4s4iAHbMWB9/wMAAAAAUJWci02HDRumdu3auaMCfPLJJ3rqqaf0n//8R9OnT1etWrXCvYoR1zbAdVO0DREDxEB1aR+8+OKLNWrUKP373//WHXfcoV27dumNN97Qn//8Z8XGll7BunXrauTIkTrmmGOUkpKihQsXauzYsTr11FPdzlyXXnppWLYDsM7pkDVlyhRFkqFDh5Z5ngm1nTt3KiMjw+3Ytn79ej333HOaM2eOWwN36NDBc+e/8H/iAAAAAAAAAAAAAAAAAAAARsycObPE3yNGjHBHCLjzzjv1z3/+050CACJT/fr1dcYZZ2jChAlup6x33nlH27Ztc0fQKsuNN95Y6jln3kMOOUQ33XSTzjnnnGrRWRcA/DV69Gj3sa8hQ4bo6aef9uT5LzrcKwB7OnXqpFmzZrlTAIBN5AJYxzEAAABgG/UgANhGHoB1HAMAAAC2UQ+W79Zbb1VcXJw+/vjjcK8KAOAgXXbZZVq8eLGmTZvmjvbijA7TpUuXgDp2XXXVVdq6das7giIARJKRI0fqyy+/dEeDffjhh1WvXj2lp6crISHBk+c/RsoCAAAAAAAAAAAAAAAAAAAIoxo1aqhp06bKyMgI96oAAA7SKaecorS0NN1777369ttv9eyzzwb8Hq1atXKn5AUAkaZ9+/YaMGCA++9Bgwapb9++7sPpbPXGG2947vzHSFkIuZUrV7rDyjlTAIBN5AJYxzEAAABgG/UgANhGHoB1HAMAAAC2UQ+Wb/fu3e4IAo0aNQr3qgAADlJMTIxGjBihr776yh0Z5oILLgj4PZyRthzkBQCR7phjjtHw4cM1efJkv0a/irTzH52yEHK7du3SvHnz3CkAwCZyAazjGAAAALCNehAAbCMPwDqOAQAAANuoB6XNmzeX+fxdd92lvLw8nX766SFfJwBA8DkjwowePVrPPfecateuXeY8znl/27ZtpZ5fvXq1O7pW/fr13c4MABDp7rrrLrfD6t133+25819suFcAAAAAAAAAAAAAAAAAAADAK77++mt35Kv9paamauHChZoxY4aOP/54tWjRQtnZ2frkk0/07bff6sgjj9R1110XlnUGAASXc46/5557KpzHyQGtW7fWWWedpc6dOyslJcXNEy+++KL72qRJk5SYmBiydQaAqtKuXTudf/75eu211zR16lQdeuihnjn/0SkLCLKsud9p0f8dX+K56ISaim/aQfX7D1fD065TVAyHnpcRAyAGAAAAAABW8Z0YxACIAQAAAAAApM8++8x97K9jx456+OGH9fvvv+vf//63O2qWM2JA+/bt9fe//10333yzEhISFKloFwAxAGIgME6Hg6FDh2rmzJl677333I4ITgfeAQMGaNSoUerdu3e4VxEAgubOO+90O1s5o2U5tbJXzn9kNaCKpBx7ger0Giz5fMrNXK/N301U+vibtTt9gVpe80K4Vw8hQAyAGAAAAAAAWMV3YhADIAYAAAAAABb1799fPp/vgPOdeeaZ8jLaBUAMwFoM+Hv+dzgdD/aKj493R4UBAAvnws7/396dwFlV1v8D/87CviPLIKuAIuCCIm6ggqmImKWmVuaaleWupWaLy78ktdxQs1JTK01/yQ/7uWCamWsqKmqk4IaCbKJsww4z/9c5xug4gHOHgZm55/1+ve7r3LPOc7nPOc+5D/dzn/79Y82aNRXz+XL9E8pis+vSpUtcfPHF6TSfNe+9c2wx/BsV8x0P+l5M/t62Me/hm2LLb/w8GrXpWKflY9NTB1AH1i8rbQGsj3MAACDbsnA/6DMx6gDqQLbbAdgQ5wAAQLa5H8wG/QKoA6gDAGSFUBabXZs2bWLUqFGRNUVNW0SLfrvHgqf/Eitmv5W5G8rjZ/2l1o51a5evREOkDqgDWa8Dn5bVtgDWcg4AAGRbFu8HfSbWN5L1OpD19z+R9TqQ9XYAPs05AACQbe4Hsynr/QL6htQBdUAdACB/CWWx2c2fPz8eeeSR2G+//aJdu3aRJcmNZKK4ZfvIkhZdO8RzF94a//ntfZF16oA6kNU68FlZbgsg4RwAAMi2rN4PZvkzsb6RbNcB7/8nsloHPiur7QCs5RwAAMg294PZldV+AX1Dn1AH1IGs1gGARHl5eSxcuDCWL18eBQUF0axZs2jVqlX6vDrKysri//7v/2LkyJHRtGnTTV5eqk8oi81uzpw5ccUVV8T222+f1x+sy1YsjdWL5qUX0NXzZ8cHE26MZW+/FM233jWadt0msqT7/rvE9L9NjKxRBz6hDqgDWW0LYH2cAwAA2ZaF+0GfiSvLYt+IOpDt9z+hDmS7HYANcQ4AAGRbPt4PPv/889Xedt68eTFu3Lg47LDDokOHDtXeb8iQIdGQ6Bf4hL4hdUAdyP86oB0A1ue9996LJ598Mt56662YNm1aLFmypMoosr17946+ffvGXnvtFZ06dVpvIOv666+Pp556KiZNmhTnnXdevQpmPZ/x66BQ1maUVKDLL788rUQzZsyIjh07ppXp0ksvjdNPPz1uueWWGDt2bJx66ql1XVRqwaw7L0wfn9Z2j8Oix3euj6xp3bskXr91dmSNOvAJdeATWa0DAAAAZIvPxJVlsW9EHcj2+59QBwAAAGDd3yG86aabYu+9987pS6gNjX6BT+gb+oQ6kC3qQLbbAciyJIz67LPPxoMPPhhTpkzZ4LbJyFkvvfRS+vjLX/4SO++8cxx00EExcODAdQayElOnTo233347BgwYEA3RvDy8DgplbSZJInHUqFExe/bsaNGiRXoSzJw5M6699to0+fjRRx+l2w0aNKiui0ot6TDy29FuzyOifM2qWPbuqzF73GWxct6MKGj0SSp18eQn4s1LRlXZt3z1yigvWxOD/3dNNHTFzZvGqtLlkUXqwMfUAXUAAACA7PGZ+BNZ7RtRB7L9/ifUAQAAAMgu/QIf0zekDqgD6gCQLR9++GH89re/jZdffrnKumSU2J49e6ZZkiS4tWjRonjnnXcqRs9Klr3wwgvpY/jw4XHsscemo2F9OpBVVFQUZ599doMNZOUroazNlOb74he/mAayzjnnnLjwwgujVatW6bpk5Kxk+Lji4uIoKCiIHXbYoa6LSy1p0mXraD1ov/R5m8GjomX/YTHlh8PivV+fHL1/8Od0eauBe8VOd5VW2m/lhzPj9XN2iY6j82PEtC332SHe/2fVhiUL1IGPqQPqAAAAANnjM/Ensto3og5k+/1PqAMAAACQXfoFPqZvSB1QB9QBIDuee+65+PWvfx3Lli2rWNatW7fYf//9Y8iQIdG+ffsq+yRBrDlz5sQzzzwTjzzySBrqSjz22GNpsKt79+7xyiuvVApkDR48eDO+KqqjsFpbsVFOP/30mDFjRpx66qnxy1/+siKQlTj33HNjxx13jNWrV0evXr2idevWke+aN28eu+22WzrNkpb994z2w4+J+U/eFaWvPb3ObcpWrYi3f3FYtBwwLLoccUHkg05Dto0Pnq889OLOP/x6HD/rL9H3q/uuc58D77k4jpl2Z7Tt1z3yiTrwCXUgW3VgXbLaFsBazgEAgGzL4v1glj8T6xvJdh3w/n8iq3VgXbLYDsCnOQcAALLN/WA2ZbVfQN/QJ9SBT6gD2aoDQDY8/vjjcdVVV1UEspJRsb7//e/HFVdcESNHjlxnICuRDOpTUlIShx56aFx77bVx0kknRbNmzdJ18+fPF8hqIISyNrHXXnst7rrrrujQoUOMGTNmndusPTmScNZaTzzxROy3337RpUuXaNKkSZqSPOqoo9LjNXQ9evSIsWPHptOs6XLUTyIKi2LmHT9d5/r3bjg5ylYtj15n3Bp5oaAgoiCivKys0uJJv7w75r/2bux60XHRvEvlRmbAtw+Okj0HxqRf3hULpkyPfKMOfEwdyFAdWI8stwWQcA4AAGRbVu8HM/mZWN9ItuuA97+KzNWB9chqOwBrOQcAALIt6/eDyQ+6H3jggZV+2D0rMtcvoG+oCnXgY+pAhurAOmS5HYB89fzzz6cjZCWjXiX22GOPNIy1yy67pKGr6kqCV0l+5LLLLqsy0M/RRx+dN4GsVnl4HRTK2sTuvPPOKCsrS0+Eli1brnObtWnGT4eykmTj9ttvnyYe//a3v6Un1+TJk9OTNBl1qyFbs2ZNlJaWptOsadqlb7Tf66ux+JW/x+LJT1RaN/f/ro2FE++LPj8cH4VN8uOXYDru1DfmvfRmleVlq1bHE2dcF8XNm8TQK79Xsbx1ny1j5/O/Fh+8MDX+fcNfIx+pAx9TB7JTB9Yny20BJJwDAADZltX7wSx+JtY3ku064P2vKmt1YH2y2g7AWs4BAIBsy/r9YNeuXeOSSy5Jp1mTtX4BfUNVqQMfUweyUwfWJcvtAOSjjz76KG688caKQNYBBxwQp5122npzI58nyZ0kAwItWrSo0vKHH344Vq5cGfmgax5eB4WyNrFHH300nY4YMWK926wNWX06lHXIIYekQ9gdccQRsc8++6ShrnHjxsXChQvjnnvuiYbsjTfeiH333TedZlHJET+KKCyslPRf/Mo/Ysbt50Xvc/8nmnTuFQ1R5937R0FR5UtK1xE7xfv/mLTO7T969Z14Zez/Rtfhg2Kbb+wXBYWFsde1p6Xrkg8cn/11iHyiDnxMHci/OpCLrLcF4BwAAMi2LN8P5vNnYn0j2a4D3v/qy9c6kIsstwOQcA4AAGRb1u8HV6xYEdOnT0+nWZSv/QL6hqpPHfiYOpB/daC6st4OQD5Jgli/+93vYsmSJen87rvvHscff3wUFhbWOJB1/fXXx1NPPVUxclZJSUn6fNasWWlYKx+syMPrYHFdFyDfvfvuu+m0Z8+e61y/evXqihPn06Gsddliiy3SaXGxt60+a7X98Bh878dp13Vp1r1/DP7fT37pZcWcafH2FUdGt+OvSPdtiHodsmcM/dV34+/H/SJmPz25Ynmj1s1j1eKl693v5av+Ej0O2CV2+emx0X5gr+i489bx3EW3xqK3ZkZDpg6oA1msAwAAAJDlz8T6RrJdB7z/lWWxDgAAAEB1vfPOO3HsscfG7bffHttuu23kmyz2C+gbqkwdUAeyWAdyke/tAGTJxIkT46WXXkqft23bNk466aRaDWSdffbZaSjr/PPPj1WrVsUDDzwQw4cPj+7du0dD9k4eXgelezaxtcnHZcuWrXN9klicN29etGrVKrbaaqsq65NhmpOTLAl3/fCHP0xPrCOPPLJGZdlll11i9uzZsSl85Stfqfa2c+fOTacPPvhgvPDCC9Xe79BDD43NraBxs+h89ab7VZayFUvjrTFfjja7HhKdRp9aK8fcZputo3zluutbrhqVF8aFsevnbjftr09H661KovvIIRUfKlp07RBLZnywwf3KV69Jf9Xh4Ad/Edsef2DMefa1+M9v79+oMm+z9TaxqqCsQbz/m6IO1Ob7n1AH1IFN0Q7UtC2oi3YAqss5AACQbfl6P6hvrHr9IvWpb6Q2+0US6oC+MX1j2W4HoLqcAwAA2eZ+0Hfn8rVfQN+QviF1QB3IejtQ2w494cxo0bJ1zJo9K7p161ZlPt95/VVfb33/N2jcuHGMGTNmvesnTJhQ8fyEE06Ili1b1moga/Dgwen8YYcdlmZOkpG5Hn744TjxxBPXe6xtttkmVq5cGZvbV/LgOpjkdJKgXU0IZW1iyZszf/78ePHFF2OPPfaotC4ZRu4HP/hB+nyHHXaIgoKCKvvvs88+FSdY375949FHH42OHTvWqCxJIOv999+PTRk+q461AbVkmst+m6rsG1LYpHl03oTHn//0PbHsnZdj+ftTY/6TVYcUHHjdf6Jxxx45HXPmzJnpjWptaFxQFNX9B3j3wefiC7eeF89feGs6333/XWL63z7/wrRq0dIoW7k6iho3ihl/fzEZy3Gjyjxz1sxYWf7JryjU5/d/U9SB2nz/E+qAOlBduVzPa9oW1EU7ANXlHAAAyLZ8vR/UN1b9fpH60jdSm/0iCXVA35i+sWy3A1BdzgEAgGxzP+i7c/naL6BvSN+QOqAOZL0dqG1la9ZUTJPX89n5fOf1V3299f3foEmTJutdl5R38uTJFXmRIUOGbJJAVmLkyJExfvz4WLFiRTz++OPxta99LZo1a7be62Cy3ea2JOPXQaGsTWy//faL1157LS677LLYf//90/Rh4vnnn49jjjkmHSUrMWjQoHXuf/PNN8eCBQvSYdquuOKKOOCAA9KTrkeP3P4jeu0Jv6m0aNGi2tuuPXmSi0Eu+3Xt2jU2tyTpvyltMeKY9FGbttxyy1r9Jdio5o8mLJw6I6I8ou023WLB1BnRaquSWHzrnM/db+jVp0Rho+JYMHV67HDm4emvRix+9/P3W58tu2xZq7/0sKnVdh2ozfc/oQ6oA9WVy/W8pm1BXbQDUF3OAQCAbMvX+0F9Y9XvF6kvfSO12S+SUAf0jW1q+sbqdzsA1eUcAADINveDvjuXr/0C+ob0DakD6kDW24HaVlhUVDFNXs9n5/Od11/19db3f4NkpKz1efrppyueJxmRwsLCTRLISjRv3jyGDRsWf//732P58uXpYEFDhw5d73WwLkbKapEH18GNydoIZW1i5557btxxxx0xffr0GDhwYGy77bbpyfDmm2/GqFGjolevXvHQQw/FjjvuuM79+/Xrl0532223OPDAA9PtL7/88rjuuutyLktNh1OrjiRkVl2rV6+O448/Plq1ahXFxdWvgldffXVsbstWR+z1QDQoU6e+Ec1q6cxetXR5/KnPN6q9/fSHJ6ZD8JbOmBerSj//xrb/Nw+KLkO3ixfG3BHTJzwXX/zbFTH0qu/FhMMurHGZp74xNRo1bxq1Ievvf0IdUAc2RTtQ07agLtoBqC7nAABAtuXr/WDWPxfn2i9SH/pGarNfJKEO6BvL8vufi3xtB6C6nAMAANnmfjC3f4PXX3897rzzzvS7g8l3CatL/+Dn870pfUPqgDrQEPoHG1I7UNsuvf5Psah0SXQp6RIzZsyoMp/vvP6qr7e+/xsk96333HPPOte9/fbbFc9rMkpWdQNZa+2yyy5pKGvt315fKGvq1Kk55TNqS9avg7lH8shJt27d4oknnojRo0dH06ZNY9q0adG+ffv4zW9+E/fff39a8RPrC2V9Wtu2baNv375poKshS070du3a1ckJz6aVDLfb/YBdYsvhO8bMx1/Z4LbJL0HsfMHX44OX3oh/Xzc+/XWISb+6O0r2GJh+2KBhUgeoLm0BWeccAADINveD+UvfSLZ5/6ku7QBZ5xwAAMi2rN8PJl88fe6553L6AioNg74h1AGqQzsADV95eXlFKCsZ6aljx46bNJCV6N279zoDYQ3Rtnl4HRTK2gz69+8f9913XyxevDh9PPvss/Htb387HXotCWklw9Vtt912n3ucuXPnxpQpU6JPnz7RkCVJ1nPOOadeJlrZOHOefS1a9+4SPUftGh88P2X9GxYUxLCrT03r/pNnXBflZR8Pl/vv6++NeZPeTD9stOrZefMVnFqjDlBd2gKyzjkAAJBt7gfzl76RbPP+U13aAbLOOQAAkG3uB8lX+oZQBwCyYenSpbFw4cL0ec+ePaOgoGCTBrISbdq0SX/YIDFz5syNKj+1TyirDk2ePDlNSm699dbRvHnzSuu+8Y1vxEUXXRTjx4+Pxx57LH73u9/F8OHD018IOeuss6IhKy0tTUcPS6bkl/I1ZfH+Yy9//Py/HxTWZeDJX4zOu24bL11xVyx84/1P9i8rSz9kFBYVpcPw0vCoA1SXtoCscw4AAGSb+8H8pW8k27z/VJd2gKxzDgAAZFvW7wfffffdOPHEE9Mp+UXfEOoA1aEdgIZvzZo10blz5zQk1aFDh2rvl+RGbrjhhpwDWWslI3K1b9++IpzVUL2bh9fBbI4BXE+8+uqr6XTHHXessm733XeP22+/Pa655ppYvnx5dO/ePUaMGBEXXHBBmqiE+uq9B59LWo31rm+zddfY+dyvxtyJU2Lyjf9XZf3aYXgHX3B0Ogzvazc/sIlLTG1TBwAAAIAs0zeSbd5/AAAAYEOWLVsW//73v9Mp+UffEOoAn0c7AA1f69at04xHrpIRtXr37h1PPvlkzoGsxCWXXBL5YFkeXgeFsuppKOvUU09NHzQc7/329Fj4/F9j5dx3o/9VL0Xz3oOqbLP41cfijUtGRdOu/SqWbXvZM1HYpFnMe+T3Mfe+Ty7QK+fNiFYD944+PxwXDcm79z2zwfXJLzv8Yauvb3CbV8f+b/rIaj1p6NQBAAAAyCb9Yx/Lct/I1AsPiNXzZ0cUFkZRs1bR/VvXRvPeO1XZbt7DN8fse34R5eVl0Xr7faPHyTdEQXGjSr8U+MZPvhBL334xBt2xIBqSLL//rgEAAADA51k+842YdvVxsXrxvChq3iZ6nXFrNOsxMPJFlvuGqksdyHb/8Io502LatcfH0rdfiiadt4oBV0+qcpyG3D8M8HkOOuigNJzVqVOnnAJZ1G9CWfU0lEXD027oV6LksHNjyg+HbXC75D+b13Uj2WG/E9LHWpNP2y7a73P0Jikr9b+ekL0g3qvf6hUFxU3SL6AkSg7/YbTf66hYvejDmPrTL1RsV7ZiaayY/XbsePvcKG7VfrO9DgAAAPg8+sfo/YO7o7hl2/T5/Gf+N6Zdc3wMuOblStusmPNOzPzTT6L/VS9GcdvO8dbPvxQfPPTb6DT6lIpt5v71qmhS0if9T3caDtcAAAAA4PO8d8N3osPIb0eHLxwf85/6S9p/1P9Xz9d1sdiM1IFs9w8XNW8dXY/+WaxZujDe/+OP1nkc/cNAvhs1alRdF4FaVljbB6T6Hn300TTRPXr06MiSjh07xhlnnJFO80nyi52NO3SrlWMtmfJsrF44N9ruekitHI/8rCc0nC+j9BvzZDTu1PNzt+39g7vSL6QkjySQlShuvUXFsuTR4YBvR5vBoxp8ICtf2wKoLucAAEC25ev9oP4x1v6HeyL5T/UoKKiyTfJFiza7HhKN2pWkvwTY8cCT46Mn7qxYv+y9ybHgX+Oj5PDzN1u5qR2uAdWXr+0AVJdzAAAg29wPZteqBXNjyZsTY4vh30jn2+55eKycNz2Wz3qzrovGZqIO5Lfq9A8n33lrOWBYFDZpsc5j6B8GoCEyUhab3RZbbBFHH53dX7dcMeut+M9ZO0dBYVFs8YUTotNB36uyzbxHbo72w4+JguJGdVJGoHa/jFKbPnzk5uh6zJho6LLeFoBzAAAg27J+P6h/LL+9c9WxsfjVf6TPt/7pA1XWr5z3XqUfr2ncqVes/OC99Hn56lXx7nXfip6n3RxRWLQZS83m5BqgHQDnAABAtmX9frBLly5x8cUXp9OsScI3jdp1iYKij7+2mvxgT+OOPdK+oaZd+tZ18dgM1IH893n9wxuSlf7hLLcDAPl6HRTKYrNbtGhRPPfcc7HrrrtG69atI0ua99k5drhlRhS1aBMr582INy85KIpbd4j2w46s2GbN8iXx0RN/jm0v/1edlhXY/KZdfWyUR3m02HrX6HrsL6JRm8q/ClX62tOxunR+tBlycDR0WW4LIOEcAADItizfD+ofy39bnXV7Ov3w0dtixu3n5fQf7zP/fHG03eOwaNa9f6yYM20TlpK64hrwsSy3A5BwDgAAZFvW7wfbtGkTo0aNqutiAGwS+oc/n3YAyLo2eXgdLKzrApA9M2fOjAsuuCCdZk1R89bpfzYnGnfoFu32/lqU/ueJStvMf+p/olmPgdGsx4A6KiVQXa+fu0dM+kaHdT5WfjA9p2P1u/TxGHDtKzHgyhfTL6JMu+a4df5C8BYjjq34tZiGLMttASScAwAA2Zbl+0H9Y9mxxb7Hpb+IunrRh5WWN+7QI1bOfbdifuXcaemv4SZKJ/8zPrh/bLz6rV4x5YfDYs3SRenzVQs/2OzlZ9NwDfhYltsBSDgHAACyLev3g/Pnz4//+Z//SadZ07hD91g1f1aUr1mdzpeXl6cjJK3tGyL/qQPZsb7+4Q3JSv9wltsBgHy9Djb8b3VDA7Lqo1lR3LZzFBQWxpqli2Ph8/dFh/2/WWmbDx+5OTrsV3kZUD9te/kztXastZ0LBcWNovMXz4x/f3ebSuvXLCuN+U/eHf1/9Xyt/U0AAADY3PSP5a/VpQuibMXSaLzFlun8gn+Nj+JWW0RRq/aVtmu35+Ex5fxhseprF6V14YMJN0b7vb6arus35pNwTvJLqK+dNSi2/13+/iJqFrkGAAAAkHVz5syJK664Irbffvto165dZEmjtp3SUbQ/fOyP0eELx8eCp++Jxlt0i6Zd+tZ10dhM1IH8Vd3+4Q3JSv9wltsBgHy9DgplQS1594bvxMKJ98eq+bPjjYtGRlGzVrHdb96MaWNPira7HhJtdzsk5j9zT3zw4K/TUW6SX3toN/SI2OILJ1QcY/mMKbH07UnR9yfVH7KV/KgnZNua5UuifPWqKG7ZNp3/6Ik7o3nvnSptM//Ju6LZVjtG027b1lEpAQAAYMP0j2XbmqUL4+3Lj4iylcuioKAwilt3jL4/vi8KCgoq1YEmJb2jy9cvjtfPH5ru12q74dFx5HfquvjUAtcAAAAA4PP0/O5vYtq1x8fsv1waRc1aR6/Tf1/XRWIzUwey3T+cBLeSHysvX7Ui3eeVE7vFFsOPia7HjqnrlwAANSaUBbWk5/d+s87lvU67qeJ5p9Gnpo/1adqtX+x01+JNUj7qdz0hm0G8tR84m/XcLt76xeERZWuiPMqjSefe0evM2ysdZ97DN0eHA75VR68CAAAAPp/+sWxr0qln9P/lc59bBxIdD/hW+tjg8Tr3ikF3LKjVMrJpuQYAAAAAnyf57L/t5c/UdTGoQ+pAtvuHC5s0jx1umfH5x9M/DEADIpTFZtekSZPo169fOgXIchDv0x84B1z90gaPs+3lT0c+0RaQdc4BAIBscz8IkG3aAbLOOQAAkG3uBwEAgHwilMVmt9VWW8Uf/vCHui4GAHVIW0DWOQcAALLN/SBAtmkHyDrnAABAtmX9frB58+ax2267pVMAskc7AGRd8zy8DgplAQAAAAAAAAAAAGxiPXr0iLFjx9Z1MQCoI9oBIOt65OF1sLCuC0D2TJkyJYYOHZpOAcgmbQFZ5xwAAMg294MA2aYdIOucAwAA2Zb1+8E1a9ZEaWlpOgUge7QDQNatycProFAWm115eXmsWrUqnQKQTdoCss45AACQbe4HAbJNO0DWOQcAALIt6/eDb7zxRuy7777pFIDs0Q4AWfdGHl4HhbIAAAAAAAAAAAAAAAAAclCcy8aQNU2LIp44KBpcmWtLcbMmcfRbf4yGJClzbcn6+59QB9QBAAAAsivrn4uz3i+SUAeyXQey/v4DAABA1jW0vgHfm9I3pA6oA/oHgdpUVFQUhx9+eK0d74rf3BWLlyyJVi1axA++c1SV+doqM5ufUBZsQEFBRLMMnyUFBQXRqHnTyKqsv/8JdUAdAAAAILuy/rk46/0iCXUg23Ug6+8/AAAAZF3W+wb0DWX7/U+oA+oAkG1JO1BcXHsXwvKIKCv/eJoc97PzNFzePTa7Xr16xZ133hldu3at66IAUEe0BWSdcwAAINvcDwJkm3aArHMOAABkm/tBAAAgnwhlsdk1bdo0+vTpU9fFAKAOaQvIOucAAEC2uR8EyDbtAFnnHAAAyLas3w/27ds3HnrooWjVqlVdFwWAOqAdALKubx5eBwvrugBkz6xZs+JnP/tZOgUgm7QFZJ1zAAAg29wPAmSbdoCscw4AAGRb1u8Hi4uLo127dukUgOzRDgBZV5yH10GhLDa7hQsXxl//+td0CkA2aQvIOucAAEC2uR8EyDbtAFnnHAAAyLas3w/OmDEjzjnnnHQKQPZoB4Csm5GH10GhLAAAAAAAAAAAAIBNrLS0NJ544ol0CkD2aAeArCvNw+ugUBYAAAAAAAAAAAAAAABADoSyAAAAAAAAAAAAAAAAAHIglMVm1759+zjuuOPSKQDZpC0g65wDAADZ5n4QINu0A2SdcwAAINvcDwIAAPmkuK4LQH4YMmRITtuPHj16k5UFgPrfDiS0BeQT5wAAQLa5HwTINu0AWeccAADINveDuf0b9OjRI371q1/FAQccEJ07d96k5QJg89AOAFk3JOPXQaEsAAAAAAAAAAAAgE0s+eLp2WefXdfFAKCOaAeArOuch9fBwrouAAAAAAAAAAAAAAAAAEBDIpQFAAAAAAAAAAAAAAAAkAOhLAAAAAAAAAAAAAAAAIAcCGUBAAAAAAAAAAAAAAAA5EAoCwAAAAAAAAAAAAAAACAHQlkAAAAAAAAAAAAAAAAAORDKAgAAAAAAAAAAAAAAAMiBUBYAAAAAAAAAAAAAAABADoSyAAAAAAAAAAAAAAAAAHIglAUAAAAAAAAAAAAAAACQA6EsAAAAAAAAAAAAAAAAgBwIZVHhD3/4QwwePDjatWsXzZo1i/79+8eVV14Z5eXldV00AAAAAAAAAAAAAABIPfDAAzFo0KBo0qRJ9OrVK/3ee5Y8/vjj8aUvfSl69uwZBQUF8bOf/Syy5Iorrog99tgjzT60bds2hg0bFhMmTKjrYpFBxXVdAOqPTp06xU9+8pPo169f2jg98cQT8b3vfS+KiorijDPOqOviAQAAAAAAAAAAAACQcRMnTkwDSd///vfjzjvvjGeffTZOPvnkaN68eTrNgtLS0hgwYEB8/etfjzPPPDOy5tFHH40TTzwxhgwZkr7vN910Uxx88MHxz3/+M4YOHVrXxSNDhLKoMHLkyErzvXv3jvHjx8djjz0mlAUAAAAAAAAAAAAAQJ1LRsVKwjhjxoxJ5/v37x+TJ0+OX/ziF5kJZR100EHpI3HeeedF1jz44IOV5i+//PJ0pKxx48YJZbFZFW7eP0dDUV5eHs8991w89dRTMWLEiLouDgAAAAAAAAAAAAAApN9xP/DAAystS+bffffdmDFjRp2Vi7pTVlYWixYtihYtWtR1UcgYI2VRycKFC6Nr166xcuXK9MJ04YUXxumnn17XxQIAAAAAAAAAAAAAoB57Z/qseObFyVWWL1u+vGJ6x72PVJlfq1nTJnHIfkOjqGjDY8/MmjUrSkpKKi1bO5+s69atW9SFVatXx71/eypWrlpVo9ef2Hu3HaNbScdoqJ6d9Fq89e77lZat6/Wu798gee3Jv0GuLr300liwYEF8+9vf3shXALkRyqKSVq1axaRJk2Lp0qXx9NNPxw9/+MPYcsst45vf/GZdFw0AAAAAAAAAAAAAgHqqR9fO8eBjz8Z7M+euc/2q1WvildffXu/8V7+47+cGsuqzRsXF0a1Lxxj/tydr9Pq37tU1tuzcIRqy/n16xIR/PhfLlq+osu6zr/ezyxoVF8X+w3bJ+W/ecMMNaSjrr3/9a50F8siuhnvFYpMoLCyMvn37xg477BAnn3xynHvuufGjH/2orosFAAAAAAAAAAAAAEA9VlRYGEcePCIaNcp97Jgdtu0dgwb0rda2Xbp0idmzZ1daNmfOnIp1dWm3Qf2jX+/uOe+XjBL2lYOGR2FBQTRkrVu1iEMPGFajfQ8asXt03KJtTvv88pe/jB/84AdpIGu//far0d+FjSGUxQaVlZXF8v8ODQgAAAAAAAAAAAAAAOvToV2bOHjf3XPap3XL5vHlHII8Q4cOjYceeqjSsgkTJkTPnj3rfKSkgoKCOHzUPtG8aZOc9vvy/kOjTasWkQ926N+n2gG7tbbZqlvsvtOAnPb56U9/GhdffHE88MADAlnUmUyHsqZNm5Ze9Hr16lVrxzz++OPTY956663R0Fx44YXxyCOPxNtvvx1TpkyJ3/3ud3HZZZfFcccdV9dFAwAAAAAAAAAAAACgAdh1x9xGi0pGiGrerGm1tz/rrLPiueeeix/96Efx+uuvx2233RZjx46N888/P+qDJGR26Mi9qr39jv37xI45hphKS0tj0qRJ6WPlypXpyGHJ8zfffDPqgy/lEDJLRwkbtU+aw6iuM888M6644or4wx/+EP369Utff/JYuHDhRpQacpfpUBaVLVq0KE4++eQYOHBg7L777nHjjTfGmDFj4sorr6zrogEAAAAAAAAAAAAA0AAk4ZokZNO82eePFrXHzgPTUZJyMWTIkBg/fnzcd999seOOO6YjJv385z9PvwtfX2y/be/YaeDWn7td65Yt4ks5jBK21sSJE2OnnXZKH7NmzYrrr78+fX7SSSdFfZAErY44aHi1tj30gGHROsdRwq655ppYvnx5HHroodGlS5eKxxlnnFHDEkPNFNdwP/LQVVddlT4AAAAAAAAAAAAAAKCmWrVsHoeN3Dv+OP7h9W7TsX2bGDV8txodf/To0emjPktGi3r7vZmxcPGS9W5zxEH7RPOmnx9e+6zhw4dHeXl51Gd9e3WNoYO3i6de+Pd6txk0oG/s0L9Pzseu76+d7DBSFjkrKy+P/3ngsZj6zgwXMwAAAAAAAAAAAAAAqtiu31ax83brHi2qsKAgjjx4RDRulL/jzDRt0jiOHD1ivev3HDwwts5xlLCG5sB9do1OW7Rd57o2rVrEIfsP3exlgtoklEXO/vPGtHjh1anxp/EPx/IVK+u6OAAAAAAAAAAAAAAA1EOH7Dc02rZuWWX5vnvuHN27dIp816fnljFsl+2rLO/Yvm0cuE/NRglrSBo1Ko6jDt43CgsLqqw74qDhNRolDOqTvApl/fvf/46LLroohg4dGl27do3GjRtHp06d4uCDD46HH17/sIfrUlBQkD4S48aNi2HDhkXr1q3Tx7777lut482ZMye++93vRrdu3aJJkybRu3fvuOCCC2L58uVVtl2zZk3ce++98c1vfjO22267aNeuXTRr1iy23nrrOO200+L999+P+jJK1t+fejF9vufg7aKZiyAAAAAAAAAAAAAAAOsZLeqI0cPj05Gc7l06xog9doqsGLnPkOi0RbuK+SSgdFSejxL2aV1LOsR+QwdXWjZ08HbRt1fXOisT1Ja8CmWdeeaZcfHFF8fkyZPT8NQOO+wQRUVFcf/998cBBxwQ11xzTc7HvPrqq+Pwww+PKVOmRL9+/dKg1z/+8Y/0eDfeeON695s+fXrsvPPOcfPNN0fHjh3TYNa0adNizJgxccQRR1TZftasWfHlL385br311vjwww9jq622SkNcM2fOjOuuuy491htvvBH1YZSsWXM/jCaNG8WwIVUTuwAAAAAAAAAAAAAAsFafHlvGsCE7pM8bFRfFkQePiKKivIoybFCj4uI46osjoqjw49f8hT0HR7cuHSNL9tl9UPTY8uOR0TptkYwStmtdFwlqRV5dyU4++eR4+eWXY8GCBfHaa6/FxIkT07BTEqIqKSmJ73//+2kwKhfnnntuXHrppTF79ux4/vnn09GvktG4EqeffnoaAFuX//f//l8apEpGuHrppZfirbfeSsvRokWLuO+++6qMtNWqVav4/e9/nx4/KfOLL76YHnvu3LlxySWXpNPvfe97UZ9GyWrRrGmdlgcAAAAAAAAAAAAAgPrvgL13ic4d2sVBI3aPju3bRtZ07dwh9hs2OLp36RTD9xgUWZME0pIwXjJyWjJtlJFRwsh/BeXl5eWRAcmIVSeddFI6UtX555+fLksCWsmIVD179qwS1ioo+HiAxNGjR6chqs/af//945FHHokTTjghbrnllorlxx9/fNx2223RqVOnePPNN9Ow1aedccYZce2116bTZBSu6tprr73iySefTEfO6tKlS9TE2NvGxeLSZVFTq1evjqXLV6TPW7VoXvFvBAAAAAAAAAAAAAAAG1JWVpZ+Bz2r30NPohvJo/C/I2ZltQ5k8fUvXrI0fe+Tup9kMT47T91q1bJZnHbcYTXaN+/ihcnIVHfccUe88MIL8cEHH8SKFR+HiBYuXJhOJ02alNPxTjvttHUuT0bJSkJZEyZMWOf6r33ta1UCWYndd989DWUlI2etyxNPPBH33ntvTJkyJRYtWhRr1qxJl7/xxhvpNBkJrKahrCSQtah0SY32rXKsJUtr5TgAAAAAAAAAAAAAAAD5LglifTrT8dl5Gp68CmXdeeed6WhYS5euPzD04Ycf5nTMAQMGbHD5rFmz0vBU69atK63feuut17lf586d02lpaWml5atWrYpvfOMbcffdd2+wPLmW/7PpvZoyShYAAAAAAAAAAAAAAEBujJRVv21M1iZvQlnvvPNOHH/88bFy5co488wz45hjjok+ffqko1Ulw9s9+uij8YUvfCENP+WiU6dOGwxXJRYvXlwllNWiRYt17rd2qL3kBPq0yy+/PA1kJce97LLLYu+9905HxGratGm6/thjj40//OEPOZf/02o6nFpZeXmMvXVcGsoascdOMXLvITUuAwAAAAAAAAAAAAAAQFZcev2f0hGxkgDWBaccXWWehitvQll33XVXGsg68sgj46qrrqq1Eabmzp0b3bt3r7J8zpw5Fc+T4NfGSgJXid///vcxatSoWh0ha62xt42LxaXLNmqUrImvTIkXXp260WUBAAAAAAAAAAAAAADId8nIWGunSSDrs/PU/UhZNR0EKa9GykoMGzZsnev/9a9/1ei4//nPf9YZykqWJ0pKSqqMklXb5V+zZk1MnDhxo/9GEshK0pQbdYz/nvwAAAAAAAAAAAAAAABUT3l5eaVMx2fnaXjyJpTVrFmzdDp79ux1jjJ122231ei4119/fYwcObLK8rFjx6bTAw88MGqr/MlIX0n5Pzvy1h//+Md0xK7aSO9tzChZydB4BQUFG10OAAAAAAAAAAAAAACALEgGx0kCWEkeI8llfHaeulWTrE3ehbL22muvuOaaa+KGG26Iww47LAYPHpwunz59ehx11FGxZEnN0oMTJkyIyy+/PM4555woKipKR60aM2ZMPPzww9GoUaN0eW2V/7777ouzzz47/vSnP1WMvnXvvffGKaecEk2bNo3ly5dv1N/IdTi1svLyGHvruDSUNWKPnWLk3kM26u8DAAAAAAAAAAAAAABkyaXX/ykdESsJYF1wytFV5mm4CiNPfPnLX44999wzFixYELvuumtsu+22MWjQoNhqq61i8uTJcdlll9XouEkg67zzzosuXbqkxy0pKYmf/OQn6bqrrroqtttuu1op/yWXXJIGr5JgVteuXdNQWY8ePdLXtfvuu8dXvvKV2Nz+88a0mDX3w2jSuFEMG7L9Zv/7AAAAAAAAAAAAAAAAUB/lTSgrGcXqoYceirPOOiu23HLLePvtt2Pu3Lnx1a9+NV544YXYYYcdanTcM888M+65557YZptt4vXXX09Hqxo+fHg6glYyglVt2WmnneLJJ5+MUaNGpUPQvfbaa+loWT//+c/jwQcfTF/f5pQMhffo0y+mz/ccvF20aNZ0s/59AAAAAAAAAAAAAAAAqK8KypP0DVUkwahElv955sybH/989uUYve/uQlkAAAAAAAAAAAAAAAA5uvT6P8Wi0iXRumWLuOCUo6vM03AV13UBqL86d2gXR44eXtfFAAAAAAAAAAAAAAAAgHqlsK4LAAAAAAAAAAAAAAAAANCQCGUBAAAAAAAAAAAAAAAA5EAoCwAAAAAAAAAAAAAAACAHxblsnCXl5eV1XQQAAAAAAAAAAAAAAACgHjJSFgAAAAAAAAAAAAAAAEAOhLIAAAAAAAAAAAAAAAAAciCUBQAAAAAAAAAAAAAAAJADoSwAAAAAAAAAAAAAAACAHAhlAQAAAAAAAAAAAAAAAORAKAsAAAAAAAAAAAAAAAAgB0JZAAAAAAAAAAAAAAAAADkQygIAAAAAAAAAAAAAAADIgVAWAAAAAAAAAAAAAAAAQA6EsgAAAAAAAAAAAAAAAAByIJQFAAAAAAAAAAAAAAAAkAOhLAAAAAAAAAAAAAAAAIAcCGUBAAAAAAAAAAAAAAAA5EAoCwAAAAAAAAAAAAAAACAHQlkAAAAAAAAAAAAAAAAAORDKAgAAAAAAAAAAAAAAAMiBUBYAAAAAAAAAAAAAAABADoSyAAAAAAAAAAAAAAAAAHIglAUAAAAAAAAAAAAAAACQA6EsAAAAAAAAAAAAAAAAgBwIZQEAAAAAAAAAAAAAAADkQCgLAAAAAAAAAAAAAAAAIAdCWQAAAAAAAAAAAAAAAAA5EMoCAAAAAAAAAAAAAAAAyIFQFgAAAAAAAAAAAAAAAEAOhLIAAAAAAAAAAAAAAAAAciCUBQAAAAAAAAAAAAAAAJADoSwAAAAAAAAAAAAAAACAHAhlAQAAAAAAAAAAAAAAAORAKAsAAAAAAAAAAAAAAAAgB0JZAAAAAAAAAAAAAAAAADkQygIAAAAAAAAAAAAAAADIgVAWlTz++OPxpS99KXr27BkFBQXxs5/9rK6LBAAAAAAAAAAAAAAAwH898MADMWjQoGjSpEn06tUrrrzyyrouUiYJZVFJaWlpDBgwIC6//PIoKSmp6+IAAAAAAAAAAAAAAADwXxMnTkwH4xk1alRMmjQpLrroorjgggvixhtvrOuiZU5xXReA+uWggw5KH4nzzjuvrosDAAAAAAAAAAAAAADAfyWjYg0ZMiTGjBmTzvfv3z8mT54cv/jFL+Lkk0+u6+JlipGyAAAAAAAAAAAAAAAAoAF46qmn4sADD6y0LJl/9913Y8aMGXVWriwyUhYAAAAAAAAAAAAAAABshEWlS2P2Bx9VWb56zZqK6dR3ZlSZ/7QeW3aKpk0ab/DvzJo1K0pKSiotWzufrOvWrdtGvxaqRygLAAAAAAAAAAAAAAAANkKTRsUx/qEn4qOFi9e5fumy5XHL3Q+sd753jy5x0lcP3ixlpXYU1tJxAAAAAAAAAAAAAAAAIJOaNGkcRx48IgoKCnLft3GjOOKg4VFYjX27dOkSs2fPrrRszpw5FevYfISyAAAAAAAAAAAAAAAAYCP16lYS++y2Y877HbL/0GjXplW1th06dGg89NBDlZZNmDAhevbsGd26dcv5b1NzxZFRa5OH5eXldV2UeqW0tDTefPPN9PnKlSvT9OSkSZOiZcuW0bdv37ouHgAAAAAAAAAAAAAAQL2137DBMeXt6TFr7ofV2n7gNr1i54FbV/v4Z511Vuy5557xox/9KI455ph49tlnY+zYsXHVVVdtRKmpiYLyjKaSNnco67HHHksfw4cPTx/1VVLGESNGVFm+zz77pOsAAAAAAAAAAAAAAABYv9kffBRjbxsXa9aUbXC7li2axVknHhEtmjfN6fj3339/XHDBBfH6669HSUlJnHHGGXH22WdvZKnJVWZHytrckkDTxRdfnD6vz6GspGwZzekBAAAAAAAAAAAAAABstJKO7ePAvXeN+//xrw1u95VR++QcyEqMHj06fVC3Cuv479NAvfXezFi9Zk1dFwMAAAAAAAAAAAAAAKDeGTpk++jdo8t61+82qH9s26fHZi0TtUsoi5zNm78wbv7z/fGr390dy5avqOviAAAAAAAAAAAAAAAA1CuFBQVxxEHDo0njRlXWbdG2dRw0Yvc6KRe1RygrIsaNGxfDhg2L1q1bp4999903Hn744Q3u8/LLL8dxxx0XPXv2jCZNmkT79u1j5MiRcf/991fZtqCgIC6++OL0eTJN5tc+hg8fXrHd7Nmz47rrrotRo0ZF7969o2nTptG2bdsYOnRo3HjjjVFWVhb1waNPvxRl5eXRuUO7aNa0SV0XBwAAAAAAAAAAAAAAoN5p16ZVHLL/0ErLkizJkQePWGdYi4Yl86Gsq6++Og4//PCYMmVK9OvXLxo3bhz/+Mc/4oADDkiDUOvy61//OgYPHhy33357zJ8/PwYMGJAGqP72t7/FwQcfHD/+8Y8rbZ+Eqrp3754+T6bJ/NrH9ttvX7HdTTfdFKeddlo89thj6Um2ww47pGGvZ555Jr773e/GEUccEeXl5VHXo2RNmvxG+vwLQ3eu07IAAAAAAAAAAAAAAADUZzsP3Dq222arivnhuw+Knl0712mZqB2ZD2Wde+65cemll6ajVD3//PMxZ86cuOiii9J1p59+ekyePLnS9n//+9/jlFNOiebNm8fvf//7WLBgQbz00ksxc+bMdF1JSUn8/Oc/j4ceeqhinyeffDJOPPHE9HkyTebXPsaOHVuxXTJqVnKMxYsXx1tvvRXPPfdcvP322zF16tR0JK9kRK877rgj6sMoWdv26RHdu3Sq07IAAAAAAAAAAAAAAADUZ8mgPYeO3CtatmgWXTt3MEBOHikor+uhl+qwUidGjx4d9913X5X1+++/fzzyyCNxwgknxC233FKxfNddd03DW3/84x/j6KOPrrLf+PHj49BDD4399tsvHn744YrlSdDr4osvjgsvvLAi9JWLJKTVt2/fGDlyZEyYMCFqYuxt42Jx6bKoqbLysihd8vH+LZo3jaLCohofCwAAAAAAAAAAAAAAICtWr14dBYWFUVSY+fGV6pVWLZvFaccdVqN9iyPjTjvttHUuT0bJSkJZnw5ATZ8+PQ1ktWnTJr761a+uc7+DDz44GjVqlI6CtWbNmigqyi24tGTJkrj77rvj8ccfj/fffz+WLVsWn87NTZo0KWoqCWQtKl1S4/0rlXPp8lo5DgAAAAAAAAAAAAAAADQ0mQ9lDRgwYIPLZ82aFYsWLYrWrVvHK6+8ki5Lwlb77LPPBkfhWr58eXz44YfRqVOnapfl1VdfTUfuSsJf65Mcc2PSezVllCwAAAAAAAAAAAAAAADySauNyNpkPpS1vtBU586dK54vXrw4DWUtWLAgnS8tLY2nnnrqc4+9dOnSapcjCXodccQRaSBr5MiRcd5558X2228fbdu2jeLi4igrK0tH3UqGq6upmg6nlrj7/sfixX9PjW379Ijjv3JgjY8DAAAAAAAAAAAAAAAADV3mQ1lz586N7t27V1k+Z86ciuetWrVKpy1btkynO++8c7zwwgu1Wo7nn38+pkyZEj169Ijx48dH06ZNa22ErLXG3jYuFpd+PNpVTUfJmj5rblx6/Z82uiwAAAAAAAAAAAAAAABQ1yNl1XQQpMyHsv7zn/+sM5SVLE+UlJSko2QlBg4cmE6nTp0aq1atikaNGlX77xQUFGxw/TvvvJNOd9lllyqBrMS//vWv2FhJIGtR6ZKNOsaSpcs3uhwAAAAAAAAAAAAAAADQkGU+lHX99dfHyJEjqywfO3ZsOj3wwAMrlvXt2zd23HHHePnll+M3v/lNnHrqqdX+O82aNUuny5Yt2+D62bNnr3P9VVddFbWR3tuYUbJaNG8aRYVFG10OAAAAAAAAAAAAAAAAqGs1ydqslflQ1oQJE+Lyyy+Pc845J4qKimLNmjUxZsyYePjhh9ORsJLln3bFFVekQa1k+erVq+Pkk0+uNLLVvHnzYvz48Wm46sc//nHF8j59+qTTJ598cp2jbO2xxx5RXFwcTz/9dNxyyy1x4oknpsuXLFkSZ599djzzzDMb/VprMpza3fc/Fi/+e2ps26dHHP+VTwJqAAAAAAAAAAAAAAAAkFUF5eXl5ZFBBQUFFSNQnXXWWdGxY8fo1atXvPPOO2mwKnHdddfFKaecUmXfW2+9Nb7zne/EypUr0xGu+vXrF40bN445c+bEu+++m25z1FFHxZ///OeKfRYtWhS9e/eODz/8MDp37pyGtJJg1qBBg+Lqq69Otzn//PPjsssuS59369YtSkpK4vXXX0+DWTfddFN885vfTNdtrrds3vyFceXv7o6y8vI45dgvR/cunTbL3wUAAAAAAAAAAAAAAID6LPOhrOTljxs3Lq688sp45ZVX0vlddtklDUiNHDlyvfu/+eabcc0116Qjak2fPj0d/apTp06x4447xiGHHBKHHnpoOv9pL774Ylx44YXxr3/9Kz766KMoKyuLffbZJx577LGKstxwww3pIzl+y5YtY/DgwfGDH/wg9t9//0pl3hyMkgUAAAAAAAAAAAAAAABVZTaUxYYl1eJvT0yMpya+Gt/62sFGyQIAAAAAAAAAAAAAAID/Espig5avWBlNmzSu62IAAAAAAAAAAAAAAABAvSGUBQAAAAAAAAAAAAAAAJCDwlw2BgAAAAAAAAAAAAAAAMg6oSwAAAAAAAAAAAAAAACAHAhlAQAAAAAAAAAAAAAAAORAKAsAAAAAAAAAAAAAAAAgB0JZAAAAAAAAAAAAAAAAADkQygIAAAAAAAAAAAAAAADIgVAWAAAAAAAAAAAAAAAAQA6EsgAAAAAAAAAAAAAAAAByIJQFAAAAAAAAAAAAAAAAkAOhLAAAAAAAAAAAAAAAAIAcCGUBAAAAAAAAAAAAAAAA5EAoCwAAAAAAAAAAAAAAACAHQlkAAAAAAAAAAAAAAAAAORDKAgAAAAAAAAAAAAAAAMiBUBYAAAAAAAAAAAAAAABADoSyAAAAAAAAAAAAAAAAAHIglAUAAAAAAAAAAAAAAACQA6EsAAAAAAAAAAAAAAAAgBwIZQEAAAAAAAAAAAAAAADkQCgLAAAAAAAAAAAAAAAAIAdCWQAAAAAAAAAAAAAAAAA5EMoCAAAAAAAAAAAAAAAAyIFQFgAAAAAAAAAAAAAAAEAOhLIAAAAAAAAAAAAAAAAAciCUBQAAAAAAAAAAAAAAAJADoSwAAAAAAAAAAAAAAACAHAhlAQAAAAAAAAAAAAAAAORAKAsAAAAAAAAAAAAAAAAgB0JZAAAAAAAAAAAAAAAAADkQygIAAAAAAAAAAAAAAADIgVAWAAAAAAAAAAAAAAAAQA6EsgAAAAAAAAAAAAAAAAByIJQFAAAAAAAAAAAAAAAAkAOhLAAAAAAAAAAAAAAAAIAcCGUBAAAAAAAAAAAAAAAA5EAoCwAAAAAAAAAAAAAAACAHQlkAAAAAAAAAAAAAAAAAORDKAgAAAAAAAAAAAAAAAMiBUBYAAAAAAAAAAAAAAABAVN//B9YEe/k/2jg1AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "inputs = samplex.inputs().bind(\n", " pauli_lindblad_maps={\n", " \"ref1\": PauliLindbladMap.identity(2),\n", " \"ref2\": PauliLindbladMap.identity(4),\n", " },\n", " basis_changes={\"conclude\": [0, 0, 0]},\n", " parameter_values=np.linspace(0, 1, 4),\n", ")\n", "\n", "outputs = samplex.sample(inputs, num_randomizations=3)\n", "\n", "bound_template = template.assign_parameters(outputs[\"parameter_values\"][2])\n", "bound_template.draw(\"mpl\", fold=1000)" ] }, { "cell_type": "markdown", "id": "d46c1d45", "metadata": {}, "source": [ "This enables a means to inspect that the samplex is outputing samples that are expected.\n", "For example, below, we cast the bound circuit to a {class}`qiskit.quantum_info.Operator` object and compose with the bitflip Paulis to visually inspect that all three randomizations are logically equivalent to the base circuit." ] }, { "cell_type": "code", "execution_count": 18, "id": "492f3c01", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoIAAACzCAYAAAAdSX00AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAI7JJREFUeJzt3Qt4FNX9//HvsrmACEHkEkJBQBEVBfxjiVStorQRLRXrBaj1iWi1tVpr8VJpC4qlUqVPtSoF72gvijegKqUWRLEWENEo1Z9INNZITAA1CZcSyDL/53vsxN3NniW72Z3sZt6v5xkxM7szs7OfnT1z5pyzAcdxHAEAAIDvdGjrHQAAAEDboCAIAADgUxQEAQAAfIqCIAAAgE9REAQAAPApCoIAAAA+RUEQAADApygIAgAA+BQFQQAAAJ+iIJjBPvzwQwkEArJgwQLPt63b1G3rPiB1LrroIhkwYICvtt2Wr9nvyBu8RN6yU9YWBN2CSvjUq1cvGTNmjPztb3+TTPfiiy/Kd77zHSksLJS8vDyz7+PHj5enn35aMtUf/vCHNimUpiIfOTk50rdvX/Oh3bx5c1vvXrtTVVUlN910k5SVlUmmeeCBB+TII4+Ujh07yuDBg+Wuu+5K+TbIm7cyNW/z5s2T8847T/r3729yoO9/OpA3b1VlYN4qKytl5syZMmrUKDnooIOkR48ecsopp8jy5csTXleOZLmbb75ZBg4cKPqTyTU1NeYDcsYZZ8gzzzwj3/rWtyQT3XjjjWa/9UvpBz/4gRxyyCHy6aefytKlS+Wcc86RP//5z/Ld737XzP/vf/8rubm5nu/jhRdeKJMmTZL8/PyIgqCGLV0nt3TmY/fu3bJmzRqTj3/+85/y73//2xQM/OS+++6Tffv2pe1EqSclvTIeMWKEZ9vdn3vuuUd++MMfms/V1KlT5eWXX5arrrpKdu3aJT/72c9Svj3y5u+83XrrrbJ9+3bz5fzJJ5+kfXvkzb95W7JkicnbhAkTpLS0VBobG+WRRx6Rb3zjG/Lggw/KlClT/FMQHDdunBx33HFNf19yySXSu3dvefTRRzOyIPjkk0+aD++5554rf/nLXyIKedddd538/e9/l71795q/9UqvJR/mnTt3SufOnVO6n8Fg0EztKR/f//73TUFWPzx//etf5fzzzxc/aYsLirbcrl5E/eIXv5AzzzzTfO7UpZdeak7av/rVr+Syyy4zV9KpRN78mzf10ksvNdUGHnjggWnfHnnzb97GjBkjH330kXnPXXrRqwXVGTNmJFQQzNpbwzbdunWTTp06marycL/97W/la1/7mhx88MFm+ciRI5u+HML94x//kBNPPNGsRz/IQ4YMkZ///OcRj2loaDC1eocddpipMevXr59cf/31Zv7+TJ8+Xbp3725K7LECVFJS0lSAjdVGUGvjdL/ef/99U/PZpUsXueCCC8wy/YL7/e9/L8ccc4wpQPbs2VNOP/10ee2116zrc+l8rfq2tRHUK6G3337bnOjc2xFaDZ1tTjrpJPOvHj/Xnj17zAdHM1FQUGAK1fq4lStXRjzXPX6apXvvvVcOPfRQ8/5/9atflXXr1jXb1uLFi+Xoo48274X+u2jRImtB/pprrjE50vVp5nQbWssdTrd95ZVXyhNPPCFHHXWUyfHo0aNlw4YNTbVfmkndnr430e07o9uy6GOim1e4k5uRzz77TK699lqTKc1d165dzZfPm2++GdHMQY+B0pNP9DpitaFJ9DW7x1IfO3ToUFm2bJnsj75/WtP+ox/9KGL+FVdcYbb/3HPPSbqRN//kTeldHF1HWyFv/snb0KFDIwqBSp+v5YKPP/7Y1Ez7pkawrq5Otm3bZg7wli1bTPufHTt2yPe+972Ix2kB6dvf/rYpNOkH47HHHjNtOZ599llTY6C0oKOFsGHDhplaOz2o5eXl8sorrzStRwtbuh6tftcaBW17pEG9/fbb5b333jNvqM2mTZvk3XfflYsvvtgU4JKlVcBaYNQCq4brgAMOaKoN1XBqkPXqUB+nt8L0lkF4rWky7rjjDvnxj39sPixay6K05jXbuCeP8Jqg+vp6uf/++2Xy5Mmmxkg/QNquTI/xq6++2uxWgNbk6mP0tr5+kG+77TbT3vODDz5oKtw///zz5nakntBmz55tCiR6EvnKV74SsS7NreZJT8r6/um2tFZYa4e1rY/mKpy+n3q1r4UZpevWzOqFiN6610LP559/bvZJc/bCCy9Yj4W+j5qTcH/605/M9rXNqtLXpJnWz4regtLmF3pCPvnkk+Wdd96RoqIi8xnQz4t+2ehnwv0y0guvWBJ9zfpZ07az+tr0c3PnnXeaY6tXw3phZ/PGG2+Yf6Ozr1+IHTp0MMujzxOpRt78k7dMQN6+5Ne8VVdXmzKBWy5oESdLPfTQQ1q0bjbl5+c7CxYsaPb4Xbt2Rfy9Z88e5+ijj3ZOPfXUpnm33367WcfWrVut2/3jH//odOjQwXn55Zcj5s+fP98895VXXrE+d8mSJeYxup2WqKioMI/X1+oqLS0182644YaIx77wwgtm/lVXXdVsPfv27bOuz6Xzb7zxxmbHV5/jGjp0qHPyySc72cDd/+XLl5v3s7Ky0nnyySednj17mozo367GxkanoaEh4vmff/6507t3b+fiiy9umucev4MPPtj57LPPmr2vzzzzTNO8ESNGOH369HFqa2ub5j3//PPmcYccckjTvMWLF5t5s2bNitj+ueee6wQCAae8vLxpnpvv8PfknnvuMfMLCwud+vr6pvnTpk1r9v5pdsK3HU2zm5ubG/Gad+/e7YRCoYjH6Tp1P26++eameevWrbNmK3q7ib7mvLy8iHlvvvmmmX/XXXc58VxxxRVOMBiMuUxzMGnSJCdVyBt5i9a5c2ezL+lA3shbLJs2bXI6duzoXHjhhU4isv7W8Ny5c83tXJ20tK/3zfUqILr3rVYzu/SKQmsStWT/+uuvN83X28FuI0xb40+tttYrhCOOOMLURLrTqaeeapZHV7eH0ysz1ZraQNfll18e8fdTTz1lrt70lnW0trxV0dbGjh1rbpFrFb22y9TbInrFGX7lqm0htee20vddbxdobarWJIXnwzVx4sSIK273ClGvLpU2EtfeZdqAV2/FuLQRr15Bh9MOQrp97cAQTm8r6Hkiugf8aaedFnEbori42PyrV5DhuXLnu/vUkqtIPT569apX3i6tFdfaMxUKhcyVv9tkItaxaYlEX7O+h3qbyqU19noLZ3+vTdsIuu9rNL29pMtTjbz5N29tgbyRN5d2gNOaTS3r/OY3v5FEZH1BUHtn6YHUSW/7arsfDaPed9dbwC69BXz88cebLwBto6cfHu3qrwXC8A/ACSecYAqSettTe80+/vjjEYVCvb2rt5D1+eHT4Ycfbpbr7WkbfXNVIvfuY9H2j9FV8NomRKux9bWh+YWCtgfVthNaaA/vCe16+OGHzQdQ86HV8fqeapbC8+HSxuDh3JOmXmCo//znP+Zf7RUeTU8w4fSx+r5FXxzoxUb4umzbdk/E+kUQa767T/Hol4I2LNcToV5AhR8fzb7eytDXovO1TYoem7feeivmsWmJ1r5m95jv77XpCTH8HBBOe1mGXxymCnnzb97aAnkjb0pfm5ZX9Ha2ZkG3n4isbyMYTUv3WiuobQK10KYNKrXdgd6z//rXv26uBvr06WPaOjz00EOmPYRLvxhWrVplavX0Q6INNhcuXGhq+7RNhJbyNTjasPR3v/tdzO1HBzac1iIqt/FrssKvYhJhqxnUELVXeqHgthHTbvbarlKH5tm4cWNTrz6tSdYGv7pc23Fo+xF9r7V9Snija5etN3V0Q+B0sG27Nfukr3n16tVm/KnoC4xbbrnFdHDS9jja01YvNDR7V199tWdDJiT72vRzrtnWizO3TZDSwqFe+Sd6smwJ8ubfvLUF8kbelLb91MouHXrOvTvp64KgewWgtNOIe9tUr4S0wWb41YAWBKNpCLR6Wict7GlQtNGpFg7dKlztUaTLE73lqrWGesWkt561oJrK4QV0v/T1abW/rVbQvbKrra2NmB99hWKT7beY3ZOfXijcfffdcsMNN5j5egU1aNAgc7UY/hpj3WZvac9BpRci0fQEHf1YPUFpLXH4FaR2KgpfV7popyntCKSTNpCOpsdGj5c2Lg+nGQrvsZZINrx6zW4jeO01r7UlLv1bT/LRjeRTjbz5K29tjbz5M2/XXXedKcvoa9QOQcnI+lvD0XQMPq290zYRblWsfkD0jQyv+dLeVdE9fLUQFc39snCHhtEqZu35o4NIRtM2R9ptPB4dlFJrI9xevdF037VknyhtQ6FXELp+25WF3prWcGutZ7jwNhPxaPuT6EJkttEhBfQqWj80ensw/Ios/Aps7dq15ioyGVoTpbnR2zHhtxf0Fo5W3YfTAormUk/c4fR2hWZWe4Cniw46qznUnrM/+clPYj5Gj030lam2k43+9QJ3HMuW5MOr16xXxnpRpE1Awunf2qPOHS0gncibf/KWCcibv/I2Z84cM3KIDnFne42+qBHUhpduSVtvAemtXr1S0asht02envC1dk/H1NNqc32ctq3QMYm0LYBLu4hrIUkfr6V2fZwWkrQ6Wavc3V/c0HaDOnCj1hJqm0J903UfdL7WysUbqkXbIeqt4V//+tdm+Aotwbu/LKK3olesWBFxu7ql9KpG9027nuvr19eqtR56W1yXaZtJpR8MbUiq/+p+6uvVYW9aQofd0C/RWbNmmWOntxiSqYZua3oFpY1qdagdfR91eAK9Wj777LPNe19RUSHz5883bU3dWuVE6ZW5rktzo7cd9CJDhzbSpgrh69SfFdT3R2ud9eJk+PDh5mJAa4319kR4I+JUcwcc1SYTevsonA6NoLUIemz0c6GP1XmaXb39oMvC6X5qZys9bnoVrCdObdCtQzJE8+o1a1MPvd2jQ1Ho+63DZejnQV+rfv68ak9L3vyRN6W/aOWOQaeVEvr9oudLpc2TtJ1eupE3f+Rt0aJFZlgdbd+olV7Rr1E777R4iDenHQ0fo92mtVv7vHnzmoZMcT3wwAPO4MGDTbfwI444wjxfh0sJPwQrVqxwzjrrLKeoqMh06dZ/J0+e7Lz33nvNhp659dZbzXAqur6DDjrIGTlypDNz5kynrq6uRfvvbqtXr15OTk6O6fY/fvx401V/f8PH6LAEsegwAXPmzDGvT/df1zlu3Dhn/fr1EcPoXHLJJU5BQYHTpUsX5/zzz3e2bNnSouFjqqurnTPPPNM8T5dl8lAy7v5rt/9oOlzAoYceaiY9ZpqVW265xQwBoO/nscce6zz77LPNhgVw3w89xtGij5966qmnnCOPPNKs86ijjnKefvrpmEMcbN++3fnpT39q8qbDG2hOdRvRGdZt6JAo4Wz7tHLlSjP/iSeeaJoXvW39/1hDMIVnTodXuOaaa8xQEZ06dXJOOOEEZ/Xq1ea9j37/Nbv6OjXP4etI9Wt2972lQ3Pce++9zpAhQ8xnQt9zHb4pejutRd7Im7vt/b3GVCBv5O3G/5VfbJMeo5YK/G9nAAAA4DPtro0gAAAAWoaCIAAAgE9REAQAAPApCoIAAAA+RUEQAADApzJuHEEd+66qqsqM1ZPtv2ThZ9oZXUdW15/xSubn8LxE5rIfeYPXsiVz5K19cNKZNydN7r777qZxi0aNGuWsXbu2Rc+rrKyMOzYOU3ZN+n56Idm8KTLXfibyxtQeM0femCSNeUtLjeDChQtl6tSpZhRuHX1bf+5GR/XX3yEM//H3WNzf5vvP6wOk64HNS73nFp9kfW7osL72Fb8W+dM34bZd8tW4+9RzwevWZcFeX/4eYbTGqmrrso8WDLUuG/CjD6zLAoX24xf6wP6bwXvHxP9d1dyXNliXBbt2tm+ztj7m/EbZK/+UpRG/tZgurcmbInPZnznyRt7a6zmOvH2JvC1NS97SUhDUn3O79NJLm37iRQP83HPPyYMPPtj0Q9g2btW1BrZrl+ahzQnk2Z+b0zHOinOti4J5cZ5nthnnuR3yk9pmhwPs24z7GoP27QXibM/JacVrjLc/tuc5if9Yd1vkLXwfyVwWZ468kbd2eo4jby3bJnlLXsobNuzZs0fWr18vY8eO/XIjHTqYv2P9yHVDQ4PU19dHTEC68qbIHJJF3uAl8gYvpLwguG3bNgmFQs1+7Fj/rq6ujvnj1QUFBU1Tv379Ur1LaMcSzZsic0gWeYOXyBu80OZdnaZNmyZ1dXVNU2VlZVvvEto5MgcvkTd4ibyhzdsI9ujRQ4LBoNTU1ETM178LCwubPT4/P99MgBd5U2QOySJv8BJ5Q1YWBPPy8mTkyJGyYsUKmTBhQtM4Rvr3lVde2eL1nD1kWOzGlsX2au7gRvuVz9LNb1iXlRT9rxWmbb19i6zLQjVbrMu2Xj7aumzAxNjtO1TgsIHWZU5V5Akh3IcLh8XZ3nqJJ9itwLosVL/Dumzv2JEx5zc27hZZuUTSLVV5U2QuezNH3shbezzHkbdI5G2JpENaeg1rV/fS0lI57rjjZNSoUaa7+86dO5t6PQGpRN7gJfIGL5E3pFtaCoITJ06UrVu3yowZM0yD1hEjRsiyZcuaNXgFUoG8wUvkDV4ib8jan5jTautEq66BZJE3eIm8wUvkDe261zAAAADaBgVBAAAAn6IgCAAA4FNpayPYascdJRLrt/zWbkiqO/sZQ8dYl+X07RR3Vxo3VyXVnb3XfeusyzrE6c4eKq9Iqjv7oCnl1mWBOF3ZzTZr6xLuzq5yXyiLvT1nr2QdMpe1mSNv5I1z3H6Qt5g+JG/UCAIAAPgVBUEAAACfoiAIAADgUxQEAQAAfIqCIAAAgE9REAQAAPCpjB0+Jli+WYKBvIS6s5f0Pda+wuJ+1kWB196Juy/xurP3nLfauizYt8i6bF9VTVLd2QdMfMu6LBCv+/wHH0k8cbuzL19vXRa0dKF3nD0itZJVyFz2Zo68kTfOcfGRt9gGkDdqBAEAAPyKgiAAAIBPURAEAADwKQqCAAAAPkVBEAAAwKcoCAIAAPhUxg4fU3PO4RLM69hs/un9t1ufk1PUy7qscY29i/iyqrK4+3LG0C7WZaHj7d3SG9dusC7be9r/sy4bMLks4a7lZl/KK5LqPq8GTfm/5LrQW7YZcvZKtiFz2Zs58kbeOMfFR95iC5I3agQBAAD8ioIgAACAT1EQBAAA8CkKggAAAD5FQRAAAMCnKAgCAAD4FAVBAAAAn0r5OII33XSTzJw5M2LekCFD5N13301oPT3uf1VyArnN5gf7FlmfE6rZYl229fLR1mUlfQPxd6a4n3VRcGOlddnSzW/Yt1nkJDeuUf0O67K9Y0dalw2YuF7iiTeukVNVk/BYSvt27Ra5aImkW6rypshc9maOvJE3znHxkbfYQuQtPQNKDx06VJYvX/7lRnIydtxqtAPkDV4ib/AamUM6pSVNGtLCwsJ0rBpohrzBS+QNXiNzyLo2gps2bZKioiIZNGiQXHDBBfLRRx9ZH9vQ0CD19fURE5CuvCkyh9Ygb/Aa36nIqoJgcXGxLFiwQJYtWybz5s2TiooKOemkk2T79ti/Zzh79mwpKChomvr1s7cdAFqbN0XmkCzyBq/xnYqsKwiOGzdOzjvvPBk2bJiUlJTI0qVLpba2Vh5//PGYj582bZrU1dU1TZWV9oaiQGvzpsgckkXe4DW+U5FuaW9x2q1bNzn88MOlvLw85vL8/HwzAV7kTZE5pAp5g9f4TkXWFQR37Ngh77//vlx44YUJPS+nqFByOjQPc+PmqqS6s/e6b511mVN8TPydWbshqe7sZwwdY10W7LbPuixUW5dUd/bcF8rs24vTld1ss7wi4e7satCU2CejRmePfCDeSzZvisxlb+bIG3njHBcfeYttL3lL/a3ha6+9Vl566SX58MMP5V//+pecffbZEgwGZfLkyaneFEDe4CnyBq+ROWRdjeDHH39sAvrpp59Kz5495cQTT5Q1a9aY/wdSjbzBS+QNXiNzyLqC4GOPPZbqVQJW5A1eIm/wGplDuvFbwwAAAD5FQRAAAMCnKAgCAAD4VMb+cnVoyzYJBHIT6s7ec95q67Jg3yLrMmdj/AE343VnL+l7rP2JxXFGdH/17eS6sy9fb10W7FZgXeZU1dj3ZT/d2QdMfMu6LGDpQh8INUibjK3QCmQuezNH3sgb57j4yFtsueSNGkEAAAC/oiAIAADgUxQEAQAAfIqCIAAAgE9REAQAAPApCoIAAAA+lbHDx/zn/iHS4YCOzeYPmvJmwt2uVWN5RVJdy1XJV+qty4IFB1qXhdbYu4j/varMuuyMoV3t6zze3iU9tHaDddnWHx4v8Qy8YF1SwwTYjmvI2SvZhsxlb+bIG3njHBcfebOs83jyRo0gAACAT1EQBAAA8CkKggAAAD5FQRAAAMCnKAgCAAD4FAVBAAAAn8rY4WP6X/S25ARyE+rO7lTVWJd9uNDeRXzAxPVx9yXYrcC6LFS/I6ku9CV9A/YNFvez78vGSuuypZvfsG+vyLFvbz/d2UM1W6zLtl4+OvZz9uwWuX+JZBMyl72ZI2/kjXNcfOTNsi8byRs1ggAAAD5FQRAAAMCnKAgCAAD4FAVBAAAAn6IgCAAA4FMUBAEAAHwqY4ePCQ46RILB/GbzQ+UVSXVnHzSl3LosEKcru9lmbV1S3dlzXyizr7T4GPuytRuS6s5+xtAx1mU5fTvZtycijZurEu7Ornrdty72+py9km3IXPZmjryRN85x8ZG32JaSt8RrBFetWiXjx4+XoqIiCQQCsnjx4ojljuPIjBkzpE+fPtKpUycZO3asbNq0KZX7DB8hb/ASeYOXyBsyQcIFwZ07d8rw4cNl7ty5MZffdtttcuedd8r8+fNl7dq10rlzZykpKZHdu3enYn/hM+QNXiJv8BJ5Q1beGh43bpyZYtGrlzvuuEN++ctfyllnnWXmPfLII9K7d29zpTNp0qRmz2loaDCTq76+PtFdQjuW6rwpMgcb8gYvkTe0u84iFRUVUl1dbaqvXQUFBVJcXCyrV6+O+ZzZs2ebx7hTv372n4IBWps3ReaQDPIGL5E3ZGVBUEOr9IolnP7tLos2bdo0qaura5oqK+2/+we0Nm+KzCEZ5A1eIm/wTa/h/Px8MwFeIXPwEnmDl8gb2rQgWFhYaP6tqakxvZxc+veIESMSWpdTvUWcQF5C3dkHTHzLuixw2EDrstAHH8Xdl7jd2Zevty4LxutCv7Eyqe7sJX2Pta+z2H4LIPDaO/bn7ac7e8959tsQwb5FMec7+xpE7L3nMy5visxlb+bIG3lrb+c48tYceZPMvzU8cOBAE94VK1ZENFTV3k6jR9sPCpAM8gYvkTd4ibwhY2sEd+zYIeXl5RENWsvKyqR79+7Sv39/ufrqq2XWrFkyePBgE+Tp06ebMZImTJiQ6n2HD5A3eIm8wUvkDVlZEHzttddkzJgvR9ueOnWq+be0tFQWLFgg119/vRkb6bLLLpPa2lo58cQTZdmyZdKxY8fU7jl8gbzBS+QNXiJvyMqC4CmnnGLGN7LR0dFvvvlmMwGtRd7gJfIGL5E3ZIKUthEEAABA9qAgCAAA4FNtPo6gTUPxEAnlNG8HMWByWVJdy0PlFdZl8brPq0FT/i+5LvRxthmva/np/bdbl+UU9bIua1xj7+q/rMp+3NQZQ7tYl4WOtx+fxrUbYs939kq2IXPZmznyRt44x8VH3mLLIW/UCAIAAPgVBUEAAACfoiAIAADgUxQEAQAAfIqCIAAAgE9REAQAAPApCoIAAAA+lbHjCOauLJOcQG5i4xrV77Au2zt2pHXZgInr4+5LvHGNnKqapMZSGjBxtXVZsG+RdVmoZktS4yiV9A1IXMX97PuzsdK6bOnmN2LOr9++Tw46XLIKmcvezJE38sY5Lj7yFluIvFEjCAAA4FcUBAEAAHyKgiAAAIBPURAEAADwKQqCAAAAPkVBEAAAwKcydviYYLeuEgzkNZsfqq1Lqjt77gtl9m3F6cputllekVR39kFTyq3LOsTpzt64uSqp7uy97ltnXeYUHyNxrd2QcHd2dcbQMTHnNzp7ROQDySZkLnszR97IG+e4+MhbbFvJGzWCAAAAfkVBEAAAwKcoCAIAAPgUBUEAAACfoiAIAADgUxQEAQAAfCrh4WNWrVolc+bMkfXr18snn3wiixYtkgkTJjQtv+iii+Thhx+OeE5JSYksW7Ysoe2E6ndKIKDdpRPozr58vXVZsFuBdZlTVRN3X+J1Zx8w8S3rskCcLvShDyuT6s7ec95q67JgnO7zzkb79vbXnb2k77H2Jxb3izk71LhbxN7zPuPyZvaZzGVt5sgbecvGcxx5a4689Ys5O1XnuJTUCO7cuVOGDx8uc+fOtT7m9NNPN6F2p0cffbS1+wmfIm/wEnmDl8gbsrJGcNy4cWaKJz8/XwoLC1uzX4BB3uAl8gYvkTe02zaCL774ovTq1UuGDBkil19+uXz66afWxzY0NEh9fX3EBKQrb4rMoTXIG7xE3pB1BUGtxn7kkUdkxYoVcuutt8pLL71krnhCoVDMx8+ePVsKCgqapn79Yt8fB1KRN0XmkCzyBi+RN2Tlbw1PmjSp6f+POeYYGTZsmBx66KHmqua0005r9vhp06bJ1KlTm/7WqxeCi3TlTZE5JIu8wUvkDVlZEIw2aNAg6dGjh5SXl8cMrrZ/0MnlOI75t9HZG3N9jdpzxiJgec4X690TZ5n9eWrfLvs2bftp1htqsK8zzvNCe5LbnuxrSOr1q/rt+5LbpuX9aPzfa3ffT6/sL2+KzLW/zJE38uaHcxx5I29OOvLmtII+fdGiRXEfU1lZ6QQCAWfJkiUtWqc+XtfL1D4mfT9TJR15c5/T1seJibwx+Ttz5I1JPMxbuIRrBHfs2GGuRlwVFRVSVlYm3bt3N9PMmTPlnHPOMb2c3n//fbn++uvlsMMOM2MftURRUZFUVlZKly5dJBAINFVr67yuXbsmurvtWiYfGz2vbd++3byfrZHuvEVnTvc5U49pWyNv5M1r7T1zXueN79T46n1wjrOtPCErV66MWUotLS11du3a5Xzzm990evbs6eTm5jqHHHKIc+mllzrV1dVJl1Tr6urM+vVf+O/YkLfM4YdjQ94yS3s/Pl7nzQ/HtDXqfHpsAvofyfASuvZ8qqury7gSelvj2KQex9SOY5N6HNP4OD6pxzG1q/fpseG3hgEAAHwq4wuC2vvpxhtvjOgFhS9wbFKPY2rHsUk9jml8HJ/U45ja5fv02GT8rWEAAAD4tEYQAAAA6UFBEAAAwKcoCAIAAPgUBUEAAACfoiAIAADgUxldEJw7d64MGDBAOnbsKMXFxfLqq6+KH61atUrGjx9vflpGfyJo8eLFEcu14/eMGTOkT58+0qlTJxk7dqxs2rSpzfY3m5E58uYl8kbevETevkDmsqQguHDhQpk6daoZ0+f111+X4cOHm99X3LJli/jNzp07zevXD3Est912m9x5550yf/58Wbt2rXTu3Nkcq927d3u+r9mMzH2BvHmDvH2BvHmDvH2JzEVxMtSoUaOcK664ounvUCjkFBUVObNnz3b8TN+yRYsWNf29b98+p7Cw0JkzZ07TvNraWic/P9959NFH22gvsxOZa468pQ95a468pQ95i03InJORNYJ79uyR9evXm+pYV4cOHczfq1evbtN9yzQVFRVSXV0dcaz0txK12p9j1XJkrmXIW2qQt5Yhb6lB3lquwoeZy8iC4LZt2yQUCknv3r0j5uvf+gbhS+7x4Fi1DplrGfKWGuStZchbapC3lqv2YeYysiAIAAAAnxYEe/ToIcFgUGpqaiLm69+FhYVttl+ZyD0eHKvWIXMtQ95Sg7y1DHlLDfLWcoU+zFxGFgTz8vJk5MiRsmLFiqZ5+/btM3+PHj26Tfct0wwcONCEM/xY1dfXm55OHKuWI3MtQ95Sg7y1DHlLDfLWcgN9mLkcyVDazb20tFSOO+44GTVqlNxxxx2my/eUKVPEb3bs2CHl5eURjVnLysqke/fu0r9/f7n66qtl1qxZMnjwYBPi6dOnm/GRJkyY0Kb7nW3I3BfImzfI2xfImzfI25fIXBQng911111O//79nby8PNP1fc2aNY4frVy50nRxj55KS0uburtPnz7d6d27t+niftpppzkbN25s693OSmSOvHmJvJE3L5G3L5C5SAH9T3ThEAAAAO1fRrYRBAAAQPpREAQAAPApCoIAAAA+RUEQAADApygIAgAA+BQFQQAAAJ+iIAgAAOBTFAQBAAB8ioIgAACAT1EQBAAA8CkKggAAAOJP/x+xiWWWGWnlWAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from qiskit.transpiler import PassManager\n", "\n", "from samplomatic.transpiler.passes import InlineBoxes\n", "\n", "# Operator requires that we unpack all of the boxes first\n", "unboxed = PassManager([InlineBoxes()]).run(circuit).assign_parameters(inputs[\"parameter_values\"])\n", "# We want to plot unitary matrix amplitudes, so we need to remove the non-unitary measurements\n", "unboxed.remove_final_measurements()\n", "unboxed_unitary = Operator(unboxed)\n", "\n", "# Plot magnitudes of the unitary matrix represenation of the circuit\n", "plt.subplot(1, 4, 1)\n", "plt.imshow(np.abs(unboxed_unitary))\n", "plt.title(\"Base Circuit\")\n", "\n", "# For each randomization we sampled, plot the unitary matrix representation\n", "for idx in range(3):\n", " bound_template = template.assign_parameters(outputs[\"parameter_values\"][idx])\n", " bound_template.remove_final_measurements()\n", "\n", " # Our example does measurement twirling by compiling random bitflip gates before the\n", " # measurements, so we need to undo these at the operator level for each randomization.\n", " # We do this by casting them to Paulis and composing with the bound circuit's unitary\n", " alpha_flips = Pauli(([0, 0, 0], outputs[\"measurement_flips.alpha\"][idx, 0]))\n", " beta_flips = Pauli(([0], outputs[\"measurement_flips.beta\"][idx, 0]))\n", " flips = beta_flips ^ alpha_flips\n", " bound_unitary = Operator(bound_template) & flips\n", "\n", " # Plot magnitudes of the unitary matrix represenation of the circuit\n", " plt.subplot(1, 4, idx + 2)\n", " plt.imshow(np.abs(bound_unitary))\n", " plt.title(f\"Randomization {idx}\")\n", "\n", "plt.tight_layout()" ] }, { "cell_type": "markdown", "id": "6924386c", "metadata": {}, "source": [ "Along the same lines, here, we pass output parameter values and the template to a sampler to simulate 10,000 shots of all randomizations, and compare the resulting expectation values (only of the alpha register) to the expectation values of a simulation of the base circuit alone." ] }, { "cell_type": "code", "execution_count": 19, "id": "9ed6e27e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " EVs from base circuit: [0.7819611 0.93553883 0.99500417]\n", "EVs from randomizations: [0.7816 0.932 0.995 ]\n" ] } ], "source": [ "from qiskit.primitives import StatevectorEstimator as Estimator\n", "from qiskit.primitives import StatevectorSampler as Sampler\n", "from qiskit.primitives.containers import BitArray\n", "\n", "# simulate some expectation values direction from the base circuit\n", "estimator_job = Estimator().run([(unboxed, [\"IZII\", \"IIZI\", \"IIIZ\"])])\n", "evs = estimator_job.result()[0].data[\"evs\"]\n", "\n", "# get the sampler data from each randomization, and do bitflip correction\n", "sampler_job = Sampler().run([(template, outputs[\"parameter_values\"])], shots=10_000)\n", "alpha_data = sampler_job.result()[0].data[\"alpha\"]\n", "alpha_data ^= BitArray.from_bool_array(outputs[\"measurement_flips.alpha\"], \"little\")\n", "\n", "# compare the results\n", "print(\" EVs from base circuit:\", evs)\n", "print(\"EVs from randomizations:\", alpha_data.expectation_values([\"ZII\", \"IZI\", \"IIZ\"]))" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.1" } }, "nbformat": 4, "nbformat_minor": 5 }