Source code for qiskit.primitives.base.base_estimator

# This code is part of Qiskit.
# (C) Copyright IBM 2022, 2023, 2024.
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

r"""Base Estimator Classes"""

from __future__ import annotations

from abc import abstractmethod, ABC
from import Iterable, Sequence
from copy import copy
from typing import Generic, TypeVar
import numpy as np
from numpy.typing import NDArray

from qiskit.circuit import QuantumCircuit
from qiskit.providers import JobV1 as Job
from qiskit.quantum_info.operators import SparsePauliOp
from qiskit.quantum_info.operators.base_operator import BaseOperator

from ..containers import (
from ..containers.estimator_pub import EstimatorPub
from . import validation
from .base_primitive import BasePrimitive
from .base_primitive_job import BasePrimitiveJob

T = TypeVar("T", bound=Job)

class BaseEstimatorV1(BasePrimitive, Generic[T]):
    r"""Estimator V1 base class.

    Base class for Estimator that estimates expectation values of quantum circuits and observables.

    An estimator is initialized with an empty parameter set. The estimator is used to
    create a :class:`~qiskit.providers.JobV1`, via the
    :meth:`` method. This method is called
    with the following parameters

    * quantum circuits (:math:`\psi_i(\theta)`): list of (parameterized) quantum circuits
      (a list of :class:`~qiskit.circuit.QuantumCircuit` objects).

    * observables (:math:`H_j`): a list of :class:`~qiskit.quantum_info.SparsePauliOp`

    * parameter values (:math:`\theta_k`): list of sets of values
      to be bound to the parameters of the quantum circuits
      (list of list of float).

    The method returns a :class:`~qiskit.providers.JobV1` object, calling
    :meth:`qiskit.providers.JobV1.result()` yields the
    a list of expectation values plus optional metadata like confidence intervals for
    the estimation.

    .. math::


    Here is an example of how the estimator is used.

    .. code-block:: python

        from qiskit.primitives import Estimator
        from qiskit.circuit.library import RealAmplitudes
        from qiskit.quantum_info import SparsePauliOp

        psi1 = RealAmplitudes(num_qubits=2, reps=2)
        psi2 = RealAmplitudes(num_qubits=2, reps=3)

        H1 = SparsePauliOp.from_list([("II", 1), ("IZ", 2), ("XI", 3)])
        H2 = SparsePauliOp.from_list([("IZ", 1)])
        H3 = SparsePauliOp.from_list([("ZI", 1), ("ZZ", 1)])

        theta1 = [0, 1, 1, 2, 3, 5]
        theta2 = [0, 1, 1, 2, 3, 5, 8, 13]
        theta3 = [1, 2, 3, 4, 5, 6]

        estimator = Estimator()

        # calculate [ <psi1(theta1)|H1|psi1(theta1)> ]
        job =[psi1], [H1], [theta1])
        job_result = job.result() # It will block until the job finishes.
        print(f"The primitive-job finished with result {job_result}"))

        # calculate [ <psi1(theta1)|H1|psi1(theta1)>,
        #             <psi2(theta2)|H2|psi2(theta2)>,
        #             <psi1(theta3)|H3|psi1(theta3)> ]
        job2 =[psi1, psi2, psi1], [H1, H2, H3], [theta1, theta2, theta3])
        job_result = job2.result()
        print(f"The primitive-job finished with result {job_result}")

    __hash__ = None

    def __init__(
        options: dict | None = None,
        Creating an instance of an Estimator, or using one in a ``with`` context opens a session that
        holds resources until the instance is ``close()`` ed or the context is exited.

            options: Default options.

    def run(
        circuits: Sequence[QuantumCircuit] | QuantumCircuit,
        observables: Sequence[BaseOperator | str] | BaseOperator | str,
        parameter_values: Sequence[Sequence[float]] | Sequence[float] | float | None = None,
    ) -> T:
        """Run the job of the estimation of expectation value(s).

        ``circuits``, ``observables``, and ``parameter_values`` should have the same
        length. The i-th element of the result is the expectation of observable

        .. code-block:: python

            obs = observables[i]

        for the state prepared by

        .. code-block:: python

            circ = circuits[i]

        with bound parameters

        .. code-block:: python

            values = parameter_values[i].

            circuits: one or more circuit objects.
            observables: one or more observable objects. Several formats are allowed;
                importantly, ``str`` should follow the string representation format for
                :class:`~qiskit.quantum_info.Pauli` objects.
            parameter_values: concrete parameters to be bound.
            run_options: runtime options used for circuit execution.

            The job object of EstimatorResult.

            TypeError: Invalid argument type given.
            ValueError: Invalid argument values given.
        # Validation
        circuits, observables, parameter_values = validation._validate_estimator_args(
            circuits, observables, parameter_values

        # Options
        run_opts = copy(self.options)

        return self._run(

    def _run(
        circuits: tuple[QuantumCircuit, ...],
        observables: tuple[SparsePauliOp, ...],
        parameter_values: tuple[tuple[float, ...], ...],
    ) -> T:
        raise NotImplementedError("The subclass of BaseEstimator must implement `_run` method.")

BaseEstimator = BaseEstimatorV1

class BaseEstimatorV2(ABC):
    r"""Estimator V2 base class.

    An estimator estimates expectation values for provided quantum circuit and
    observable combinations.

    An Estimator implementation must treat the :meth:`.run` method ``precision=None``
    kwarg as using a default ``precision`` value.  The default value and methods to
    set it can be determined by the Estimator implementor.

    def _make_data_bin(pub: EstimatorPub) -> DataBin:
        # provide a standard way to construct estimator databins to ensure that names match
        # across implementations
        return make_data_bin(
            (("evs", NDArray[np.float64]), ("stds", NDArray[np.float64])), pub.shape

    def run(
        self, pubs: Iterable[EstimatorPubLike], *, precision: float | None = None
    ) -> BasePrimitiveJob[PrimitiveResult[PubResult]]:
        """Estimate expectation values for each provided pub (Primitive Unified Bloc).

            pubs: An iterable of pub-like objects, such as tuples ``(circuit, observables)``
                  or ``(circuit, observables, parameter_values)``.
            precision: The target precision for expectation value estimates of each
                       run Estimator Pub that does not specify its own precision. If None
                       the estimator's default precision value will be used.

            A job object that contains results.