{ "cells": [ { "cell_type": "markdown", "id": "26d926db-2e2f-41ff-947e-9757a9f426d8", "metadata": {}, "source": [ "# Classically simulating circuits with OBP" ] }, { "cell_type": "markdown", "id": "7642d6db-fe6d-4506-8e49-6c840f166e2b", "metadata": {}, "source": [ "In this guide, you will learn how to classically simulate `QuantumCircuit` instances to estimate expectation values entirely through the means of OBP.\n", "\n", "Since OBP will take an observable and backpropagate it through a given circuit, the \"simulation\" of a circuit amounts to computing the expectation value of the target observable with respect to this circuit.\n", "As you will see later, the `qiskit-addon-obp` package is even capable of handling simple noise models, allowing you to compute noisy expectation values, too!" ] }, { "cell_type": "markdown", "id": "2e996d79-36fd-4a71-bd6b-737fc8e44987", "metadata": {}, "source": [ "## Constructing an example circuit\n", "\n", "For the purposes of this guide, we will use the same example circuit as in the [Pauli term truncation guide](https://qiskit.github.io/qiskit-addon-obp/how_tos/truncate_operator_terms.html):" ] }, { "cell_type": "code", "execution_count": 1, "id": "b7946767-904b-422e-b076-7f956f3fdb70", "metadata": {}, "outputs": [], "source": [ "import rustworkx.generators\n", "from qiskit.synthesis import LieTrotter\n", "from qiskit_addon_utils.problem_generators import (\n", " PauliOrderStrategy,\n", " generate_time_evolution_circuit,\n", " generate_xyz_hamiltonian,\n", ")\n", "from qiskit_addon_utils.slicing import combine_slices, slice_by_gate_types\n", "\n", "# we generate a linear chain of 10 qubits\n", "num_qubits = 10\n", "linear_chain = rustworkx.generators.path_graph(num_qubits)\n", "\n", "# we use an arbitrary XY model\n", "hamiltonian = generate_xyz_hamiltonian(\n", " linear_chain,\n", " coupling_constants=(0.05, 0.02, 0.0),\n", " ext_magnetic_field=(0.02, 0.08, 0.0),\n", " pauli_order_strategy=PauliOrderStrategy.InteractionThenColor,\n", ")\n", "# we evolve for some time\n", "circuit = generate_time_evolution_circuit(hamiltonian, synthesis=LieTrotter(reps=3), time=2.0)\n", "# slice the circuit by gate type\n", "slices = slice_by_gate_types(circuit)" ] }, { "cell_type": "markdown", "id": "63bcf4d0-7abe-4467-bc2b-f95d8d66dee5", "metadata": {}, "source": [ "However, the above is purely the circuit describing the time evolution under a chosen Hamiltonian.\n", "We also need an initial state to start from, with respect to which we compute the expectation values of our observable.\n", "\n", "Of course, we could choose the all-zero (or vacuum) state as our initial state, but to show how one would insert their own initial state, we choose a different one below.\n", "\n", "One possibility, would be to prepend the initial state to our time-evolution circuit above: `circuit.compose(initial_state, front=True)`.\n", "But since we have already sliced our `circuit`, it is easier to simply insert the initial state as the first slice, which we do below.\n", "\n", "In this way, we can simply replace the first slice with another initial state, if we want to exchange that in the future, without having to recompute our slices." ] }, { "cell_type": "code", "execution_count": 2, "id": "ffaa07e2-af75-4424-9e7b-61c81b3bb9ff", "metadata": {}, "outputs": [], "source": [ "from qiskit.circuit import QuantumCircuit\n", "\n", "initial_state = QuantumCircuit(num_qubits)\n", "for i in range(0, num_qubits, 2):\n", " initial_state.x(i)\n", "\n", "slices.insert(0, initial_state)" ] }, { "cell_type": "code", "execution_count": 3, "id": "8758f393-8691-4116-94ca-1185c6188bb4", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABeAAAAGlCAYAAACSmFbIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAA0l1JREFUeJzs3XtclWW+9/EvsFwgBw/gkEiaaKbFZJbiacadOaU+le6deciml5pNHnKrrxzTJjt42PpMmDq1HUedovIxX0FM7cztFGWWaeQxLE1NTUkFcjjD4rCEtZ4/TBIEF78b1n1f1+33/VcsgXXx6VrXb3ELywCv1+sFERERERERERERERE1q0CrF0BEREREREREREREZEe8AE9ERERERERERERE5Ae8AE9ERERERERERERE5Ae8AE9ERERERERERERE5Ae8AE9ERERERERERERE5Ae8AE9ERERERERERERE5Ae8AE9ERERERERERERE5Ae8AE9ERERERERERERE5Ae8AE9ERERERERERERE5Ae8AE9ERERERERERERE5Ae8AE9ERERERERERERE5Ae8AE9ERERERERERERE5Ae8AE9ERERERERERERE5Ae8AE9ERERERERERERE5Ae8AE9ERERERERERERE5Ae8AE9ERERERERERERE5Ae8AE9ERERERERERERE5Ae8AE9ERERERERERERE5Ae8AE9ERERERERERERE5Ae8AE9ERERERERERERE5AcOqxdAxuzdu7fBP3vnnXcwZsyYBv88ISHBT6tS29WawUc3Nqsfm9WPj085NpPj41OOzYzh41OOzeT4+JRjM2P4+JRjMzk+PuXYzBg+PuXYTI6Pz6bjT8DbUGpqqtVL0BK7ybGZHJvJsZkx7CbHZnJsJsdmxrCbHJvJsZkcmxnDbnJsJsdmcmxmDLv5xgvwRERERERERERERER+wAvwNjR06FCrl6AldpNjMzk2k2MzY9hNjs3k2EyOzYxhNzk2k2MzOTYzht3k2EyOzeTYzBh2840X4G1o9OjRVi9BS+wmx2ZybCbHZsawmxybybGZHJsZw25ybCbHZnJsZgy7ybGZHJvJsZkx7OYbL8Db0JQpU6xegpbYTY7N5NhMjs2MYTc5NpNjMzk2M4bd5NhMjs3k2MwYdpNjMzk2k2MzY9jNN4fVC1BFflElikvdfr2PVuFORLYO9ut9kHoqC0rgLi23dA3O8JYIbhth6RrIv7jPms6shrp3qsuMbnZrRr7xTCOzcK81HeeAHJuRv/BMIzNwnzUPzgI5nZvxAvzPF987D0tGSdkFv95PRGgLnP5oHC/CX0MqC0rwTt/pqCqtsHQdjvAQjNnzN1sdvPQL7rOmM7Ohzp3qMqubnZqRbzzTyCzca03HOSDHZuQvPNPIDNxnzYOzQE73ZnwJGgDFpW6/X3wHgJKyC37/KXsASE5O9vt92JE/urlLyy0fTABQVVrhl78l5F6T4z6TM2OfmdnQX53qslM3OzWzG55pctxnxnCvyXEOyLGZHM80Y3imyXGvyXGfyZm1zzgL5HRvxgvwNrRy5Uqrl6AldpNjMzk2k2MzY9hNjs3k2EyOzYxhNzk2k2MzOTYzht3k2EyOzeTYzBh2840X4G1o9+7dVi9BS+wmx2ZybCbHZsawmxybybGZHJsZw25ybCbHZnJsZgy7ybGZHJvJsZkx7OYbXwOeiIioEUbvWYOqCjc87ioEOh04vPYDHN+0zeplKY3NiIiubZwDxrAbEdG1jXNATvVmvABvQ48++qjVS9ASu8mxmRybyanUbPvkRBSdyEKb7h0xIi0RZ7cdQPlPBVYvq16qdGMze2MzOTYzht3kVGnGOWCMLt1UaqYTdpNjMzk2k1OpmS5zAAp1U7kZX4LGhjp27Gj1ErTEbnJsJsdmcio2Kzx2Bu4iF8JiotB+QDwSFk4EAETd1hX9//y41csDFOx2ebPBr85FeMdoAEC38UPQY9Jwq5cHKNhMB2wmx2bGsJucas04O41RfX6q2EwH7CbHZnJsJqdiM85PORVnp5IX4A8cOIC+ffsiJCQECQkJ2LBhA0JDQ+HxeKxemhYWL15s9RK0xG5ybCbHZnIqNovu2wOVhaXI/+40ctIPI+KG9gjtEIXbnhyNg6tSrV4eoGC3y5tlvJSCXnPHItDpQJdRg3Bs48dWLw9QsJkO2EyOzYxhNznVmnF2GqP6/FSxmQ7YTY7N5NhMTsVmnJ9yKs5O5V6CJiMjA3feeScWL16M5ORkbN26FTNmzEB8fDwCA639+4LI1sHIeOc/MHLWJ8g4mgcAeOmPfdEq3Ikpi3ZaujbSR0Rcewx6ZSaC20agsqAEX8z6b5ScyrF6WWRD3GvN766keQgICEBEXHvsmP4XeNxVAICMlSkYkjQP2Tu+UeZX3FRRX7PCoz/C6/Gg39LH8P3GT+CtqrZ6maQBnmlkBu6z5sfZaQznJzUHnmlkFu615sf5Kafy7FTuJ+BnzpyJadOm4cknn0RcXBxmzJiBDh06oGfPnlYvDflFlZj94ld4ffEgOBwB6N8zGg/e3Rl/fEmtf+03NjbW6iVoyaxuAxOn4sirW/Heb2fh6BsfYmDiVFPu1x+41+TMbGaXvabSPts+ORHvDZqNz6f9BQNXTEdIu9bAz7/iFhbbDpn/3GP1Emuo0q2hZhkrUhCd0AOn3t9l9RJrqNJMJzzT5LjPjOHzNDlV9hpnpzG6zE+VmumEZ5oc95ocn6fJqbTPOD/lVJ6dSl2AP3nyJHbu3ImZM2fWut3pdNZcgE9JScGAAQPQv39/bNq0yfQ1vrctE8dOF2HJjN5IWjwI0/5rF0pcF0xfx9WsXLnS6iVoyYxuIVGt0PaWzji1+UsAwKn3diEyvjOCo1r5/b79gXtNzqxmdtprKu6zzC3pyPrsIHrOegAA0GPiMBzbkIb4KfdbvbQaqnWr28x1NhdlWblWL6sW1ZrpgGeaHPeZMXyeJqfaXuPsNEb1+aliMx3wTJPjXpPj8zQ5FfcZ56ecirNTqZegycjIQJs2bdCpU6ea28rLy/HDDz+gZ8+eKCoqwgsvvIC9e/ciICAAffv2xfDhwxEZGXnVzzty5EicPHmywT93oxUQ9IdGr/M//286Mj8ch9RPTuGjXeca/XEAcM/QoXCiWPQx9bnvvvsa/LN3330Xo0aNavDPJ02a1OT719HVmsFHN6PNWlW3wFTcWPN2WGw7lGXnAV4vAMDr8cCVnY+wDlGozGv6vriaofcMRXGQ7C+LrGhmB2Y/PuvuM1i414zsMyhwptXX0Jf9y97CiI9exKG1H+D6e/ogbdxiDFw+FZG3xiH/21NX/VijnS6nwuNT2u1Ss29X/w/KzxeK7ssuzXTEM02/M01HfJ6m5/M0o3PAqtkJBR6fTXnOIZ2fdmmmI55pep5pOuLzND2fp+k2P1V4fKr0vWfXrl2xefNm0edU6ifgAwICUF1dXesfW123bh3KysrQs2dP7N69GwMHDkR4eDjCwsLwb//2b9i1y/xfH7hnQAfkF1civmtbBAUFmH7/vhQWyjYWXcRucmwmx2ZyqjRL7fsEik5k1bxdcjoHm7pPxE3jf4cjr20FvF4cXJWKXnPGWrrOS1To1lAz6RMgs6jQTDdsJsdmxrCbnArNODuN0Wl+qtJMN+wmx2ZybCanSjPOTznVZ6dSPwHfp08flJeXY8mSJZgwYQI++eQTLFu2DDExMYiKikJeXh7atm1b8/6RkZHIzfX9KwS+/lbi9LkSxP2flEatMToyBMuf7It7pn6IJf95B56adCv+/No3jfpYAPg4LQ2dYyMa/f4N2bt3b4N/lpqaijFjxjT454mJiU2+fx1drRl8dDParOTMefyj7xM1b7vO5SI0JgoICAC8XgQEBiIsJhKurDxDn18i7eM0RHSMFn2MFc3swOzHZ919Bgv3mpF9BgXOtPoaNlbGil/mh+tcLj599EWfH2O00+VUeHw2pRsAfPzw0ka/r12a6Yhnmn5nmo74PE3P52lG54BVsxMKPD6bOjshmJ92aaYjnml6nmk64vM0PZ+n6TY/VXh86va9Z11K/QR8p06dsHr1aqxduxa333479u3bh4ceeqjm9d8jIyNRUPDLv/BbUFCAdu3ambrGNc8OxOq3v8ORHwoxY2k6Zo6/Bd07tzZ1Db48//zzVi9BS2Z0q8grRuHRHxE3ciAAIO6B3yD/u0y//wqgv3CvyZnVzE57jfvMGHaTYzM5nmly3GfG8HmaHPeaHJvJsZkxPNPkuNfk+DxNjvvMGHbzTakL8AAwdepUZGdno7CwEOvWrcOpU6dqLsD3798fX331FcrKylBeXo4dO3Zg4MCBpq1t7LA43BATjuVvfAsA+CmvHH96ZR9eWzQIAQq9Es2ZM2esXoKWzOr25bx1uOXx+/DAzldw8+R7kT5/vSn36w/ca3JmNrPLXuM+M4bd5NhMjmeaHPeZMXyeJse9JsdmcmxmDM80Oe41OT5Pk+M+M4bdfFPuAnxdhw4dqrkA37p1azz33HMYMmQIhgwZgqeffhpRUVGmrSXlo1NIGL8Z1dXemts2bD6B307ccunfmlDC66+/bvUStGRWt+KTWfjf+5/Be7+dhf+9708oPpnViI9SE/eanJnN7LLXuM+MYTc5NpPjmSbHfWYMn6fJca/JsZkcmxnDM02Oe02Oz9PkuM+MYTfflHoN+LpcLhcyMzNrLsADwEMPPYSHHnrI0nUREZF9hcZEovczvwcAHFqzGQVHMgEAvRc8AkdLJ1xZeTi05n30XvAInK1DERAYiC/nroUjLAS9/jgWQU4HTm9JR3XFBXQbPwSO0GAEOhz4fPoqi78y/2uoXcKiSfjVHd2wdcQCAED89JEIj22HqnI39i/diJv/cC/adLsekbfGIWN5Ms5tz7D06yAiIhnOzqbh/CQiujZxfhqn2+xU+ifgw8LC4PF4al2AJ9/69etn9RK0xG5ybCbHZnJmN+v20BB8nZiML59ah+4T7gEAhF3fDtWVbux+NgkRna9DYAsH9i/diPR563HBVQFnm3Dc9MjdgNcLr8cD17k85GacQPr89cj+4lucfHeHqV8DLNpr9bUDgL0vvFHzUzCBLRxoFdceu59NQnWlG2Gx7XDk1a1In78epZnnkbWj8f+weXPj41OOzeTYzBh2kzOzGWdn0+g8P/nYNIbd5NhMjs3k+L2nMfze0zelL8CTMXPmzLF6CVpiNzk2k2MzObObhcZEwpWVi+oKN4KCnRdvuy4Srqw8AEBFfgmC24YDAMI7RSMgMBDuwlK07tIBmVt348CLb+PWmf9R8/lih9yOc59+berXAIv2Wn3t6gpuG46Kn/9BJld2PkLbRwIAwjtGw5WdB2+1x9Q1X46PTzk2k2MzY9hNzsxmnJ1No/P85GPTGHaTYzM5NpPj957G8HtP33gB3obGjRtn9RK0xG5ybCbHZnJmNyvLzkdYTBSCglugutJ98bafLt4GACFtI1BZUIqw2HboOftB7FuyAQDgysmHu9iF6nI3AltcfIU3K78ptmKv1deursqCUoREtgIAhLWPRFlOPgCg65g7cfKdz01db118fMqxmRybGcNucmY24+xsGp3nJx+bxrCbHJvJsZkcv/c0ht97+qb0a8ATXatG71mDqgo3PO4qBDodOLz2AxzftM3qZZHNcJ/V7/jbn+KOpx8GvF4cXr8FfZdMxp7nkhAU3AIJiyah+HQOPBeqcFfSUyj6/iz6LZmMr5cn4/imbbhj/ngAwInk7QCAG8cOtvyispkaatdz9ij8qvdNSFg4EXsXvoniUzlIWDQJnsoLcJ3LBQBExnfGwZXvWP0lkMZ4ppFZuNeuxNnZNJyfZCWeaWQW7rUrcX4ap9vs5AV4IkVtn5yIohNZaNO9I0akJeLstgMo/6nA6mWRzXCfXaksOx87Z6+ueXvPc0kAgP3L3qr1fluGzb/iY3fNWVPr7YwVKX5bp4oaavfNy+/im5ffrbn98NrNV3zs9seWm7RKsjOeaWQW7rXaODubhvOTrMYzjczCvVYb56dxus1OvgSNDa1fv97qJWhJ1W6Fx87AXeRCWEwU2g+IR8LCiQCAqNu6ov+fH6/3NrOo2kxlqja7fJ8NfnUuwjtGAwC6jR+CHpOG13ubWVRtpjp2k2MzOVWbcXbaj6rdOD/thc3k2MwYVbtxftqLys1UnZ8qN1MZu/nGC/A2lJqaavUStKRqt+i+PVBZWIr8704jJ/0wIm5oj9AOUbjtydE4uCq13tvMomozlana7PJ9lvFSCnrNHYtApwNdRg3CsY0f13ubWVRtpjp2k2MzOVWbcXbaj6rdOD/thc3k2MwYVbtxftqLys1UnZ8qN1MZu/nGC/AAWoU7ERHawu/3ExHaAq3C6/+XeZtTWlqa3+/DjlTrdlfSPDzwxcsY/u4iZCxPhsddBQDIWJmCIUnzUPT92Zpf1arvNjOo1kwHqjWrb58VHv0RXo8H/ZY+hu83fgJvVXW9t5nFjGbO8JZwhIf4/X4AwBEeAmd4S7/fj5262amZ3ajWjLPTvlTrxvl5EeeAHJsRFOzG+WlPKjZTfX6a1YyzQE73ZnwNeACRrYNx+qNxKC6t/1/NbS6twp2IbB3s1/sg+7j02mg33D8Av1k5HTnp36EitwiFx84gLLYdMv+5p+Z967uNqDEa2mcZK1Jw98YFSH9qXc371nebXQS3jcCYPX+Du7Tc7/flDG+J4LYRfr8fM5jVzU7NyL84O8ksnJ8XcQ7IsRmpiPOTzML5eRFngZzuzXgB/meRrYNtc3F89OjRVi9BS6p2y9ySjriRA9Fz1gPY8/wb6DFxGI5tSEP8lPvx+fRVAFDvbWZQtZnKVG1Wd5+5zuaiLCu31vvUd5sZzGoW3DbCNk9OwG6GqPr4VJmqzTg77UfVbpyfnANGsBmp2o3z015Ubqbq/DSzGWeBnM7N+BI0NtS/f3+rl6AllbvtX/YWbhx3F0I7ROH6e/og46UUXHCVI/LWODjCQq64zSwqN1OVys0u7bOW0W2sXkotKjdTGbvJsZmcys04O+1F5W6cn/bBZnJsZozK3Tg/7UP1ZirOT9WbqYrdfOMFeBuaO3eu1UvQkkrdUvs+gaITWTVvl5zOwabuE3HT+N/hyGtbAa8XB1elotecsfj1tJFX3GYWlZrpQqVmDe2z8vOFlq6rLpWa6YTd5NhMTqVmnJ32plI3zk/7YjM5NjNGpW6cn/alWjMd5qdqzXTBbr7xJWiINJKxIqXmv13ncvHpoy/W+vP6biMy6uOHlzbqNiIilXF2ktk4P4nIDjg/yWycn2Rn/Al4G+rSpYvVS9ASu8mxmRybybGZMewmx2ZybCbHZsawmxybybGZHJsZw25ybCbHZnJsZgy7+cYL8Db0ww8/WL0ELbGbHJvJsZkcmxnDbnJsJsdmcmxmDLvJsZkcm8mxmTHsJsdmcmwmx2bGsJtvvABPREREREREREREROQHvABvQ0OHDrV6CVpiNzk2k2MzOTYzht3k2EyOzeTYzBh2k2MzOTaTYzNj2E2OzeTYTI7NjGE333gB3oZGjx5t9RK0xG5ybCbHZnJsZgy7ybGZHJvJsZkx7CbHZnJsJsdmxrCbHJvJsZkcmxnDbr45rF4ANb8pU6YgOTnZ6mVox8puoTGR6P3M7wEAh9ZsRsGRTABA7wWPwNHSCVdWHg6teR9tbroe3ScMhdfrxaG/vg93SRl6/XEsgpwOnN6SjuqKC+g2fggcocEIdDjw+fRVfl0395qc1c0au9d6L3gEztahCAgMxJdz18IRFmLZXrO6ma7YTY7N5KxupuP8tLqZrnR4nqbS7AT3miFsJsdmxuhwpqk0O8G9ZojVzXScn1Y30xW7+cYL8NRolQUlcJeWW7oGZ3hLBLeNsHQN/tDtoSH4OjEZ5f8qRMILE/DVn15F2PXtUF3pxv6lGzEgcQoCWzhw82P3orKoFPj5/0f3ScMArxdejweuc3koPXMeuRkncOPYwagoKLH6yzKMe81/GrvX9i/dCABIWDQJzjbhuHHcYFvutcuZte/strfM6KZ7M55p/sP5+QsV9hlsutc4O6+Oc0COzRpHhXPNDh3r4uysjfvMfzg/r46zQE7nZrwAT41SWVCCd/pOR1VphaXrcISHYMyev9nqAMHPfzPsysqFt9qDoGDnxduui4QrKw8AUJFfguC24YiM74wPRy9EdJ/u6DJqEFp36YATKZ+h4OiPSHhhAtLnrQcAxA65HTtmvGzp12QU95p/NXavlZ8vRHinaAQEBsJdWGrLvXY5M/ednfaWWd10bsYzzb84Py9SZZ/BpnuNs7NhnANybNY4qpxrunesD2fnL7jP/Ivzs2GcBXK6N+NrwNuQP37tw11abvlQAoCq0gq//W2Xlb8uU5adj7CYKAQFt0B1pfvibT9dvA0AQtpGoLKgFMWZP6G6wo3KolK0CG8JV04+3MUuVJe7Edji4t+nhXeMhis7D95qj9/Xzb0mZ/WvZTV2r4XFtkPP2Q9i35INAGDpXjOjmZn7zp/n2OXs1E3nZjzT/EvH+WnnfQab7jUdZyc4BwxhMzl/NVPlXLuWzzSVZidsPj/tuM+g6fw0qxlngZzuzXgB3oZWrlxp9RK0ZGW3429/il5PjcOAF6fg2P/7GH2XTIbrbC6CglsgYdEkFJ/OgedCFY5v2oYBiVNwy+P344f3duL4pm349fR/x8CXpuFE8nYAwI1jB+PkO5+bsm7uNTmrmzV2r92V9BSCnA70WzIZIe1aW7rXrG6mK3aTYzM5q5vpOD+tbqYrHZ6nqTQ7wb1mCJvJsZkxOpxpKs1OcK8ZYnUzHeen1c10xW6+8SVobGj37t1WL0FLVnYry87Hztmra97e81wSAGD/srdqvV/OrkPI2XWo1m275qyp9XbGihS/rvVy3GtyVjdr7F7bMmz+FR9r1V6zupmu2E2OzeSsbqbj/LS6ma50eJ6m0uwE95ohbCbHZsbocKapNDvBvWaI1c10nJ9WN9MVu/nGn4AnIiIiIiIiIiIiIvID/gS8DT366KNWL0FL7CbHZnJsJqdKs9F71qCqwg2PuwqBTgcOr/0Axzdts3pZDVKhG5vZH5vJsZkx7CanQjPOAWN06qZKM92wmxybybGZnCrNdJoDUKSb6s14Ad6GOnbsaPUStMRucmwmx2ZyKjXbPjkRRSey0KZ7R4xIS8TZbQdQ/lOB1cuqlyrd2Mze2EyOzYxhNzlVmnEOGKNLN5Wa6YTd5NhMjs3kVGqmyxyAQt1UbsaXoLGhxYsXW70ELbGbHJvJsZmcis0Kj52Bu8iFsJgotB8Qj4SFEwEAUbd1Rf8/P2718gAFu13ebPCrcxHeMRoA0G38EPSYNNzq5QEKNtMBm8mxmTHsJqdaM85OY1Sfnyo20wG7ybGZHJvJqdiM81NOxdmp5AX4AwcOoG/fvggJCUFCQgI2bNiA0NBQeDweq5dGRESE6L49UFlYivzvTiMn/TAibmiP0A5RuO3J0Ti4KtXq5Snp8mYZL6Wg19yxCHQ60GXUIBzb+LHVyyMiIj/j7DSG85OI6NrG+Smn4uxU7iVoMjIycOedd2Lx4sVITk7G1q1bMWPGDMTHxyMwUMm/L1BObGysafcVEdceg16ZieC2EagsKMEXs/4bJadyTLv/5mRWt94LHkHnkQMQ0ek6vDdoFopOZJlyv/5gVjPuMznuM/+4K2keAgICEBHXHjum/wUedxUAIGNlCoYkzUP2jm+U+RU3VbrV16zw6I/wejzot/QxfL/xE3irqq1eJsAzzRCeaXJ8nmYM95qcynMAnJ0+6TI/eaYZwzNNjs/T5LjP5FSfA+D8vCqVZ6dyV7RnzpyJadOm4cknn0RcXBxmzJiBDh06oGfPnlYvTRsrV6407b4GJk7FkVe34r3fzsLRNz7EwMSppt13czOr248f7cU/H3gepWfOm3J//mRWM+4zOe4z/9g+ORHvDZqNz6f9BQNXTEdIu9bAz7/iFhbbDpn/3GP1Emuo0q2hZhkrUhCd0AOn3t9l9RJr8EyT45kmx+dpxnCvyak+Bzg7r06X+ckzzRieaXJ8nibHfSanwxzg/GyYyrNTqQvwJ0+exM6dOzFz5sxatzudzpoL8P/+7/+OmJgYPPTQQxatUn1z5swx5X5Colqh7S2dcWrzlwCAU+/tQmR8ZwRHtTLl/pubWd3+te8YyrLyTLkvfzOjGfeZMdxn/pW5JR1Znx1Ez1kPAAB6TByGYxvSED/lfquXVkO1bnWbuc7moiwr1+pl1cIzTY5nmhyfpxnDvSan+hzg7Gwc1ecnzzRjeKbJ8XmaHPeZnA5zgPPTNxVnp1IvQZORkYE2bdqgU6dONbeVl5fjhx9+qLkAv3r1apw8eRJr165t9OcdOXIkTp486Zc1W+W+++5r8M+OHDmCd955p8E/nzRpkvj+WlW3wFTcWOu2sNh2KMvOA7xeAIDX44ErOx9hHaJQmVcsvo/GGnrPUBQHXRB/3NWawUc3I83QQDerGOmmQjOr9hn8tNfMenxaRZdmdRlpuH/ZWxjx0Ys4tPYDXH9PH6SNW4yBy6ci8tY45H976qofa7TT5ax4fNYl7Xap2ber/wfl5wtF96VrM55pPNPqsvvzNGj8nMNKujSry+gcsGp2QvPnHNL5qXMz3ecnzzQ9m+m2z6DIcw6r6NKsPrrNT52fc/jje8+uXbti8+bNos+p1E/ABwQEoLq6utY/trpu3TqUlZXVXIDv2LGjhSskIqJrVWrfJ2q9nmHJ6Rxs6j4RN43/HY68thXwenFwVSp6zRlr6TpV0lAz6RMgIiLSE2enMZyfRETXNs5POdVnp1I/Ad+nTx+Ul5djyZIlmDBhAj755BMsW7YMMTExiIqKMvx5pX8roYO9e/c2+Ge33HIL4uPjG/zzxMRE8f2VnDmPf/R9otZtrnO5CI2JAgICAK8XAYGBCIuJhMvPv3qU9nEaIjpGiz/uas3go5uRZmigm1WMdFOhmVX7DH7aa2Y9Pq2iS7O6mtIwY0VKzX+7zuXi00df9PkxRjtdzorHZ11N3XsfP7y00e+razOeaTzT6rL78zRo/JzDSro0q8toQ6tmJzR/znFJY+enzs10n5880/Rspts+gyLPOayiS7P66DY/dX7OcYnZ33vWpdRPwHfq1AmrV6/G2rVrcfvtt2Pfvn146KGH+A+wCp05c8aU+6nIK0bh0R8RN3IgACDugd8g/7tMv/9qlr+Y1c1OzGjGfUZsZgy7yfFMk+M+k+PzNGO41+TYTI7N5HimGcO9JsfnaXLcZ3JsZgy7+abUBXgAmDp1KrKzs1FYWIh169bh1KlTvAAv9Prrr5t2X1/OW4dbHr8PD+x8BTdPvhfp89ebdt/NzaxuCQsnYsz+dQiNicLwfyzCiLTm+dtAK5jVjPtMjvuM2E2OZ5oczzQ5Pk8zhntNjnNAjs3keKYZwzNNjs/T5LjP5DgHjGE335R6CZr6HDp0COPGjat5e9asWdi1axfOnTuHu+++G+vWrUPXrl0tXeO1rPhkFv73/mesXoZW9i58E3sXvmn1MrTCfSbHfUakLp5pcjzTjOFek+NeI1IXzzQ5nmly3Gdy3GdEvil9Ad7lciEzM7PWT8C/8sorlq5JB/369bN6CVpiNzk2k2MzObObhcZEovczvwcAHFqzGQVHMgEAvRc8AkdLJ1xZeTi05n30XvAInK1DERAYiC/nroUjLAS9/jgWQU4HTm9JR3XFBXQbPwSO0GAEOhz4fPoqU78OK/ZaQ+0SFk3Cr+7ohq0jFgAA4qePRHhsO1SVu7F/6Ubc/Id70abb9Yi8NQ4Zy5NxbnuG6WsHH5+GsJkcmxnDbnJmNuPsbBqd5ycfm8awmxybybGZHL/3NIbfe/qm3EvQXC4sLAwej4cvQSM0Z84cq5egJXaTYzM5NpMzu1m3h4bg68RkfPnUOnSfcA8AIOz6dqiudGP3s0mI6HwdAls4sH/pRqTPW48Lrgo424TjpkfuBrxeeD0euM7lITfjBNLnr0f2F9/i5Ls7TP0aYNFeq68dAOx94Q0Un7z4L9IHtnCgVVx77H42CdWVboTFtsORV7ciff56lGaeR9aOb0xf9yV8fMqxmRybGcNucmY24+xsGp3nJx+bxrCbHJvJsZkcv/c0ht97+qb0BXgy5vKX7KHGYzc5NpNjMzmzm4XGRMKVlYvqCjeCgp0Xb7suEq6sPABARX4JgtuGAwDCO0UjIDAQ7sJStO7SAZlbd+PAi2/j1pn/UfP5YofcjnOffm3q1wCL9lp97eoKbhuOip//IStXdj5C20cCAMI7RsOVnQdvtcfUNV+Oj085NpNjM2PYTc7MZpydTaPz/ORj0xh2k2MzOTaT4/eexvB7T994AZ6IiOgyZdn5CIuJQlBwC1RXui/e9tPF2wAgpG0EKgtKERbbDj1nP4h9SzYAAFw5+XAXu1Bd7kZgi4uv8Gb1N8Vmq69dXZUFpQiJbAUACGsfibKcfABA1zF34uQ7n5u6XiIiah6cnU3D+UlEdG3i/DROt9mp9GvAk/5G71mDqgo3PO4qBDodOLz2AxzftM3qZZENca9Rczn+9qe44+mHAa8Xh9dvQd8lk7HnuSQEBbdAwqJJKD6dA8+FKtyV9BSKvj+Lfksm4+vlyTi+aRvumD8eAHAieTsA4Maxg6+pb4obatdz9ij8qvdNSFg4EXsXvoniUzlIWDQJnsoLcJ3LBQBExnfGwZXvWP0lKINnGpmFe42aA2dn03B+Ng+eZ2QW7jVqLpyfxuk2O3kB3obWr19v9RJq2T45EUUnstCme0eMSEvE2W0HUP5TgdXLuoJq3XSgWjMd9ppqzXRgdrOy7HzsnL265u09zyUBAPYve6vW+20ZNv+Kj901Z02ttzNWpPhtnb5YsdcaavfNy+/im5ffrbn98NrNV3zs9seWm7TKhqn2+OSZZk8qNuNesyczm3F2No3O81O1x6YO5xkU7KYD1ZrpsNdUa6YDfu9pDL/39I0vQWNDqampVi+hXoXHzsBd5EJYTBTaD4hHwsKJAICo27qi/58fr/c2M6naTWWqNrt8rw1+dS7CO0YDALqNH4Iek4bXe5tZVG2mMjYzht3kVG2m8vxUtZnKVG7G+WkvbCbHZnKqNlN5dkLhbipTtRlnp72wmTHs5hsvwNtQWlqa1UuoV3TfHqgsLEX+d6eRk34YETe0R2iHKNz25GgcXJVa721m8kc3Z3hLOMJDmv3zSjnCQ+AMb9nsn1eHvZbxUgp6zR2LQKcDXUYNwrGNH9d7m1m4z+TM2GdmNvRXp7rs1M1OzYxQeX7yTJNTdZ+B89MyOu81zgE5NjOHyrMTPNMM0WGvcXaaR/d9xlkgp3szvgQN+d1dSfMQEBCAiLj22DH9L/C4qwAAGStTMCRpHrJ3fFPzq1r13aaz4LYRGLPnb3CXllu6Dmd4SwS3jbB0DWaob68VHv0RXo8H/ZY+hu83fgJvVXW9t+mM+6zpzGyoc6e6zOpmp2YS1+r85JlmPs5P7jWjOAfk2My/rtXZCZ5ppuPs5D5rCs4COd2b8QK8DY0ePdrqJdRy6bXRbrh/AH6zcjpy0r9DRW4RCo+dQVhsO2T+c0/N+9Z3m1n81S24bYRtDry6dNlrGStScPfGBUh/al3N+9Z3mxm4z+TM2md2a8hucrqcaSrNT55pcqrtM3B+cq81kZ0aspmcameaDrMTPNMM0WWvcXbqzcx9ZqeOnJ++8SVobKh///5WL6FemVvSkfXZQfSc9QAAoMfEYTi2IQ3xU+6veZ/6bjOLqt1UpmqzunvNdTYXZVm5td6nvtvMoGozlbGZMewmp2ozleenqs1UpnIzzk97YTM5NpNTtZnKsxMKd1OZqs04O+2FzYxhN994Ad6G5s6da/USGrR/2Vu4cdxdCO0Qhevv6YOMl1JwwVWOyFvj4AgLueI2M6ncTVUqN7u011pGt7F6KbWo3ExVbGYMu8mp3EzV+alyM1Wp3ozz0z7YTI7N5FRupurshOLdVKVyM85O+2AzY9jNN16AJ79K7fsEik5k1bxdcjoHm7pPxE3jf4cjr20FvF4cXJWKXnPG4tfTRl5xG1FjNbTXys8XWrouIiIjOD/JLJyfRGQXnJ1kFs5OIpLia8DbUESE+q+HlLEipea/Xedy8emjL9b68/pu8zcduqlGp2YfP7y0Ubf5m07NVMFmxrCbnA7NVJufOjRTjW7NOD/1xWZybCanQzPVZic06aYanZpxduqLzYxhN9/4E/A2NGzYMKuXoCV2k2MzOTaTYzNj2E2OzeTYTI7NjGE3OTaTYzM5NjOG3eTYTI7N5NjMGHbzjRfgbSg1NdXqJWiJ3eTYTI7N5NjMGHaTYzM5NpNjM2PYTY7N5NhMjs2MYTc5NpNjMzk2M4bdfOMFeCIiIiIiIiIiIiIiP+AFeBsaOnSo1UvQErvJsZkcm8mxmTHsJsdmcmwmx2bGsJscm8mxmRybGcNucmwmx2ZybGYMu/nGf4TVhkaPHm3p/YfGRKL3M78HABxasxkFRzIBAL0XPAJHSydcWXk4tOZ9tLnpenSfMBRerxeH/vo+3CVl6PXHsQhyOnB6SzqqKy6g2/ghcIQGI9DhwOfTV/l13VZ305GVzRq7z3oveATO1qEICAzEl3PXwhEWwn2mGTYzht3kdDjTODv1Z3Uzzs9rB5vJsZmc1c04P68dOjxP4+zUH5sZw26+8SfgbWjKlCmW3n+3h4bg68RkfPnUOnSfcA8AIOz6dqiudGP3s0mI6HwdAls4cPNj9+JCWQWqyitRWVCCmx65G/B64fV44DqXh9yME0ifvx7ZX3yLk+/u8Pu6re6mIyubNXaf7V+6Eenz1uOCqwLONuHcZxpiM2PYTU6HM42zU39WN+P8vHawmRybyVndjPPz2qHD8zTOTv2xmTHs5ht/Av5n+UWVKC51+/U+WoU7Edk62K/3oYLQmEi4snLhrfYgKNh58bbrIuHKygMAVOSXILhtOCLjO+PD0QsR3ac7uowahNZdOuBEymcoOPojEl6YgPR56wEAsUNux44ZL1v6NTVFZUEJ3KXllq7BGd4SwW0jLF1Dc2vsPis/X4jwTtEICAyEu7CU+8yPdN9nZjXUvVNdZnSzW7P6cHbWxjPNfzg/a+NeazrOATk2az6cn7XxTPMPzs7auM+aB2eBnM7NeAH+54vvnYclo6Tsgl/vJyK0BU5/NM72F+HLsvMRFhOF8n8Vorry4l9qlP2Uj9jBvQAAIW0jUFlQiuLMn1Bd4UZlUSna3twJrpx8uItdqC53I7DFxa0Z3jEaruw8eKs9ln5NRlUWlOCdvtNRVVph6Toc4SEYs+dvtjp4G7vPwmLboefsB/HVn/4OANxnfqTzPjOzoc6d6jKrm52aNYSz8xc80/yL8/MX3GtNxzkgx2bNi/PzFzzT/Iez8xfcZ82Ds0BO92a8AA+guNTt94vvAFBSdgHFpW6/X4BPTk726+f35fjbn+KOpx8GvF4cXr8FfZdMxp7nkhAU3AIJiyah+HQOPBeqcHzTNgxInIKgkGDsW7wBAUGBuGP+eADAieTtAIAbxw7GyXc+N2Xd/ujmLi23fDABQFVpBdyl5c1+gFi51xq7z+5KegpF359FvyWT8fXyZBzftI37zE903mdmNvRXp7rs1M1OzRrC2fkLnmn+xfn5C+61puMckGOz5sX5+Queaf7D2fkL7rPmwVkgp3szXoC3oZUrV2LOnDmW3X9Zdj52zl5d8/ae55IAAPuXvVXr/XJ2HULOrkO1bts1Z02ttzNWpPh1rZezupuOrGzW2H22Zdj8Kz6W+0wvbGYMu8npcKZxdurP6macn9cONpNjMzmrm3F+Xjt0eJ7G2ak/NjOG3XzjP8JqQ7t377Z6CVpiNzk2k2MzOTYzht3k2EyOzeTYzBh2k2MzOTaTYzNj2E2OzeTYTI7NjGE33/gT8ERERI0wes8aVFW44XFXIdDpwOG1H+D4pm1WL0tpbEZEdG3jHDCG3YiIrm2cA3KqN+MFeBt69NFHrV6ClthNjs3k2ExOpWbbJyei6EQW2nTviBFpiTi77QDKfyqweln1UqUbm9kbm8mxmTHsJqdKM84BY3TpplIznbCbHJvJsZmcSs10mQNQqJvKzfgSNDbUsWNHq5egJXaTYzM5NpNTsVnhsTNwF7kQFhOF9gPikbBwIgAg6rau6P/nx61eHqBgt8ubDX51LsI7RgMAuo0fgh6Thlu9PEDBZjpgMzk2M4bd5FRrxtlpjOrzU8VmOmA3OTaTYzM5FZtxfsqpODt5Ad6GFi9ebPUStMRucmwmx2ZyKjaL7tsDlYWlyP/uNHLSDyPihvYI7RCF254cjYOrUq1eHqBgt8ubZbyUgl5zxyLQ6UCXUYNwbOPHVi8PULCZDthMjs2MYTc51Zpxdhqj+vxUsZkO2E2OzeTYTE7FZpyfcirOTiVfgubAgQOYNm0avvnmG9x6662YOXMmpk2bhtLSUgQGWvd3BpGtg5Hxzn9g5KxPkHE0DwDw0h/7olW4E1MW7bRsXVbpveARdB45ABGdrsN7g2ah6ESW1UvSQkRcewx6ZSaC20agsqAEX8z6b5ScyrF6WUrjXjOGe6353ZU0DwEBAYiIa48d0/8Cj7sKAJCxMgVDkuYhe8c3yvyKmyrqa1Z49Ed4PR70W/oYvt/4CbxV1VYv01Q804zhmSbDfWYM91nz4+w0hvOzNp5pxvBMk+NeM4Z7rflxfsqpPDuV+wn4jIwM3HnnnRg/fjyOHDmCSZMmYcaMGYiPj7f04jsA5BdVYvaLX+H1xYPgcASgf89oPHh3Z/zxJbX+td/Y2FhT7ufHj/binw88j9Iz5025P38zq9vAxKk48upWvPfbWTj6xocYmDjVlPv1B+41ObOawUZ7zcxmvmyfnIj3Bs3G59P+goErpiOkXWvg519xC4tth8x/7rF6iTVU6dZQs4wVKYhO6IFT7++yeok1eKbJ8UyT4z4zhs/T5FSfA5ydV6fL/OSZZgzPNDnuNTk+T5PTYQ5wfjZM5dmp3AX4Sz/t/uSTTyIuLg4zZsxAhw4d0LNnT6uXBgB4b1smjp0uwpIZvZG0eBCm/dculLguWL2sWlauXGnK/fxr3zGUZeWZcl9mMKNbSFQrtL2lM05t/hIAcOq9XYiM74zgqFZ+v29/4F6TM6uZnfaaWc0kMrekI+uzg+g56wEAQI+Jw3BsQxrip9xv9dJqqNatbjPX2VyUZeVavaxaeKbJ8UyT4z4zhs/T5FSfA5ydjaP6/OSZZgzPNDnuNTk+T5PTYQ5wfvqm4uxU6iVoTp48iZ07d+Ktt96qdbvT6UTPnj3x/fff4w9/+AO8Xi8uXLiAZ599Fvff73vDjRw5EidPnmzwz91oBQT9odHr/M//m47MD8ch9ZNT+GjXuUZ/HADcM3QonCgWfUx97rvvvgb/7N1338WoUaMa/PNJkyaJ769VdQtMxY3ij/OHofcMRXGQ/C89rtYMProZaYZ6uoXFtkNZdh7g9QIAvB4PXNn5COsQhcq8pu+LqzHSTYVmVvLHXjPr8WnVXtOlWV1G9t3+ZW9hxEcv4tDaD3D9PX2QNm4xBi6fishb45D/7amrfqzRTpez4vFZl7TbpWbfrv4flJ8vFN2Xrs14pvFMq8vuz9Og8XMOPk+TMzoHrJqd0Pw5h3R+6txMpXNNl8cnzzQ53fcZFHnOwedpcrrNT52fc/jje8+uXbti8+bNos+p1E/AZ2RkoE2bNujUqVPNbeXl5fjhhx/Qs2dPREZG4r333sMXX3yBzZs3Y/r06Zas854BHZBfXIn4rm0RFBRgyRquprBQtrHoInaTYzM5NpNTpVlq3ydqvQZkyekcbOo+ETeN/x2OvLYV8HpxcFUqes0Za+k6L1GhW0PNpE+AzKJCM92wmRybGcNucio04+w0Rqf5qUoz3bCbHJvJsZmcKs04P+VUn51K/QR8QEAAqqur4fF4al7vfd26dSgrK0PPnj0RFRVV874tW7ZEQEDjLn77+luJ0+dKEPd/Uhr1uaIjQ7D8yb64Z+qHWPKfd+CpSbfiz69906iPBYCP09LQOTai0e/fkL179zb4Z6mpqRgzZkyDf56YmCi+v5Iz5/GPvk+IP84f0j5OQ0THaPHHXa0ZfHQz0gz1dHOdy0VoTBQQEAB4vQgIDERYTCRcJvyKm5FuKjSzkj/2mlmPT6v2mi7N6mrKvstY8cv8cJ3LxaePvujzY4x2upwVj8+6mvp4/fjhpY1+X12b8UzjmVaX3Z+nQePnHHyeJmd071k1O6H5c45LGjs/dW6m0rmmy+OTZ5qc7vsMijzn4PM0Od3mp87POS4x+3vPupT6Cfg+ffqgvLwcS5YswalTp/D3v/8dy5YtQ0xMTK2L716vF9OnT8fTTz9t+hrXPDsQq9/+Dkd+KMSMpemYOf4WdO/c2vR1XM3zzz9v9RK0ZEa3irxiFB79EXEjBwIA4h74DfK/y/T7rwD6C/eanFnN7LTXuM+MYTc5NpPjmSbHfWYMn6fJca/JsZkcmxnDM02Oe02Oz9PkuM+MYTfflLoA36lTJ6xevRpr167F7bffjn379uGhhx664h9g/c///E907twZTzxh7t9Ujh0WhxtiwrH8jW8BAD/lleNPr+zDa4sGoZE/jG+KM2fOmHI/CQsnYsz+dQiNicLwfyzCiLTm+Vstq5jV7ct563DL4/fhgZ2v4ObJ9yJ9/npT7tcfuNfkzGoGG+01M5vZCbvJ8UyT45kmx31mDJ+nyXEOyLGZHM80Y3imyXGvyfF5mhzngDHs5ptSL0EDAFOnTsXUqVNr3h4xYkStC/CzZ89GSEgI/uu//sv0taV8dAopH9X+xw02bD6BDZtPmL6Wq3n99dcxfPhwv9/P3oVvYu/CN/1+P2Yxq1vxySz87/3P+P1+zMC9JmdWM9hor5nZzE7YTY5nmhzPNDnuM2P4PE2Oc0COzeR4phnDM02Oe02Oz9PkOAeMYTfflPoJ+PocOnSo5gL8J598gr/+9a/Yv38/Bg8ejMGDB6O0tNTqJRIRERERERERERERXUG5n4C/nMvlQmZmZs0F+LvvvhtVVVVWL0t5/fr1s3oJWmI3OTaTYzM5s5uFxkSi9zO/BwAcWrMZBUcyAQC9FzwCR0snXFl5OLTmffRe8AicrUMREBiIL+euhSMsBL3+OBZBTgdOb0lHdcUFdBs/BI7QYAQ6HPh8+ipTvw4r9lpD7RIWTcKv7uiGrSMWAADip49EeGw7VJW7sX/pRtz8h3vRptv1iLw1DhnLk3Fue4bpawcfn4awmRybGcNucmY24+xsGp3nJx+bxrCbHJvJsZkcv/c0ht97+qb0T8CHhYXB4/Fc8RrwdHVz5syxeglaYjc5NpNjMzmzm3V7aAi+TkzGl0+tQ/cJ9wAAwq5vh+pKN3Y/m4SIztchsIUD+5duRPq89bjgqoCzTThueuRuwOuF1+OB61wecjNOIH3+emR/8S1OvrvD1K8BFu21+toBwN4X3kDxySwAQGALB1rFtcfuZ5NQXelGWGw7HHl1K9Lnr0dp5nlk7fjG9HVfwsenHJvJsZkx7CZnZjPOzqbReX7ysWkMu8mxmRybyfF7T2P4vadvSl+AJ2PGjRtn9RK0xG5ybCbHZnJmNwuNiYQrKxfVFW4EBTsv3nZdJFxZeQCAivwSBLcNBwCEd4pGQGAg3IWlaN2lAzK37saBF9/GrTP/o+bzxQ65Hec+/drUrwEW7bX62tUV3DYcFXnFAABXdj5C20cCAMI7RsOVnQdvtcfUNV+Oj085NpNjM2PYTc7MZpydTaPz/ORj0xh2k2MzOTaT4/eexvB7T9+UfgkaomvV6D1rUFXhhsddhUCnA4fXfoDjm7ZZvSyyGe6z+pVl5yMsJgrl/ypEdaX74m0/5SN2cC8AQEjbCFQWlCIsth16zn4QX/3p7wAAV04+3MUuVJe7Edji4ni1+ptis9XXrq7KglKERLYCAIS1j0TWZxd/5a/rmDtx8p3PTV0v2QvPNDIL99qVODubhvOTrMQzjczCvXYlzk/jdJudvABPpKjtkxNRdCILbbp3xIi0RJzddgDlPxVYvSyyGe6zKx1/+1Pc8fTDgNeLw+u3oO+SydjzXBKCglsgYdEkFJ/OgedCFe5KegpF359FvyWT8fXyZBzftA13zB8PADiRvB0AcOPYwdfUN8UNtes5exR+1fsmJCyciL0L30TxqRwkLJoET+UFuM7lAgAi4zvj4Mp3rP4SSHM808gs3Gu1cXY2DecnWY1nGpmFe602zk/jdJudvABvQ+vXr7d6CVpStVvhsTNwF7kQFhOF1l06oOOwPti78E1E3dYV3cYPwen3v7zitq+e/rspa1O1mcpUbXb5Puu39DHsW7QBpWfOo9v4IQgKdqL9b399xW1H3/jQlLWZ3awsOx87Z6+ueXvPc0kAgP3L3qr1fluGzb/iY3fNWVPr7YwVKX5bpy9W7LWG2n3z8rv45uV3a24/vHbzFR+7/bHlJq2yYao+PlWmajPOTvtRtRvn50WcnU2j8/xU9bGpOlW7cX7ai8rNVJ2f/N7TGH7v6RtfA96GUlNTrV6CllTtFt23ByoLS5H/3WnkpB9GxA3tEdohCrc9ORoHV6XWe5tZVG2mMlWbXb7PMl5KQa+5YxHodKDLqEE4tvHjem8zi6rNVMducmwmp2ozzk77UbUb56e9sJkcmxmjajfOT3tRuZmq81PlZipjN994AR5Aq3AnIkJb+P1+IkJboFV4/f8wQHNKS0tr9s/pDG8JR3hIs39eKUd4CJzhLf3yuf3RrSnuSpqHB754GcPfXYSM5cnwuKsAABkrUzAkaR6Kvj9b86ta9d1mBu41OR32WeHRH+H1eNBv6WP4fuMn8FZV13ubWcxoZua+8+c5djk7ddO5Gc80c3F2Wu9a3mucn/6j8xyoi80aR5Vz7Vo+08D5aZprZZ9Bg/lpVjPOAjndm/ElaABEtg7G6Y/Gobi0/hftby6twp2IbB3s1/vwl+C2ERiz529wl5Zbug5neEsEt42wdA1mufTaaDfcPwC/WTkdOenfoSK3CIXHziAsth0y/7mn5n3ru01X3GvmamifZaxIwd0bFyD9qXU171vfbXZh5r6z094yq5vOzXimmYuz09p9Bu41zk8/sdO+YrPGUeVc071jY3F+cp+ZhfPzIs4COd2b8QL8zyJbB2t7cbyu0aNH++XzBreNsM0Dtz7+6tZUmVvSETdyIHrOegB7nn8DPSYOw7ENaYifcj8+n74KAOq9zQzca3K67DPX2VyUZeXWep/6bjODWc3stu/YTY5nmpwuZxpnp/502Wucn3pjMzl/NrNTp7p0OdM4P/Wm6j6DwvPTzGZ22nucn77xJWhsqH///lYvQUsqd9u/7C3cOO4uhHaIwvX39EHGSym44CpH5K1xcISFXHGbWVRupiqVm13aZy2j21i9lFpUbqYydpNjMzmVm3F22ovK3Tg/7YPN5NjMGJW7cX7ah+rNVJyfqjdTFbv5xgvwNjR37lyrl6Allbql9n0CRSeyat4uOZ2DTd0n4qbxv8OR17YCXi8OrkpFrzlj8etpI6+4zSwqNdOFSs0a2mfl5wstXVddKjXTCbvJsZmcSs04O+1NpW6cn/bFZnJsZoxK3Tg/7Uu1ZjrMT9Wa6YLdfONL0BBpJGNFSs1/u87l4tNHX6z15/XdRmTUxw8vbdRtREQq4+wks3F+EpEdcH6S2Tg/yc74E/A2FBGh5+shWY3d5NhMjs3k2MwYdpNjMzk2k2MzY9hNjs3k2EyOzYxhNzk2k2MzOTYzht184wV4Gxo2bJjVS9ASu8mxmRybybGZMewmx2ZybCbHZsawmxybybGZHJsZw25ybCbHZnJsZgy7+cYL8DaUmppq9RK0xG5ybCbHZnJsZgy7ybGZHJvJsZkx7CbHZnJsJsdmxrCbHJvJsZkcmxnDbr7xAjwRERERERERERERkR/wArwNDR061OolaInd5NhMjs3k2MwYdpNjMzk2k2MzY9hNjs3k2EyOzYxhNzk2k2MzOTYzht18c1i9AGp+o0ePtnoJWrKyW2hMJHo/83sAwKE1m1FwJBMA0HvBI3C0dMKVlYdDa95Hm5uuR/cJQ+H1enHor+/DXVKGXn8ciyCnA6e3pKO64gK6jR8CR2gwAh0OfD59lV/Xzb0mZ3Wzxu613gsegbN1KAICA/Hl3LVwhIVYttesbqYrdpNjMzmrm+k4P61upisdnqepNDvBvWYIm8mxmTE6nGkqzU5wrxlidTMd56fVzXTFbr7xArwNTZkyBcnJyc3+eSsLSuAuLW/2zyvhDG+J4Lb++deV/dWtMbo9NARfJyaj/F+FSHhhAr7606sIu74dqivd2L90IwYkTkFgCwdufuxeVBaVAj///+g+aRjg9cLr8cB1Lg+lZ84jN+MEbhw7GBUFJX5fN/eanJX7DIK9tn/pRgBAwqJJcLYJx43jBlu218xqZta+8+c5djk7ddO9Gc80/9Fxftp5n8Gme03H2QnOAUPYTM6fzVQ4167lM02l2Qmbz0877jNoOj/NbMZZIKdzM16Ap0apLCjBO32no6q0wtJ1OMJDMGbP30w5QMwUGhMJV1YuvNUeBAU7L952XSRcWXkAgIr8EgS3DUdkfGd8OHohovt0R5dRg9C6SwecSPkMBUd/RMILE5A+bz0AIHbI7dgx42VLvyajuNf8q7F7rfx8IcI7RSMgMBDuwlJb7rXLmbnv7LS3zOqmczOeaf7F+XmRKvsMNt1rnJ0N4xyQY7PGUeVc071jfTg7f8F95l+cnw3jLJDTvRlfA54axV1abvlQAoCq0grL/3baH8qy8xEWE4Wg4BaornRfvO2ni7cBQEjbCFQWlKI48ydUV7hRWVSKFuEt4crJh7vYhepyNwJbXPz7tPCO0XBl58Fb7bH0azKKe82/GrvXwmLboefsB7FvyQYAsOVeu5yZ+85Oe8usbjo345nmX5yfF6myz2DTvcbZ2TDOATk2axxVzjXdO9aHs/MX3Gf+xfnZMM4COd2b8SfgbcjKXzHSmZXdjr/9Ke54+mHA68Xh9VvQd8lk7HkuCUHBLZCwaBKKT+fAc6EKxzdtw4DEKQgKCca+xRsQEBSIO+aPBwCcSN4OALhx7GCcfOdzU9bNvSZndbPG7rW7kp5C0fdn0W/JZHy9PBnHN22zbK9Z3UxX7CbHZnJWN9NxflrdTFc6PE9TaXaCe80QNpNjM2N0ONNUmp3gXjPE6mY6zk+rm+mK3XzjBXgbWrlyJebMmWP1MrRjZbey7HzsnL265u09zyUBAPYve6vW++XsOoScXYdq3bZrzppab2esSPHrWi/HvSZndbPG7rUtw+Zf8bFW7TWrm+mK3eTYTM7qZjrOT6ub6UqH52kqzU5wrxnCZnJsZowOZ5pKsxPca4ZY3UzH+Wl1M12xm298CRob2r17t9VL0BK7ybGZHJvJsZkx7CbHZnJsJsdmxrCbHJvJsZkcmxnDbnJsJsdmcmxmDLv5xp+AJyIiaoTRe9agqsINj7sKgU4HDq/9AMc3bbN6WUpjMyKiaxvngDHsRkR0beMckFO9GS/A29Cjjz5q9RK0xG5ybCbHZnIqNds+ORFFJ7LQpntHjEhLxNltB1D+U4HVy6qXKt3YzN7YTI7NjGE3OVWacQ4Yo0s3lZrphN3k2EyOzeRUaqbLHIBC3VRuxpegsaGOHTtavQQtsZscm8mxmZyKzQqPnYG7yIWwmCi0HxCPhIUTAQBRt3VF/z8/bvXyAAW7Xd5s8KtzEd4xGgDQbfwQ9Jg03OrlAQo20wGbybGZMewmp1ozzk5jVJ+fKjbTAbvJsZkcm8mp2IzzU07F2ankBfgDBw6gb9++CAkJQUJCAjZs2IDQ0FB4PB6rl6aFxYsXW70ELbGbHJvJsZmcis2i+/ZAZWEp8r87jZz0w4i4oT1CO0ThtidH4+CqVKuXByjY7fJmGS+loNfcsQh0OtBl1CAc2/ix1csDFGymAzaTYzNj2E1OtWacncaoPj9VbKYDdpNjMzk2k1OxGeennIqzU7mXoMnIyMCdd96JxYsXIzk5GVu3bsWMGTMQHx+PwEAl/77gmhYR1x6DXpmJ4LYRqCwowRez/hslp3KsXpbSei94BJ1HDkBEp+vw3qBZKDqRZfWSlMd9Jsd95h93Jc1DQEAAIuLaY8f0v8DjrgIAZKxMwZCkecje8Y0yv+KmivqaFR79EV6PB/2WPobvN34Cb1W11cs0Fc80OZ5pxnCvyXGvNT/OTmM4P6/EM02OZ5oc95kc95l/cH7KqTw7lbuiPXPmTEybNg1PPvkk4uLiMGPGDHTo0AE9e/a0emnaiI2NNe2+BiZOxZFXt+K9387C0Tc+xMDEqabdd3Mzq9uPH+3FPx94HqVnzptyf/5kVjPuMznuM//YPjkR7w2ajc+n/QUDV0xHSLvWwM+/4hYW2w6Z/9xj9RJrqNKtoWYZK1IQndADp97fZfUSa/BMk+OZJsfnacZwr8mpPgc4O69Ol/nJM80YnmlyfJ4mx30mp8Mc4PxsmMqzU6kL8CdPnsTOnTsxc+bMWrc7nc6aC/C/+c1vMHjwYPTp0wfLly+3aKVqW7lypSn3ExLVCm1v6YxTm78EAJx6bxci4zsjOKqVKfff3Mzq9q99x1CWlWfKffmbGc24z4zhPvOvzC3pyPrsIHrOegAA0GPiMBzbkIb4KfdbvbQaqnWr28x1NhdlWblWL6sWnmlyPNPk+DzNGO41OdXnAGdn46g+P3mmGcMzTY7P0+S4z+R0mAOcn76pODuVegmajIwMtGnTBp06daq5rby8HD/88EPNBfjt27fD6XTiwoUL6NGjByZOnIjo6Oirft6RI0fi5MmTfl+/me67774G/+zdd9/FqFGjGvzzSZMmie+vVXULTMWNtW4Li22Hsuw8wOsFAHg9Hriy8xHWIQqVecXi+2isofcMRXHQBfHHXa0ZfHQz0gwNdLOKkW4qNLNqn8FPe82sx6dVdGlWl5GG+5e9hREfvYhDaz/A9ff0Qdq4xRi4fCoib41D/renrvqxRjtdzorHZ13Sbpeafbv6f1B+vlB0X7o245nGM60uuz9Pg8bPOaykS7O6jM4Bq2YnNH/OIZ2fOjfTfX7yTNOzmW77DIo857CKLs3qo9v81Pk5hz++9+zatSs2b94s+pxK/QR8QEAAqqura/1jq+vWrUNZWVnNBXin0wkAKCsrQ4cOHdC6dWvL1quqwkLZxqKL2E2OzeTYTE6VZql9n6j1eoYlp3OwqftE3DT+dzjy2lbA68XBVanoNWespeu8RIVuDTWTPgEyiwrNdMNmcmxmDLvJqdCMs9MYneanKs10w25ybCbHZnKqNOP8lFN9dir1E/B9+vRBeXk5lixZggkTJuCTTz7BsmXLEBMTg6ioKABAdXU1fve73+Hw4cOYPHlyzQX5q5H+rYQO9u7d2+CfpaamYsyYMQ3+eWJiovj+Ss6cxz/6PlHrNte5XITGRAEBAYDXi4DAQITFRMLl5189Svs4DREdr/5bD/W5WjP46GakGRroZhUj3VRoZtU+g5/2mlmPT6vo0qyupjTMWJFS89+uc7n49NEXfX6M0U6Xs+LxWVdT997HDy9t9Pvq2oxnGs+0uuz+PA0aP+ewki7N6jLa0KrZCc2fc1zS2PmpczPd5yfPND2b6bbPoMhzDqvo0qw+us1PnZ9zXGL29551KfUT8J06dcLq1auxdu1a3H777di3bx8eeuihWv8Aa1BQED777DOcOXMGe/fuRVpamqVrVtHzzz9vyv1U5BWj8OiPiBs5EAAQ98BvkP9dpt9/NctfzOpmJ2Y04z4jNjOG3eR4pslxn8nxeZox3GtybCbHZnI804zhXpPj8zQ57jM5NjOG3XxT6gI8AEydOhXZ2dkoLCzEunXrcOrUqZoL8G63u+blaYKDgxEaGoqWLVtavGL1nDlzxrT7+nLeOtzy+H14YOcruHnyvUifv960+25uZnVLWDgRY/avQ2hMFIb/YxFGpDXP3wZawaxm3Gdy3GfEbnI80+R4psnxeZox3GtynANybCbHM80YnmlyfJ4mx30mxzlgDLv5ptRL0NTn0KFDGDduHADg1KlTePzxxxEYGIjKykoMHz4c//Zv/2b1EpXz+uuvY/jw4abcV/HJLPzv/c+Ycl/+Zla3vQvfxN6Fb/r9fsxgVjPuMznuM2I3OZ5pcjzT5Pg8zRjuNTnOATk2k+OZZgzPNDk+T5PjPpPjHDCG3XxT+gK8y+VCZmZmzU/Ad+/eHTt27LB6WUREZGOhMZHo/czvAQCH1mxGwZFMAEDvBY/A0dIJV1YeDq15H70XPAJn61AEBAbiy7lr4QgLQa8/jkWQ04HTW9JRXXEB3cYPgSM0GIEOBz6fvsrir8z/GmqXsGgSfnVHN2wdsQAAED99JMJj26Gq3I39Szfi5j/cizbdrkfkrXHIWJ6Mc9szLP06iIhIhrOzaTg/iYiuTZyfxuk2O5V7CZrLhYWFwePx1HoNePKtX79+Vi9BS+wmx2ZybCZndrNuDw3B14nJ+PKpdeg+4R4AQNj17VBd6cbuZ5MQ0fk6BLZwYP/SjUiftx4XXBVwtgnHTY/cDXi98Ho8cJ3LQ27GCaTPX4/sL77FyXfN/8tjK/Zafe0AYO8Lb6D45MV/kT6whQOt4tpj97NJqK50Iyy2HY68uhXp89ejNPM8snZ8Y/q6L+HjU47N5NjMGHaTM7MZZ2fT6Dw/+dg0ht3k2EyOzeT4vacx/N7TN6UvwJMxc+bMsXoJWmI3OTaTYzM5s5uFxkTClZWL6go3goKdF2+7LhKurDwAQEV+CYLbhgMAwjtFIyAwEO7CUrTu0gGZW3fjwItv49aZ/1Hz+WKH3I5zn35t6tcAi/Zafe3qCm4bjoqf/yErV3Y+QttHAgDCO0bDlZ0Hb7XH1DVfjo9POTaTYzNj2E3OzGacnU2j8/zkY9MYdpNjMzk2k+P3nsbwe0/feAHehi69Zj7JsJscm8mxmZzZzcqy8xEWE4Wg4BaornRfvO2ni7cBQEjbCFQWlCIsth16zn4Q+5ZsAAC4cvLhLnahutyNwBYXX+HNym+Krdhr9bWrq7KgFCGRrQAAYe0jUZaTDwDoOuZOnHznc1PXWxcfn3JsJsdmxrCbnJnNODubRuf5ycemMewmx2ZybCbH7z2N4feevin9GvCkv9F71qCqwg2PuwqBTgcOr/0Axzdts3pZZEPca9Rcjr/9Ke54+mHA68Xh9VvQd8lk7HkuCUHBLZCwaBKKT+fAc6EKdyU9haLvz6Lfksn4enkyjm/ahjvmjwcAnEjeDgC4cexgyy8qm6mhdj1nj8Kvet+EhIUTsXfhmyg+lYOERZPgqbwA17lcAEBkfGccXPmO1V+CMnimkVm416g5cHY2Dedn8+B5RmbhXqPmwvlpnG6zkxfgye+2T05E0YkstOneESPSEnF22wGU/1Rg9bLIhrjXqDmUZedj5+zVNW/veS4JALB/2Vu13m/LsPlXfOyuOWtqvZ2xIsVv61RRQ+2+efldfPPyuzW3H167+YqP3f7YcpNWqQ+eaWQW7jVqKs7OpuH8bD48z8gs3GvUHDg/jdNtdvIlaGxo/fr1Vi+hXoXHzsBd5EJYTBTaD4hHwsKJAICo27qi/58fr/c2M6naTWWqNrt8rw1+dS7CO0YDALqNH4Iek4bXe5tZVG2mMjYzht3kVG2m8vxUtZnKVG7G+WkvbCbHZnKqNlN5dkLhbipTtRlnp72wmTHs5hsvwNtQamqq1UuoV3TfHqgsLEX+d6eRk34YETe0R2iHKNz25GgcXJVa721mUrWbylRtdvley3gpBb3mjkWg04Euowbh2MaP673NLKo2UxmbGcNucqo2U3l+qtpMZSo34/y0FzaTYzM5VZupPDuhcDeVqdqMs9Ne2MwYdvONF+BtKC0tzeol1HJX0jw88MXLGP7uImQsT4bHXQUAyFiZgiFJ81D0/dmaX9Wq7zaz+KObM7wlHOEhzf55pRzhIXCGt2z2z6vDXis8+iO8Hg/6LX0M32/8BN6q6npvMwv3mZwZ+8zMhv7qVJedutmpmYQO85Nnmpxq+wycn83+eaV03mucA3Js5l86zE7wTDNEh73G2Wke3fcZZ4Gc7s34GvDkd5deG+2G+wfgNyunIyf9O1TkFqHw2BmExbZD5j/31LxvfbfpLLhtBMbs+RvcpeWWrsMZ3hLBbSMsXYMZGtprGStScPfGBUh/al3N+9Z3m664z5rOzIY6d6rLrG52aiZxrc5Pnmnm4/zkXjOKc0COzfzrWp2d4JlmOs5O7rOm4CyQ070ZL8Db0OjRo61eQr0yt6QjbuRA9Jz1APY8/wZ6TByGYxvSED/lfnw+fRUA1HubWfzVLbhthG0OvLp02Wuus7koy8qt9T713WYG7jM5s/aZ3Rqym5wuZ5pK85Nnmpyq+wycn7bDOSDHZnKqnmkqz07wTDNEl73G2ak3M/eZnTpyfvrGl6Cxof79+1u9hAbtX/YWbhx3F0I7ROH6e/og46UUXHCVI/LWODjCQq64zUwqd1OVys0u7bWW0W2sXkotKjdTFZsZw25yKjdTdX6q3ExVqjfj/LQPNpNjMzmVm6k6O6F4N1Wp3Iyz0z7YzBh2840X4G1o7ty5Vi+hRmrfJ1B0Iqvm7ZLTOdjUfSJuGv87HHltK+D14uCqVPSaMxa/njbyitvMpFI3XajUrKG9Vn6+0NJ11aVSM12wmTHsJqdSM13mp0rNdKFaM85P+2IzOTaTU6mZLrMTinXThUrNODvti82MYTff+BI0ZImMFSk1/+06l4tPH32x1p/XdxtRU3z88NJG3UZEpDLOTzIb5ycR6Y6zk8zG2UlEdfEn4G2oS5cuVi9BS+wmx2ZybCbHZsawmxybybGZHJsZw25ybCbHZnJsZgy7ybGZHJvJsZkx7OYbL8Db0A8//GD1ErTEbnJsJsdmcmxmDLvJsZkcm8mxmTHsJsdmcmwmx2bGsJscm8mxmRybGcNuvvECPBERERERERERERGRH/ACvA0NHTrU6iVoid3k2EyOzeTYzBh2k2MzOTaTYzNj2E2OzeTYTI7NjGE3OTaTYzM5NjOG3XzjBXgbGj16tNVL0BK7ybGZHJvJsZkx7CbHZnJsJsdmxrCbHJvJsZkcmxnDbnJsJsdmcmxmDLv55rB6AdT8pkyZguTkZMvuPzQmEr2f+T0A4NCazSg4kgkA6L3gEThaOuHKysOhNe+jzU3Xo/uEofB6vTj01/fhLilDrz+ORZDTgdNb0lFdcQHdxg+BIzQYgQ4HPp++yq/rtrqbjqxs1th91nvBI3C2DkVAYCC+nLsWjrAQ7jPNsJkx7Canw5nG2ak/q5txfl472EyOzeSsbsb5ee3Q4XkaZ6f+2MwYdvONF+B/ll9UieJSt1/vo1W4E5Gtg/16Hyro9tAQfJ2YjPJ/FSLhhQn46k+vIuz6dqiudGP/0o0YkDgFgS0cuPmxe1FZVAoAqCwoQfdJwwCvF16PB65zeSg9cx65GSdw49jBqCgosfrLMqyyoATu0nJL1+AMb4ngthGWrqG5NXaf7V+6EQCQsGgSnG3CceO4wdxnfqL7PjOroe6d6jKjm92a1Yezszaeaf7D+Vkb91rTcQ7IsVnz4fysjWeaf3B21sZ91jw4C+R0bsYL8D9ffO88LBklZRf8ej8RoS1w+qNxtr8IHxoTCVdWLrzVHgQFOy/edl0kXFl5AICK/BIEtw1HZHxnfDh6IaL7dEeXUYPQuksHnEj5DAVHf0TCCxOQPm89ACB2yO3YMeNlS78moyoLSvBO3+moKq2wdB2O8BCM2fM3Wx28jd1n5ecLEd4pGgGBgXAXlnKf+ZHO+8zMhjp3qsusbnZq1hDOzl/wTPMvzs9fcK81HeeAHJs1L87PX/BM8x/Ozl9wnzUPzgI53ZvxNeABFJe6/X7xHQBKyi74/afsAVj+ax9l2fkIi4lCUHALVFde/HrLfrp4GwCEtI1AZUEpijN/QnWFG5VFpWgR3hKunHy4i12oLncjsMXFvxsK7xgNV3YevNUev6/bH93cpeWWDyYAqCqt8MvfElq51xq7z8Ji26Hn7Aexb8kGAOA+8yOd95mZDf3VqS47dbNTs4Zwdv6CZ5p/cX7+gnut6TgH5NiseXF+/oJnmv9wdv6C+6x5cBbI6d6MF+BtaOXKlZbe//G3P0Wvp8ZhwItTcOz/fYy+SybDdTYXQcEtkLBoEopP58BzoQrHN23DgMQpuOXx+/HDeztxfNM2/Hr6v2PgS9NwInk7AODGsYNx8p3PTVm31d10ZGWzxu6zu5KeQpDTgX5LJiOkXWvuMw2xmTHsJqfDmcbZqT+rm3F+XjvYTI7N5Kxuxvl57dDheRpnp/7YzBh2840vQWNDu3fvtvT+y7LzsXP26pq39zyXBADYv+ytWu+Xs+sQcnYdqnXbrjlrar2dsSLFr2u9nNXddGRls8busy3D5l/xsdxnemEzY9hNToczjbNTf1Y34/y8drCZHJvJWd2M8/PaocPzNM5O/bGZMezmG38CnoiIiIiIiIiIiIjID/gT8Db06KOPWr0ELbGbHJvJsZmcKs1G71mDqgo3PO4qBDodOLz2AxzftM3qZTVIhW5sZn9sJsdmxrCbnArNOAeM0ambKs10w25ybCbHZnKqNNNpDkCRbqo34wV4G+rYsaPVS9ASu8mxmRybyanUbPvkRBSdyEKb7h0xIi0RZ7cdQPlPBVYvq16qdGMze2MzOTYzht3kVGnGOWCMLt1UaqYTdpNjMzk2k1OpmS5zAAp1U7kZX4LGhhYvXmz1ErTEbnJsJsdmcio2Kzx2Bu4iF8JiotB+QDwSFk4EAETd1hX9//y41csDFOx2ebPBr85FeMdoAEC38UPQY9Jwq5cHKNhMB2wmx2bGsJucas04O41RfX6q2EwH7CbHZnJsJqdiM85PORVnp5IX4A8cOIC+ffsiJCQECQkJ2LBhA0JDQ+HxeCxdV2TrYPyYNg69ekTV3PbSH/ti/Qu/tXRdVum94BE8uPuvmJSditY3drB6OdqIiGuPez9Yigd2voJ7P1iKiLj2Vi9JedxrxnCv+U903x6oLCxF/nenkZN+GBE3tEdohyjc9uRoHFyVavXylHR5s4yXUtBr7lgEOh3oMmoQjm382OrlmYpnmjE802S4z4zhPvMfzk5jOD8v4plmDM80Oe41Y7jX/IfzU07F2ancS9BkZGTgzjvvxOLFi5GcnIytW7dixowZiI+PR2CgtX9fkF9UidkvfoXXFw9CwsPvo88tv8KDd3dGz9HvWbquumJjY025nx8/2osjr/8T9/7PElPuz9/M6jYwcSqOvLoVp97fhS4PDsLAxKn4aMwiU+67uXGvyZnVDDbaa2Y28+WupHkICAhARFx77Jj+F3jcVQCAjJUpGJI0D9k7vlHmV9xU6VZfs8KjP8Lr8aDf0sfw/cZP4K2qtnqZAM80Q3imyXGfGcPnaXIqzwFwdvqky/zkmWYMzzQ57jU5Pk+TU30OgPPzqlSencr9BPzMmTMxbdo0PPnkk4iLi8OMGTPQoUMH9OzZ0+qlAQDe25aJY6eLsGRGbyQtHoRp/7ULJa4LVi+rlpUrV5pyP//adwxlWXmm3JcZzOgWEtUKbW/pjFObvwQAnHpvFyLjOyM4qpXf79sfuNfkzGpmp71mVrPG2D45Ee8Nmo3Pp/0FA1dMR0i71sDPv+IWFtsOmf/cY/USa6jSraFmGStSEJ3QA6fe32X1EmvwTJPjmSbHfWYMn6fJqT4HODuvTpf5yTPNGJ5pctxrcnyeJqfDHOD8bJjKs1OpC/AnT57Ezp07MXPmzFq3O53OWhfgy8vL0blzZzz99NMWrBL4z/+bjlkPx2Pv4X/ho13nLFnD1cyZM8fqJWjJjG5hse1Qlp0HeL0AAK/HA1d2PsI6RPn8WBVxr8mZ1cxOe03FfZa5JR1Znx1Ez1kPAAB6TByGYxvSED/lfquXVkO1bnWbuc7moiwr1+pl1aJaMx3wTJPjPjOGz9PkVNtrnJ3GqD4/VWymA55pctxrcnyeJqfiPuP8lFNxdir1EjQZGRlo06YNOnXqVHNbeXk5fvjhh1oX4F966SXcfvvtjf68I0eOxMmTJxv8czdaAUF/aPTnu2dAB+QXVyK+a1sEBQWgutrb+I8dOhROFDf6/Rty3333NfhnR44cwTvvvNPgn0+aNEl8f62qW2AqbhR/nD8MvWcoioPkv3VwtWbw0c1IM9igG5s1/17j47N+Zjery0jD/cvewoiPXsShtR/g+nv6IG3cYgxcPhWRt8Yh/9tTV/1Yo50uZ8Xjsy5pt0vNvl39Pyg/Xyi6L12b8fHJM60uuzcDn3MYokuzuozOAatmJzR/ziGdnzo34+NTjs3kdG+Ga/w5hy7N6qPb/NT5OYc/vvfs2rUrNm/eLPqcSv0EfEBAAKqrq2v9Y6vr1q1DWVlZzQX4c+fOYc+ePfj3f/93S9YYHRmC5U/2xdCpH+J0VgmemnSrJesgPbnO5SI0JgoICAAABAQGIiwmEi6b/IobqYN7rfml9n0CRSeyat4uOZ2DTd0n4qbxv8OR17YCXi8OrkpFrzljLV2nShpqJn0CRMQzjczAfdb8ODuN4fyk5sAzjczCvdb8OD/lVJ+dSv0EfJ8+fVBeXo4lS5ZgwoQJ+OSTT7Bs2TLExMQgKurir64888wzWLx4MQ4ePNjoz+vrbyVOnytB3P9JadTnWvPsQKx++zsc+aEQM5am40Dyv9e8LnxjfJyWhs6xEY1636vZu3dvg392yy23ID4+vsE/T0xMFN9fyZnz+EffJ8Qf5w9pH6chomO0+OOu1gw+uhlphnq6VeQVo/Doj4gbORCn3t+FuAd+g/zvMlGZ1/TfivDFSDcVmlnJH3vNrMenVXtNl2Z1NWXfZaz4ZX64zuXi00df9PkxRjtdzorHZ11Nfbx+/PDSRr+vrs14pvFMq8vuz9Og8XMOPk+TM7r3rJqd0Pw5xyWNnZ86N1PpXNPl8ckzTU73fQZFnnPweZqcbvNT5+ccl5j9vWddSv0EfKdOnbB69WqsXbsWt99+O/bt24eHHnqo5qffd+/ejaCgINHLzzSnscPicENMOJa/8S0A4Ke8cvzplX14bdGgS3/Rp4QzZ86Ycj8JCydizP51CI2JwvB/LMKItOZ5UFnFrG5fzluHWx6/Dw/sfAU3T74X6fPXm3K//sC9JmdWM9hor5nZzE7YTY5nmhzPNDnuM2P4PE2Oc0COzeR4phnDM02Oe02Oz9PkOAeMYTfflPoJeACYOnUqpk6dWvP2iBEjal2AP3HiBIYPH45z587B5XLhlltuwYQJE0xZW8pHp5DyUe3XVtqw+QQ2bD5hyv031uuvv47hw4f7/X72LnwTexe+6ff7MYtZ3YpPZuF/73/G7/djBu41ObOawUZ7zcxmdsJucjzT5HimyXGfGcPnaXKcA3JsJsczzRieaXLca3J8nibHOWAMu/mm3AX4ug4dOoRx48YBAGbNmoVZs2YBAN544w0cPXrUtIvvREREREREREREREQSSl+Ad7lcyMzMrPkJ+Ms117+ia0f9+vWzeglaYjc5NpNjMzmzm4XGRKL3M78HABxasxkFRzIBAL0XPAJHSydcWXk4tOZ99F7wCJytQxEQGIgv566FIywEvf44FkFOB05vSUd1xQV0Gz8EjtBgBDoc+Hz6KlO/Div2WkPtEhZNwq/u6IatIxYAAOKnj0R4bDtUlbuxf+lG3PyHe9Gm2/WIvDUOGcuTcW57hulrBx+fhrCZHJsZw25yZjbj7GwanecnH5vGsJscm8mxmRy/9zSG33v6ptRrwNcVFhYGj8dT7wV4aticOXOsXoKW2E2OzeTYTM7sZt0eGoKvE5Px5VPr0H3CPQCAsOvbobrSjd3PJiGi83UIbOHA/qUbkT5vPS64KuBsE46bHrkb8Hrh9XjgOpeH3IwTSJ+/HtlffIuT7+4w9WuARXutvnYAsPeFN1B88uK/SB/YwoFWce2x+9kkVFe6ERbbDkde3Yr0+etRmnkeWTu+MX3dl/DxKcdmcmxmDLvJmdmMs7NpdJ6ffGwaw25ybCbHZnL83tMYfu/pm9IX4MmYSy/ZQzLsJsdmcmwmZ3az0JhIuLJyUV3hRlCw8+Jt10XClZUHAKjIL0Fw23AAQHinaAQEBsJdWIrWXTogc+tuHHjxbdw68z9qPl/skNtx7tOvTf0aYNFeq69dXcFtw1GRVwwAcGXnI7R9JAAgvGM0XNl58FZ7TF3z5fj4lGMzOTYzht3kzGzG2dk0Os9PPjaNYTc5NpNjMzl+72kMv/f0TemXoCG6Vo3eswZVFW543FUIdDpweO0HOL5pm9XLIpvhPqtfWXY+wmKiUP6vQlRXui/e9lM+Ygf3AgCEtI1AZUEpwmLboefsB/HVn/4OAHDl5MNd7EJ1uRuBLS6OV6u/KTZbfe3qqiwoRUhkKwBAWPtIZH128Vf+uo65Eyff+dzU9ZK98Ewjs3CvXYmzs2k4P8lKPNPILNxrV+L8NE632ckL8ESK2j45EUUnstCme0eMSEvE2W0HUP5TgdXLIpvhPrvS8bc/xR1PPwx4vTi8fgv6LpmMPc8lISi4BRIWTULx6Rx4LlThrqSnUPT9WfRbMhlfL0/G8U3bcMf88QCAE8nbAQA3jh18TX1T3FC7nrNH4Ve9b0LCwonYu/BNFJ/KQcKiSfBUXoDrXC4AIDK+Mw6ufMfqL4E0xzONzMK9VhtnZ9NwfpLVeKaRWbjXauP8NE632ckL8Da0fv16q5egJVW7FR47A3eRC2ExUWjdpQM6DuuDvQvfRNRtXdFt/BCcfv/LK2776um/m7I2VZupTNVml++zfksfw75FG1B65jy6jR+CoGAn2v/211fcdvSND01Zm9nNyrLzsXP26pq39zyXBADYv+ytWu+3Zdj8Kz5215w1td7OWJHit3X6YsVea6jdNy+/i29efrfm9sNrN1/xsdsfW27SKhum6uNTZao24+y0H1W7cX5exNnZNDrPT1Ufm6pTtRvnp72o3EzV+cnvPY3h956+8TXgbSg1NdXqJWhJ1W7RfXugsrAU+d+dRk76YUTc0B6hHaJw25OjcXBVar23mUXVZipTtdnl+yzjpRT0mjsWgU4HuowahGMbP673NrOo2kx17CbHZnKqNuPstB9Vu3F+2gubybGZMap24/y0F5WbqTo/VW6mMnbzjRfgAbQKdyIitIXf7ycitAVahdf/DwM0p7S0tGb/nM7wlnCEhzT755VyhIfAGd7SL5/bH92a4q6keXjgi5cx/N1FyFieDI+7CgCQsTIFQ5Lmoej7szW/qlXfbWbgXpPTYZ8VHv0RXo8H/ZY+hu83fgJvVXW9t5nFjGZm7jt/nmOXs1M3nZvxTDMXZ6f1ruW9xvnpPzrPgbrYrHFUOdeu5TMNnJ+muVb2GTSYn2Y14yyQ070ZX4IGQGTrYJz+aByKS+t/0f7m0ircicjWwX69D38JbhuBMXv+BndpuaXrcIa3RHDbCEvXYJZLr412w/0D8JuV05GT/h0qcotQeOwMwmLbIfOfe2ret77bdMW9Zq6G9lnGihTcvXEB0p9aV/O+9d1mF2buOzvtLbO66dyMZ5q5ODut3WfgXuP89BM77Ss2axxVzjXdOzYW5yf3mVk4Py/iLJDTvRkvwP8ssnWwthfH6xo9erRfPm9w2wjbPHDr469uTZW5JR1xIwei56wHsOf5N9Bj4jAc25CG+Cn34/PpqwCg3tvMwL0mp8s+c53NRVlWbq33qe82M5jVzG77jt3keKbJ6XKmcXbqT5e9xvmpNzaT82czO3WqS5czjfNTb6ruMyg8P81sZqe9x/npG1+Cxob69+9v9RK0pHK3/cvewo3j7kJohyhcf08fZLyUgguuckTeGgdHWMgVt5lF5WaqUrnZpX3WMrqN1UupReVmKmM3OTaTU7kZZ6e9qNyN89M+2EyOzYxRuRvnp32o3kzF+al6M1Wxm2+8AG9Dc+fOtXoJWlKpW2rfJ1B0Iqvm7ZLTOdjUfSJuGv87HHltK+D14uCqVPSaMxa/njbyitvMolIzXajUrKF9Vn6+0NJ11aVSM52wmxybyanUjLPT3lTqxvlpX2wmx2bGqNSN89O+VGumw/xUrZku2M03vgQNkUYyVqTU/LfrXC4+ffTFWn9e321ERn388NJG3UZEpDLOTjIb5ycR2QHnJ5mN85PsjD8Bb0MREXq+HpLV2E2OzeTYTI7NjGE3OTaTYzM5NjOG3eTYTI7N5NjMGHaTYzM5NpNjM2PYzTdegLehYcOGWb0ELbGbHJvJsZkcmxnDbnJsJsdmcmxmDLvJsZkcm8mxmTHsJsdmcmwmx2bGsJtvvABvQ6mpqVYvQUvsJsdmcmwmx2bGsJscm8mxmRybGcNucmwmx2ZybGYMu8mxmRybybGZMezmGy/AExERERERERERERH5AS/A29DQoUOtXoKW2E2OzeTYTI7NjGE3OTaTYzM5NjOG3eTYTI7N5NjMGHaTYzM5NpNjM2PYzTeH1Qug5jd69Girl6AlK7uFxkSi9zO/BwAcWrMZBUcyAQC9FzwCR0snXFl5OLTmfbS56Xp0nzAUXq8Xh/76PtwlZej1x7EIcjpweks6qisuoNv4IXCEBiPQ4cDn01f5dd3ca3JWN2vsXuu94BE4W4ciIDAQX85dC0dYiGV7zepmumI3OTaTs7qZjvPT6ma60uF5mkqzE9xrhrCZHJsZo8OZptLsBPeaIVY303F+Wt1MV+zmG38C3oamTJli9RK0ZGW3bg8NwdeJyfjyqXXoPuEeAEDY9e1QXenG7meTENH5OgS2cODmx+7FhbIKVJVXorKgBDc9cjfg9cLr8cB1Lg+5GSeQPn89sr/4Fiff3eH3dXOvyVndrLF7bf/SjUiftx4XXBVwtgm3dK9Z3UxX7CbHZnJWN9NxflrdTFc6PE9TaXaCe80QNpNjM2N0ONNUmp3gXjPE6mY6zk+rm+mK3XzjT8BTo1UWlMBdWm7pGpzhLRHcNsLSNfhDaEwkXFm58FZ7EBTsvHjbdZFwZeUBACrySxDcNhyR8Z3x4eiFiO7THV1GDULrLh1wIuUzFBz9EQkvTED6vPUAgNght2PHjJct/ZqagnvNfxq718rPFyK8UzQCAgPhLiy17V67nFn7zm57y4xuujfjmeY/nJ+/UGGfwaZ7jbPz6jgH5NiscVQ41+zQsS7Oztq4z/yH8/PqOAvkdG7GC/DUKJUFJXin73RUlVZYug5HeAjG7PmbrQ4QACjLzkdYTBTK/1WI6kr3xdt+ykfs4F4AgJC2EagsKEVx5k+ornCjsqgUbW/uBFdOPtzFLlSXuxHY4uLDObxjNFzZefBWeyz9moziXvOvxu61sNh26Dn7QXz1p78DgC332uXM3Hd22ltmddO5Gc80/+L8vEiVfQab7jXOzoZxDsixWeOocq7p3rE+nJ2/4D7zL87PhnEWyOnejBfgbSg5ObnZP6e7tNzyoQQAVaUVcJeW++Xw8Ee3xjr+9qe44+mHAa8Xh9dvQd8lk7HnuSQEBbdAwqJJKD6dA8+FKhzftA0DEqcgKCQY+xZvQEBQIO6YPx4AcCJ5OwDgxrGDcfKdz01ZN/eanJX7DIK9dlfSUyj6/iz6LZmMr5cn4/imbZbtNTOambnv/HmOXc5O3XRuxjPNv3Scn3beZ7DpXtNxdoJzwBA2k/NXM1XOtWv5TFNpdsLm89OO+wyazk+zmnEWyOnejBfgbWjlypWYM2eO1cvQjpXdyrLzsXP26pq39zyXBADYv+ytWu+Xs+sQcnYdqnXbrjlrar2dsSLFr2u9HPeanNXNGrvXtgybf8XHWrXXrG6mK3aTYzM5q5vpOD+tbqYrHZ6nqTQ7wb1mCJvJsZkxOpxpKs1OcK8ZYnUzHeen1c10xW6+8R9htaHdu3dbvQQtsZscm8mxmRybGcNucmwmx2ZybGYMu8mxmRybybGZMewmx2ZybCbHZsawm2/8CXgiIqJGGL1nDaoq3PC4qxDodODw2g9wfNM2q5elNDYjIrq2cQ4Yw25ERNc2zgE51ZvxArwNPfroo1YvQUvsJsdmcmwmp1Kz7ZMTUXQiC226d8SItESc3XYA5T8VWL2seqnSjc3sjc3k2MwYdpNTpRnngDG6dFOpmU7YTY7N5NhMTqVmuswBKNRN5WZ8CRob6tixo9VL0BK7ybGZHJvJqdis8NgZuItcCIuJQvsB8UhYOBEAEHVbV/T/8+NWLw9QsNvlzQa/OhfhHaMBAN3GD0GPScOtXh6gYDMdsJkcmxnDbnKqNePsNEb1+aliMx2wmxybybGZnIrNOD/lVJydvABvQ4sXL7Z6CVpiNzk2k2MzORWbRfftgcrCUuR/dxo56YcRcUN7hHaIwm1PjsbBValWLw9QsNvlzTJeSkGvuWMR6HSgy6hBOLbxY6uXByjYTAdsJsdmxrCbnGrNODuNUX1+qthMB+wmx2ZybCanYjPOTzkVZ6eSL0Fz4MABTJs2Dd988w1uvfVWzJw5E9OmTUNpaSkCA/l3BiqJiGuPQa/MRHDbCFQWlOCLWf+NklM5Vi9Lab0XPILOIwcgotN1eG/QLBSdyLJ6ScrjPpPjPvOPu5LmISAgABFx7bFj+l/gcVcBADJWpmBI0jxk7/hGmV9xU0V9zQqP/givx4N+Sx/D9xs/gbeq2uplmopnmhzPNGO41+S415ofZ6cxnJ9X4pkmxzNNjvtMjvvMPzg/5VSencpdzc7IyMCdd96J8ePH48iRI5g0aRJmzJiB+Ph4XnxvpNjYWNPua2DiVBx5dSve++0sHH3jQwxMnGrafTc3s7r9+NFe/POB51F65rwp9+dPZjXjPpPjPvOP7ZMT8d6g2fh82l8wcMV0hLRrDfz8K25hse2Q+c89Vi+xhirdGmqWsSIF0Qk9cOr9XVYvsQbPNDmeaXJ8nmYM95qc6nOAs/PqdJmfPNOM4Zkmx+dpctxncjrMAc7Phqk8O5W7on3pp92ffPJJxMXFYcaMGejQoQN69uxp9dK0sXLlSlPuJySqFdre0hmnNn8JADj13i5ExndGcFQrU+6/uZnV7V/7jqEsK8+U+/I3M5pxnxnDfeZfmVvSkfXZQfSc9QAAoMfEYTi2IQ3xU+63emk1VOtWt5nrbC7KsnKtXlYtPNPkeKbJ8XmaMdxrcqrPAc7OxlF9fvJMM4Znmhyfp8lxn8npMAc4P31TcXYq9RI0J0+exM6dO/HWW2/Vut3pdNZcgHc6nRg4cCAAYMiQIXj++ed9ft6RI0fi5MmTflq1Ne67774G/+zdd9/FqFGjGvzzSZMmie+vVXULTMWNtW4Li22Hsuw8wOsFAHg9Hriy8xHWIQqVecXi+2isofcMRXHQBfHHXa0ZfHQz0gwNdLOKkW4qNLNqn8FPe82sx6dVdGlWl5GG+5e9hREfvYhDaz/A9ff0Qdq4xRi4fCoib41D/renrvqxRjtdzorHZ13Sbpeafbv6f1B+vlB0X7o245nGM60uuz9Pg8bPOaykS7O6jM4Bq2YnNH/OIZ2fOjfTfX7yTNOzmW77DIo857CKLs3qo9v81Pk5hz++9+zatSs2b94s+pxKXYDPyMhAmzZt0KlTp5rbysvL8cMPP9RcgI+MjMRnn31m4SrVV1go21h0EbvJsZkcm8mp0iy17xO13i45nYNN3Sei1x/H4shrWwGvFwdXpaLffz2GTx990bJ1XqJCt4aaqUqFZrphMzk2M4bd5FRoxtlpjE7zU5VmumE3OTaTYzM5VZpxfsqpPjuVugAfEBCA6upqeDyemtd7X7duHcrKymouwBcVFWHw4MFo2bIlli1bhttvv93n55X+rYQO9u7d2+CfpaamYsyYMQ3+eWJiovj+Ss6cxz/qbGbXuVyExkQBAQGA14uAwECExUTC5edfPUr7OA0RHaPFH3e1ZvDRzUgzNNDNKka6qdDMqn0GP+01sx6fVtGlWV1NaZixIqXmv13nchv1BMhop8tZ8fisq6l77+OHlzb6fXVtxjONZ1pddn+eBo2fc1hJl2Z1GW1o1eyE5s85Lmns/NS5me7zk2eans1022dQ5DmHVXRpVh/d5qfOzzkuMft7z7qUeg34Pn36oLy8HEuWLMGpU6fw97//HcuWLUNMTAyioqIAAD/++CM+++wzLF26FGPHjoXH47F62cppzMvyNIeKvGIUHv0RcSMvviRQ3AO/Qf53mX7/1Sx/MaubnZjRjPuM2MwYdpPjmSbHfSbH52nGcK/JsZkcm8nxTDOGe02Oz9PkuM/k2MwYdvNNqQvwnTp1wurVq7F27Vrcfvvt2LdvHx566KFa/wDrr371KwDAHXfcgTZt2iArK8vCFavpzJkzpt3Xl/PW4ZbH78MDO1/BzZPvRfr89abdd3Mzq1vCwokYs38dQmOiMPwfizAirXn+NtAKZjXjPpPjPiN2k+OZJsczTY7P04zhXpPjHJBjMzmeacbwTJPj8zQ57jM5zgFj2M03pV6CBgCmTp2KqVOn1rw9YsSImgvwJSUlCA0NRVBQEM6cOYPz58/juuuus3C1anr99dcxfPhwU+6r+GQW/vf+Z0y5L38zq9vehW9i78I3/X4/ZjCrGfeZHPcZsZsczzQ5nmlyfJ5mDPeaHOeAHJvJ8UwzhmeaHJ+nyXGfyXEOGMNuvil3Ab6uQ4cOYdy4cTX//cQTTyAiIgIXLlzAa6+9hhYtWli9RCIiIiIiIiIiIiKiKyh9Ad7lciEzM7PmJ+AHDBiAr7/+2uplKa9fv35WL0FL7CbHZnJsJmd2s9CYSPR+5vcAgENrNqPgSCYAoPeCR+Bo6YQrKw+H1ryP3gsegbN1KAICA/Hl3LVwhIWg1x/HIsjpwOkt6aiuuIBu44fAERqMQIcDn09fZerXYcVea6hdwqJJ+NUd3bB1xAIAQPz0kQiPbYeqcjf2L92Im/9wL9p0ux6Rt8YhY3kyzm3PMH3t4OPTEDaTYzNj2E3OzGacnU2j8/zkY9MYdpNjMzk2k+P3nsbwe0/flHoN+LrCwsLg8XhqvQY8+TZnzhyrl6AldpNjMzk2kzO7WbeHhuDrxGR8+dQ6dJ9wDwAg7Pp2qK50Y/ezSYjofB0CWziwf+lGpM9bjwuuCjjbhOOmR+4GvF54PR64zuUhN+ME0uevR/YX3+LkuztM/Rpg0V6rrx0A7H3hDRSfvPhvtgS2cKBVXHvsfjYJ1ZVuhMW2w5FXtyJ9/nqUZp5H1o5vTF/3JXx8yrGZHJsZw25yZjbj7GwanecnH5vGsJscm8mxmRy/9zSG33v6pvQFeDLm0kv2kAy7ybGZHJvJmd0sNCYSrqxcVFe4ERTsvHjbdZFwZeUBACrySxDcNhwAEN4pGgGBgXAXlqJ1lw7I3LobB158G7fO/I+azxc75Hac+9T8396yYq/V166u4LbhqMgrBgC4svMR2j4SABDeMRqu7Dx4qz2mrvlyfHzKsZkcmxnDbnJmNuPsbBqd5ycfm8awmxybybGZHL/3NIbfe/qm9EvQkP5G71mDqgo3PO4qBDodOLz2AxzftM3qZZENca9RcynLzkdYTBTK/1WI6kr3xdt+ykfs4F4AgJC2EagsKEVYbDv0nP0gvvrT3wEArpx8uItdqC53I7DFxfFq9TfFZquvXV2VBaUIiWwFAAhrH4mszy7+yl/XMXfi5Dufm7pelfFMI7Nwr1Fz4OxsGs7P5sHzjMzCvUbNhfPTON1mJy/Ak99tn5yIohNZaNO9I0akJeLstgMo/6nA6mWRDXGvUXM4/vanuOPphwGvF4fXb0HfJZOx57kkBAW3QMKiSSg+nQPPhSrclfQUir4/i35LJuPr5ck4vmkb7pg/HgBwInk7AODGsYOvqW+KG2rXc/Yo/Kr3TUhYOBF7F76J4lM5SFg0CZ7KC3CdywUARMZ3xsGV71j9JSiFZxqZhXuNmoqzs2k4P5sPzzMyC/caNQfOT+N0m528AG9D69evt3oJ9So8dgbuIhfCYqLQuksHdBzWB3sXvomo27qi2/ghOP3+l1fc9tXTfzdtfap2U5mqzS7fa/2WPoZ9izag9Mx5dBs/BEHBTrT/7a+vuO3oGx+asjZVm6nM7GZl2fnYOXt1zdt7nksCAOxf9lat99sybP4VH7trzppab2esSPHbOn2xYq811O6bl9/FNy+/W3P74bWbr/jY7Y8tN2mVDVP18any/FS1mcpUbsb5aS9mNuPsbBqd56eqj02VZycU7qYyVZtxdtoLv/c0ht97+sbXgLeh1NRUq5dQr+i+PVBZWIr8704jJ/0wIm5oj9AOUbjtydE4uCq13tvMpGo3lana7PK9lvFSCnrNHYtApwNdRg3CsY0f13ubWVRtpjI2M4bd5FRtpvL8VLWZylRuxvlpL2wmx2ZyqjZTeXZC4W4qU7UZZ6e9sJkx7OYbL8DbUFpamtVLqOWupHl44IuXMfzdRchYngyPuwoAkLEyBUOS5qHo+7M1v6pV321m8Uc3Z3hLOMJDmv3zSjnCQ+AMb9nsn1eHvVZ49Ed4PR70W/oYvt/4CbxV1fXeZhbuMzkz9pmZDf3VqS47dbNTMwkd5ifPNDnV9hk4P5v980rpvNc4B+TYzL90mJ3gmWaIDnuNs9M8uu8zzgI53ZvxJWjI7y69NtoN9w/Ab1ZOR076d6jILULhsTMIi22HzH/uqXnf+m7TWXDbCIzZ8ze4S8stXYczvCWC20ZYugYzNLTXMlak4O6NC5D+1Lqa963vNl1xnzWdmQ117lSXWd3s1EziWp2fPNPMx/nJvWYU54Acm/nXtTo7wTPNdJyd3GdNwVkgp3szXoC3odGjR1u9hHplbklH3MiB6DnrAex5/g30mDgMxzakIX7K/fh8+ioAqPc2s/irW3DbCNsceHXpstdcZ3NRlpVb633qu80M3GdyZu0zuzVkNzldzjSV5ifPNDlV9xk4P22Hc0COzeRUPdNUnp3gmWaILnuNs1NvZu4zO3Xk/PSNL0FjQ/3797d6CQ3av+wt3DjuLoR2iML19/RBxkspuOAqR+StcXCEhVxxm5lU7qYqlZtd2msto9tYvZRaVG6mKjYzht3kVG6m6vxUuZmqVG/G+WkfbCbHZnIqN1N1dkLxbqpSuRlnp32wmTHs5hsvwNvQ3LlzrV5CjdS+T6DoRFbN2yWnc7Cp+0TcNP53OPLaVsDrxcFVqeg1Zyx+PW3kFbeZSaVuulCpWUN7rfx8oaXrqkulZrpgM2PYTU6lZrrMT5Wa6UK1Zpyf9sVmcmwmp1IzXWYnFOumC5WacXbaF5sZw26+8SVoyBIZK1Jq/tt1LhefPvpirT+v7zaipvj44aWNuo2ISGWcn2Q2zk8i0h1nJ5mNs5OI6uJPwNtQRISer4dkNXaTYzM5NpNjM2PYTY7N5NhMjs2MYTc5NpNjMzk2M4bd5NhMjs3k2MwYdvONF+BtaNiwYVYvQUvsJsdmcmwmx2bGsJscm8mxmRybGcNucmwmx2ZybGYMu8mxmRybybGZMezmGy/A21BqaqrVS9ASu8mxmRybybGZMewmx2ZybCbHZsawmxybybGZHJsZw25ybCbHZnJsZgy7+cYL8EREREREREREREREfsAL8DY0dOhQq5egJXaTYzM5NpNjM2PYTY7N5NhMjs2MYTc5NpNjMzk2M4bd5NhMjs3k2MwYdvPNYfUCqPmNHj3a0vsPjYlE72d+DwA4tGYzCo5kAgB6L3gEjpZOuLLycGjN+2hz0/XoPmEovF4vDv31fbhLytDrj2MR5HTg9JZ0VFdcQLfxQ+AIDUagw4HPp6/y67qt7qYjK5s1dp/1XvAInK1DERAYiC/nroUjLIT7TDNsZgy7yelwpnF26s/qZpyf1w42k2MzOaubcX5eO3R4nsbZqT82M4bdfOMF+J/lF1WiuNTt1/toFe5EZOtgv94HAEyZMgXJycl+v5+GdHtoCL5OTEb5vwqR8MIEfPWnVxF2fTtUV7qxf+lGDEicgsAWDtz82L2oLCoFAFQWlKD7pGGA1wuvxwPXuTyUnjmP3IwTuHHsYFQUlPh93f7qVllQAndpebN/XglneEsEt23+f5Xayr3W2H22f+lGAEDCoklwtgnHjeMGc5/5ie77zKyG/upUl5262a1ZfTg7a+OZ5j+cn7VxrzUd54AcmzUfzs/aeKb5B2dnbdxnzYOzQE7nZrwA//PF987DklFSdsGv9xMR2gKnPxpnykV4K4XGRMKVlQtvtQdBwc6Lt10XCVdWHgCgIr8EwW3DERnfGR+OXojoPt3RZdQgtO7SASdSPkPB0R+R8MIEpM9bDwCIHXI7dsx42dKvyajKghK803c6qkorLF2HIzwEY/b8zZSD1yyN3Wfl5wsR3ikaAYGBcBeWcp/5kc77zMyGOneqy6xudmrWEM7OX/BM8y/Oz19wrzUd54AcmzUvzs9f8EzzH87OX3CfNQ/OAjndm/E14AEUl7r9fvEdAErKLvj9p+xVUJadj7CYKAQFt0B15cWvt+yni7cBQEjbCFQWlKI48ydUV7hRWVSKFuEt4crJh7vYhepyNwJbXPy7ofCO0XBl58Fb7bH0azLKXVpu+WACgKrSCsv/hrq5NXafhcW2Q8/ZD2Lfkg0AwH3mRzrvMzMb6typLrO62alZQzg7f8Ezzb84P3/BvdZ0nANybNa8OD9/wTPNfzg7f8F91jw4C+R0b8afgLchK38FEACOv/0p7nj6YcDrxeH1W9B3yWTseS4JQcEtkLBoEopP58BzoQrHN23DgMQpCAoJxr7FGxAQFIg75o8HAJxI3g4AuHHsYJx853NT1m11Nx1Z2ayx++yupKdQ9P1Z9FsyGV8vT8bxTdu4zzTDZsawm5wOZxpnp/6sbsb5ee1gMzk2k7O6GefntUOH52mcnfpjM2PYzTdegLehlStXYs6cOZbdf1l2PnbOXl3z9p7nkgAA+5e9Vev9cnYdQs6uQ7Vu2zVnTa23M1ak+HWtl7O6m46sbNbYfbZl2PwrPpb7TC9sZgy7yelwpnF26s/qZpyf1w42k2MzOaubcX5eO3R4nsbZqT82M4bdfONL0NjQ7t27rV6ClthNjs3k2EyOzYxhNzk2k2MzOTYzht3k2EyOzeTYzBh2k2MzOTaTYzNj2M03/gQ8ERFRI4zeswZVFW543FUIdDpweO0HOL5pm9XLUhqbERFd2zgHjGE3IqJrG+eAnOrNeAHehh599FGrl6AldpNjMzk2k1Op2fbJiSg6kYU23TtiRFoizm47gPKfCqxeVr1U6cZm9sZmcmxmDLvJqdKMc8AYXbqp1Ewn7CbHZnJsJqdSM13mABTqpnIzvgSNDXXs2NHqJWiJ3eTYTI7N5FRsVnjsDNxFLoTFRKH9gHgkLJwIAIi6rSv6//lxq5cHKNjt8maDX52L8I7RAIBu44egx6ThVi8PULCZDthMjs2MYTc51Zpxdhqj+vxUsZkO2E2OzeTYTE7FZpyfcirOTiUvwB84cAB9+/ZFSEgIEhISsGHDBoSGhsLj8Vi9NC0sXrzY6iVoid3k2EyOzeRUbBbdtwcqC0uR/91p5KQfRsQN7RHaIQq3PTkaB1elWr08QMFulzfLeCkFveaORaDTgS6jBuHYxo+tXh6gYDMdsJkcmxnDbnKqNePsNEb1+aliMx2wmxybybGZnIrNOD/lVJydyr0ETUZGBu68804sXrwYycnJ2Lp1K2bMmIH4+HgEBlr79wWRrYOR8c5/YOSsT5BxNA8A8NIf+6JVuBNTFu20dG1W6L3gEXQeOQARna7De4NmoehEltVL0kJEXHsMemUmgttGoLKgBF/M+m+UnMqxellK414zhnut+d2VNA8BAQGIiGuPHdP/Ao+7CgCQsTIFQ5LmIXvHN8r8ipsq6mtWePRHeD0e9Fv6GL7f+Am8VdVWL9NUPNOM4Zkmw31mDPdZ8+PsNIbzszaeacbwTJPjXjOGe635cX7KqTw7lfsJ+JkzZ2LatGl48sknERcXhxkzZqBDhw7o2bOn1UtDflElZr/4FV5fPAgORwD694zGg3d3xh9fUutf+42NjTXlfn78aC/++cDzKD1z3pT78zezug1MnIojr27Fe7+dhaNvfIiBiVNNuV9/4F6TM6sZbLTXzGzmy/bJiXhv0Gx8Pu0vGLhiOkLatQZ+/hW3sNh2yPznHquXWEOVbg01y1iRguiEHjj1/i6rl1iDZ5oczzQ57jNj+DxNTvU5wNl5dbrMT55pxvBMk+Nek+PzNDkd5gDnZ8NUnp1KXYA/efIkdu7ciZkzZ9a63el01lyA/+6773DfffdhyJAhGD7c/NfteW9bJo6dLsKSGb2RtHgQpv3XLpS4Lpi+jqtZuXKlKffzr33HUJaVZ8p9mcGMbiFRrdD2ls44tflLAMCp93YhMr4zgqNa+f2+/YF7Tc6sZnbaa2Y1k8jcko6szw6i56wHAAA9Jg7DsQ1piJ9yv9VLq6Fat7rNXGdzUZaVa/WyauGZJsczTY77zBg+T5NTfQ5wdjaO6vOTZ5oxPNPkuNfk+DxNToc5wPnpm4qzU6mXoMnIyECbNm3QqVOnmtvKy8vxww8/oGfPnrhw4QKmT5+Of/zjH2jXrl2jP+/IkSNx8uTJBv/cjVZA0B8a/fn+8/+mI/PDcUj95BQ+2nWu0R8HAPcMHQonikUfU5/77ruvwT979913MWrUqAb/fNKkSeL7a1XdAlNxo/jj/GHoPUNRHCT/S4+rNYOPbkaaoZ5uYbHtUJadB3i9AACvxwNXdj7COkShMq/p++JqjHRToZmV/LHXzHp8WrXXdGlWl5F9t3/ZWxjx0Ys4tPYDXH9PH6SNW4yBy6ci8tY45H976qofa7TT5ax4fNYl7Xap2ber/wfl5wtF96VrM55pPNPqsvvzNGj8nIPP0+SMzgGrZic0f84hnZ86N1PpXNPl8ckzTU73fQZFnnPweZqcbvNT5+cc/vjes2vXrti8ebPocyr1E/ABAQGorq6u9Y+trlu3DmVlZejZsye++uorhIeHY8qUKbjzzjuRlJRkyTrvGdAB+cWViO/aFkFBAZas4WoKC2Ubiy5iNzk2k2MzOVWapfZ9otZrQJaczsGm7hNx0/jf4chrWwGvFwdXpaLXnLGWrvMSFbo11Ez6BMgsKjTTDZvJsZkx7CanQjPOTmN0mp+qNNMNu8mxmRybyanSjPNTTvXZqdRPwPfp0wfl5eVYsmQJJkyYgE8++QTLli1DTEwMoqKicO7cOezbtw/ffvstwsLCMGjQIPzmN79B9+7dr/p5ff2txOlzJYj7PymNWmN0ZAiWP9kX90z9EEv+8w48NelW/Pm1bxr9NX6clobOsRGNfv+G7N27t8E/S01NxZgxYxr888TERPH9lZw5j3/0fUL8cf6Q9nEaIjpGiz/uas3go5uRZqinm+tcLkJjooCAAMDrRUBgIMJiIuEy4VfcjHRToZmV/LHXzHp8WrXXdGlWV1P2XcaKX+aH61wuPn30RZ8fY7TT5ax4fNbV1Mfrxw8vbfT76tqMZxrPtLrs/jwNGj/n4PM0OaN7z6rZCc2fc1zS2PmpczOVzjVdHp880+R032dQ5DkHn6fJ6TY/dX7OcYnZ33vWpdRPwHfq1AmrV6/G2rVrcfvtt2Pfvn146KGHal7/PTIyEgkJCYiOjkZYWBj+7d/+Dd980/iL381hzbMDsfrt73Dkh0LMWJqOmeNvQffOrU1dgy/PP/+81UvQkhndKvKKUXj0R8SNHAgAiHvgN8j/LtPvvwLoL9xrcmY1s9Ne4z4zht3k2EyOZ5oc95kxfJ4mx70mx2ZybGYMzzQ57jU5Pk+T4z4zht18U+oCPABMnToV2dnZKCwsxLp163Dq1KmaC/D9+/fH6dOnUV5eDo/Hg3379qFbt26mrW3ssDjcEBOO5W98CwD4Ka8cf3plH15bNAgBCr0SzZkzZ0y5n4SFEzFm/zqExkRh+D8WYURa8/ytllXM6vblvHW45fH78MDOV3Dz5HuRPn+9KffrD9xrcmY1g432mpnN7ITd5HimyfFMk+M+M4bP0+Q4B+TYTI5nmjE80+S41+T4PE2Oc8AYdvNNqZegqc+hQ4cwbtw4AECrVq2waNEi3H333aiursaIESPQq1cv09aS8tEppHxU+x832LD5BDZsPmHaGhrj9ddfx/Dhw/1+P3sXvom9C9/0+/2YxaxuxSez8L/3P+P3+zED95qcWc1go71mZjM7YTc5nmlyPNPkuM+M4fM0Oc4BOTaT45lmDM80Oe41OT5Pk+McMIbdfFP6ArzL5UJmZmbNT8ADwIMPPogHH3zQ0nUREZF9hcZEovczvwcAHFqzGQVHMgEAvRc8AkdLJ1xZeTi05n30XvAInK1DERAYiC/nroUjLAS9/jgWQU4HTm9JR3XFBXQbPwSO0GAEOhz4fPoqi78y/2uoXcKiSfjVHd2wdcQCAED89JEIj22HqnI39i/diJv/cC/adLsekbfGIWN5Ms5tz7D06yAiIhnOzqbh/CQiujZxfhqn2+xU7iVoLhcWFgaPx1PrAjz51q9fP6uXoCV2k2MzOTaTM7tZt4eG4OvEZHz51Dp0n3APACDs+naornRj97NJiOh8HQJbOLB/6Uakz1uPC64KONuE46ZH7ga8Xng9HrjO5SE34wTS569H9hff4uS7O0z9GmDRXquvHQDsfeENFJ+8+C/SB7ZwoFVce+x+NgnVlW6ExbbDkVe3In3+epRmnkfWDnP/bZfL8fEpx2ZybGYMu8mZ2Yyzs2l0np98bBrDbnJsJsdmcvze0xh+7+mb0hfgyZg5c+ZYvQQtsZscm8mxmZzZzUJjIuHKykV1hRtBwc6Lt10XCVdWHgCgIr8EwW3DAQDhnaIREBgId2EpWnfpgMytu3Hgxbdx68z/qPl8sUNux7lPvzb1a4BFe62+dnUFtw1Hxc//IJMrOx+h7SMBAOEdo+HKzoO32mPqmi/Hx6ccm8mxmTHsJmdmM87OptF5fvKxaQy7ybGZHJvJ8XtPY/i9p2+8AG9Dl14zn2TYTY7N5NhMzuxmZdn5CIuJQlBwC1RXui/e9tPF2wAgpG0EKgtKERbbDj1nP4h9SzYAAFw5+XAXu1Bd7kZgi4uv8GblN8VW7LX62tVVWVCKkMhWAICw9pEoy8kHAHQdcydOvvO5qeuti49POTaTYzNj2E3OzGacnU2j8/zkY9MYdpNjMzk2k+P3nsbwe0/flH4NeKJr1eg9a1BV4YbHXYVApwOH136A45u2Wb0sshnus/odf/tT3PH0w4DXi8Prt6DvksnY81wSgoJbIGHRJBSfzoHnQhXuSnoKRd+fRb8lk/H18mQc37QNd8wfDwA4kbwdAHDj2MGWX1Q2U0Ptes4ehV/1vgkJCydi78I3UXwqBwmLJsFTeQGuc7kAgMj4zji48h2rvwTSGM80Mgv32pU4O5uG85OsxDONzMK9diXOT+N0m528AE+kqO2TE1F0IgttunfEiLREnN12AOU/FVi9LLIZ7rMrlWXnY+fs1TVv73kuCQCwf9lbtd5vy7D5V3zsrjlrar2dsSLFb+tUUUPtvnn5XXzz8rs1tx9eu/mKj93+2HKTVkl2xjONzMK9VhtnZ9NwfpLVeKaRWbjXauP8NE632cmXoLGh9evXW70ELanarfDYGbiLXAiLiUL7AfFIWDgRABB1W1f0//Pj9d5mFlWbqUzVZpfvs8GvzkV4x2gAQLfxQ9Bj0vB6bzOLqs1Ux25ybCanajPOTvtRtRvnp72wmRybGaNqN85Pe1G5marzU+VmKmM333gBHkCrcCciQlv4/X4iQlugVXj9/zBAc0pNTW32z+kMbwlHeEizf14pR3gInOEt/fK5/dGtOUT37YHKwlLkf3caOemHEXFDe4R2iMJtT47GwVWp9d5mFu41OR32WcZLKeg1dywCnQ50GTUIxzZ+XO9tZjGjmZn7zp/n2OXs1E3nZjzTrMHZaZ1rea9xfvqPznOgLjZrHFXOtWv5TOP8NM+1ts+g8Pw0qxlngZzuzfgSNAAiWwfj9EfjUFxa/4v2N5dW4U5Etg72630AQFpaGh577LFm/ZzBbSMwZs/f4C4tb9bPK+UMb4ngthF++dz+6NYUdyXNQ0BAACLi2mPH9L/A464CAGSsTMGQpHnI3vFNza9q1XebGbjX5HTYZ4VHf4TX40G/pY/h+42fwFtVXe9tZjGjmZn7zp/n2OXs1E3nZjzTzMXZae0+wzW+1zg//UfnOVAXmzWOKufatXymgfPTNNfKPoMG89OsZpwFcro34wX4n0W2Djbl4rjOgttGmPLApYsuvTbaDfcPwG9WTkdO+neoyC1C4bEzCItth8x/7ql53/pu0xn3mnka2mcZK1Jw98YFSH9qXc371nebnXDfGcNuvrGReTg7uc/Mwvn5C+49OTZrHHYyD+cn95lZOD9/wb0np3MzvgSNDY0ePdrqJWhJ1W6ZW9KR9dlB9Jz1AACgx8RhOLYhDfFT7q95n/puM4OqzVSmarO6+8x1NhdlWbm13qe+28ygajPVsZscm8mp2oyz035U7cb5aS9sJsdmxqjajfPTXlRupur8VLmZytjNN16At6H+/ftbvQQtqdxt/7K3cOO4uxDaIQrX39MHGS+l4IKrHJG3xsERFnLFbWZRuZmqVG52aZ+1jG5j9VJqUbmZythNjs3kVG7G2WkvKnfj/LQPNpNjM2NU7sb5aR+qN1NxfqreTFXs5hsvwNvQ3LlzrV6CllTqltr3CRSdyKp5u+R0DjZ1n4ibxv8OR17bCni9OLgqFb3mjMWvp4284jazqNRMFyo1a2iflZ8vtHRddanUTCfsJsdmcio14+y0N5W6cX7aF5vJsZkxKnXj/LQv1ZrpMD9Va6YLdvONrwFPpJGMFSk1/+06l4tPH32x1p/XdxuRUR8/vLRRtxERqYyzk8zG+UlEdsD5SWbj/CQ740/A21CXLl2sXoKW2E2OzeTYTI7NjGE3OTaTYzM5NjOG3eTYTI7N5NjMGHaTYzM5NpNjM2PYzTdegLehH374weolaInd5NhMjs3k2MwYdpNjMzk2k2MzY9hNjs3k2EyOzYxhNzk2k2MzOTYzht184wV4IiIiIiIiIiIiIiI/4AV4Gxo6dKjVS9ASu8mxmRybybGZMewmx2ZybCbHZsawmxybybGZHJsZw25ybCbHZnJsZgy7+cYL8DY0evRoq5egJXaTYzM5NpNjM2PYTY7N5NhMjs2MYTc5NpNjMzk2M4bd5NhMjs3k2MwYdvPNYfUCqPlNmTIFycnJVi9DO1Z2C42JRO9nfg8AOLRmMwqOZAIAei94BI6WTriy8nBozftoc9P16D5hKLxeLw799X24S8rQ649jEeR04PSWdFRXXEC38UPgCA1GoMOBz6ev8uu6udfkrG7W2L3We8EjcLYORUBgIL6cuxaOsBDL9prVzXTFbnJsJmd1Mx3np9XNdKXD8zSVZie41wxhMzk2M0aHM02l2QnuNUOsbqbj/LS6ma7YzTdegKdGqywogbu03NI1OMNbIrhthKVr8IduDw3B14nJKP9XIRJemICv/vQqwq5vh+pKN/Yv3YgBiVMQ2MKBmx+7F5VFpcDP/z+6TxoGeL3wejxwnctD6ZnzyM04gRvHDkZFQYnVX5Zh3Gv+09i9tn/pRgBAwqJJcLYJx43jBttyr13OrH1nt71lRjfdm/FM8x/Oz1+osM9g073G2Xl1nANybNY4KpxrduhYF2dnbdxn/sP5eXWcBXI6N+MFeGqUyoISvNN3OqpKKyxdhyM8BGP2/M1WBwh+/pthV1YuvNUeBAU7L952XSRcWXkAgIr8EgS3DUdkfGd8OHohovt0R5dRg9C6SwecSPkMBUd/RMILE5A+bz0AIHbI7dgx42VLvyajuNf8q7F7rfx8IcI7RSMgMBDuwlJb7rXLmbnv7LS3zOqmczOeaf7F+XmRKvsMNt1rnJ0N4xyQY7PGUeVc071jfTg7f8F95l+cnw3jLJDTvRlfA96G/PFrH+7ScsuHEgBUlVb47W+7rPx1mbLsfITFRCEouAWqK90Xb/vp4m0AENI2ApUFpSjO/AnVFW5UFpWiRXhLuHLy4S52obrcjcAWF/8+LbxjNFzZefBWe/y+bu41Oat/Lauxey0sth16zn4Q+5ZsAABL95oZzczcd/48xy5np246N+OZ5l86zk877zPYdK/pODvBOWAIm8n5q5kq59q1fKapNDth8/lpx30GTeenWc04C+R0b8YL8Da0cuVKq5egJSu7HX/7U/R6ahwGvDgFx/7fx+i7ZDJcZ3MRFNwCCYsmofh0DjwXqnB80zYMSJyCWx6/Hz+8txPHN23Dr6f/Owa+NA0nkrcDAG4cOxgn3/nclHVzr8lZ3ayxe+2upKcQ5HSg35LJCGnX2tK9ZnUzXbGbHJvJWd1Mx/lpdTNd6fA8TaXZCe41Q9hMjs2M0eFMU2l2gnvNEKub6Tg/rW6mK3bzjS9BY0O7d++2eglasrJbWXY+ds5eXfP2nueSAAD7l71V6/1ydh1Czq5DtW7bNWdNrbczVqT4da2X416Ts7pZY/falmHzr/hYq/aa1c10xW5ybCZndTMd56fVzXSlw/M0lWYnuNcMYTM5NjNGhzNNpdkJ7jVDrG6m4/y0upmu2M03XoAnIiJqhNF71qCqwg2PuwqBTgcOr/0Axzdts3pZSmMzIqJrG+eAMexGRHRt4xyQU70ZL8Db0KOPPmr1ErTEbnJsJsdmcio12z45EUUnstCme0eMSEvE2W0HUP5TgdXLqpcq3djM3thMjs2MYTc5VZpxDhijSzeVmumE3eTYTI7N5FRqpsscgELdVG7G14C3oY4dO1q9BC2xmxybybGZnIrNCo+dgbvIhbCYKLQfEI+EhRMBAFG3dUX/Pz9u9fIABbtd3mzwq3MR3jEaANBt/BD0mDTc6uUBCjbTAZvJsZkx7CanWjPOTmNUn58qNtMBu8mxmRybyanYjPNTTsXZyQvwNrR48WKrl6AldpNjMzk2k1OxWXTfHqgsLEX+d6eRk34YETe0R2iHKNz25GgcXJVq9fIABbtd3izjpRT0mjsWgU4HuowahGMbP7Z6eYCCzXTAZnJsZgy7yanWjLPTGNXnp4rNdMBucmwmx2ZyKjbj/JRTcXYq+RI0Bw4cwLRp0/DNN9/g1ltvxcyZMzFt2jSUlpYiMJB/Z6CSiLj2GPTKTAS3jUBlQQm+mPXfKDmVY/WylNZ7wSPoPHIAIjpdh/cGzULRiSyrl6Q87jM57jP/uCtpHgICAhAR1x47pv8FHncVACBjZQqGJM1D9o5vlPkVN1XU16zw6I/wejzot/QxfL/xE3irqq1epql4psnxTDOGe02Oe635cXYaw/l5JZ5pcjzT5LjP5LjP/IPzU07l2anc1eyMjAzceeedGD9+PI4cOYJJkyZhxowZiI+P58X3RoqNjTXtvgYmTsWRV7fivd/OwtE3PsTAxKmm3XdzM6vbjx/txT8feB6lZ86bcn/+ZFYz7jM57jP/2P7/27v36Kiqu//jn0wmk5ALkAQjIUCJiKCUiEK4+NQlUrm0Cr9KkYtlAUILUn7IEhHa4oXLA60goC2lkMdG5Ycsgyk+UIoaQYSCKQE0KggIESKQRJqEEDK5DGTm9wclkpAw+Z5kztn78Hmt1bXKQDI777Vnf0+OYZi0FO/ePxO7nnwF9y2fhrA2rYD//BW3iIQ2yH0vy+ol1lClW0PNspdvRFxyN5zcvNfqJdbgmSbHM02O12nGcK/JqT4HODtvTJf5yTPNGJ5pcrxOk+M+k9NhDnB+Nkzl2ancHe2rP+3+9NNPIzExEdOnT0e7du2QlJRk9dK0sWLFClOeJyy2JaLv6oSTWz4BAJx8dy9iundCaGxLU56/uZnV7d8HjqE8r8iU5wo0M5pxnxnDfRZYuVszkffx50h66lEAQLcJQ3BsXQa6T3nE6qXVUK1b3WbuM4Uozyu0elm18EyT45kmx+s0Y7jX5FSfA5ydjaP6/OSZZgzPNDlep8lxn8npMAc4P/1TcXYqdQM+JycHe/bswYwZM2o97nK5kJSUhGPHjmHAgAE1/wsJCcGhQ4csW6+qZs2aZcrzRCS0QXl+EeDzAQB8Xi/c+cWIaBdryvM3N7O62YkZzbjPSNVmB5e8hdtHP4jwdrFoP6g3sl/eiEvuCsT0SLR6aYCi3a42axHX2uql1ItnmpyK+0x1vE4zhntNTsVmnJ3GqDw/eaYZo+peUxmv0+S4z+RUbcb5Kafa7FTqPeCzs7PRunVrdOzYseaxiooKfPPNN0hKSkLXrl3x8ccfAwCOHDmC0aNH44c//KHfzzt8+HDk5OQEdO1me/jhhxv8vSNHjuCdd95p8PcnTpwofr6W1SGYitvFHxcIgwcNRmnwJfHH3agZ/HQz0gw26MZmzb/X+Pqsn9nN6mpMw/Q+v67164unCrCh6wT0fGYUjvx1G+Dz4fOV6ej735Px0RMv3fBzGe10LSten3X569ZQMyN0bcbXJ8+0uuzeDLzmMESXZnUZnQNWzU5ofs0hpXMzvj7l2ExO92a4ya85dGlWH93mp87XHEb4a9a5c2ds2bJF9DmVugEfFBSE6upqeL3emvd7X7t2LcrLy697C5o33ngDTzzxhEUrJQBwny1EeHwsEBQE+HwIcjgQER8Dt03+6hGpgfuMVJe9fGPN/3efLfR7AUTf+/DxxVYvwXQ808gs3GukMs7OpuH85JlGgcF9Rqrj/DTO6tmp1A343r17o6KiAosWLcL48eOxfft2LFmyBPHx8YiN/f6v/FRXV+Ptt9/GgQMHGvV5pf9VQgf79+9v8PfuuusudO/evcHfX7p0qfj5Lp4+h7/V+a9JlUWlKDn6LRKH34eTm/ci8dH/QvFXuagqKhV/fomMDzMQ1SFO/HE3agY/3Yw0QwPdrGKkmwrNrNpnCNBeM+v1aRVdmtVldkOjna5lxeuzLjO76dqMZxrPtLrsfp0Gja85rKRLs7p0mwO4ya45dG6m+/zkmaZnM932GRS55rCKLs3qo9ss4DVH0yn1HvAdO3bEqlWrsGbNGtxzzz04cOAAxowZc91Pv7///vvo1asXbrnlFsvWqrLTp0+b9lyfzFmLu371MB7d80fcOemnyJybYtpzNzezuiXPn4DHDq5FeHwshv5tAYZlNM9hZAWzmnGfyXGfEbvJ8UyT45kmx+s0Y7jX5DgH5NhMjmeaMTzT5HidJsd9Jsc5YAy7+afUT8ADwNSpUzF16tSaXw8bNoxvPyP0+uuvY+jQoaY8V2lOHv7xyO9Mea5AM6vb/vlvYv/8NwP+PGYwqxn3mRz3GbGbHM80OZ5pcrxOM4Z7TY5zQI7N5HimGcMzTY7XaXLcZ3KcA8awm39K/QR8fQ4dOlTrBnxxcTGysrLwk5/8xNJ1ERERERERERERERHdiHI/AX8tt9uN3NzcWjfgY2JikJuba+m6VNe3b1+rl6AldpNjMzk2kzO7WXh8DHr97hcAgEOrt+D8kSszp9e8cXC2cMGdV4RDqzej17xxcLUKR5DDgU9mr4EzIgw9nxmFYJcTp7ZmorryErqMHQhneCgcTid2TVtp6tdhxV5rqF3ygom45d4u2DZsHgCg+7ThiExog8sVHhxcvB53/vKnaN2lPWJ6JCJ7WRrO7sw2fe3g69MQNpNjM2PYTc7MZpydTaPz/ORr0xh2k2MzOTaT4/eexvB7T/+U/gn4iIgIeL3e696Chm5s1qxZVi9BS+wmx2ZybCZndrMuYwbis6Vp+OTZteg6fhAAIKJ9G1RXebDvuVREdboVjhAnDi5ej8w5KbjkroSrdSTuGPcQ4PPB5/XCfbYIhdknkDk3Bfn//BI5m3ab+jXAor1WXzsA2P/iGyjNyQMAOEKcaJnYFvueS0V1lQcRCW1w5LVtyJybgrLcc8jb/YXp676Kr085NpNjM2PYTc7MZpydTaPz/ORr0xh2k2MzOTaT4/eexvB7T/+UvgFPxowePdrqJWiJ3eTYTI7N5MxuFh4fA3deIaorPQgOdV157NYYuPOKAACVxRcRGh0JAIjsGIcghwOekjK0uq0dcrftw6cvvY0eM35W8/kSBt6Dsx99ZurXAIv2Wn3t6gqNjkRlUSkAwJ1fjPC2MQCAyA5xcOcXwVftNXXN1+LrU47N5NjMGHaTM7MZZ2fT6Dw/+do0ht3k2EyOzeT4vacx/N7TP6Xfgob0NzJrNS5XeuD1XIbD5cThNX/H8Q07rF4W2RD3GjWX8vxiRMTHouLfJaiu8lx57LtiJAzoCQAIi45C1fkyRCS0QdLMn+Nfv/0fAIC7oBieUjeqKzxwhFwZr1Z/U2y2+trVVXW+DGExLQEAEW1jkPfxlb/y1/mxB5Dzzi5T16synmlkFu41ag6cnU3D+dk8eJ6RWbjXqLlwfhqn2+zkDXgKuJ2TluLCiTy07toBwzKW4syOT1Hx3Xmrl0U2xL1GzeH42x/h3t88Dvh8OJyyFX0WTULW86kIDg1B8oKJKD1VAO+ly3gw9Vlc+PoM+i6ahM+WpeH4hh24d+5YAMCJtJ0AgNtHDbipviluqF3SzBG4pdcdSJ4/Afvnv4nSkwVIXjAR3qpLcJ8tBADEdO+Ez1e8Y/WXoBSeaWQW7jVqKs7OpuH8bD48z8gs3GvUHDg/jdNtdvIGvA2lpKRYvYR6lRw7Dc8FNyLiY9HqtnboMKQ39s9/E7F3d0aXsQNxavMn1z32r9/8j2nrU7WbylRtdu1e67t4Mg4sWIey0+fQZexABIe60PZHP7zusaNvvG/K2lRtpjKzm5XnF2PPzFU1v856PhUAcHDJW7X+3NYhc6/72L2zVtf6dfbyjQFbpz9W7LWG2n3x6iZ88eqmmscPr9ly3cfunLzMpFU2TNXXp8rzU9VmKlO5GeenvZjZjLOzaXSen6q+NlWenVC4m8pUbcbZaS/83tMYfu/pH98D3obS09OtXkK94vp0Q1VJGYq/OoWCzMOI+kFbhLeLxd1Pj8TnK9PrfcxMqnZTmarNrt1r2S9vRM/Zo+BwOXHbiPtxbP2H9T5mFlWbqYzNjGE3OVWbqTw/VW2mMpWbcX7aC5vJsZmcqs1Unp1QuJvKVG3G2WkvbGYMu/nHG/A2lJGRYfUSankwdQ4e/eerGLppAbKXpcHruQwAyF6xEQNT5+DC12dq/qpWfY+ZJRDdXJEt4IwMa/bPK+WMDIMrskWzf14d9lrJ0W/h83rRd/FkfL1+O3yXq+t9zCzcZ3Jm7DMzGwaqU1126manZhI6zE+eaXKq7TNwfjb755XSea9xDsixWWDpMDvBM80QHfYaZ6d5dN9nnAVyujfjW9BQwF19b7QfPNIf/7ViGgoyv0Jl4QWUHDuNiIQ2yH0vq+bP1veYzkKjo/BY1l/gKauwdB2uyBYIjY6ydA1maGivZS/fiIfWz0Pms2tr/mx9j+mK+6zpzGyoc6e6zOpmp2YSN+v85JlmPs5P7jWjOAfk2CywbtbZCZ5ppuPs5D5rCs4COd2b8Qa8DY0cOdLqJdQrd2smEoffh6SnHkXWC2+g24QhOLYuA92nPIJd01YCQL2PmSVQ3UKjo2xz4NWly15znylEeV5hrT9T32Nm4D6TM2uf2a0hu8npcqapND95psmpus/A+Wk7nANybCan6pmm8uwEzzRDdNlrnJ16M3Of2akj56d/fAsaG+rXr5/VS2jQwSVv4fbRDyK8XSzaD+qN7Jc34pK7AjE9EuGMCLvuMTOp3E1VKje7utdaxLW2eim1qNxMVWxmDLvJqdxM1fmpcjNVqd6M89M+2EyOzeRUbqbq7ITi3VSlcjPOTvtgM2PYzT/egLeh2bNnW72EGul9fo0LJ/Jqfn3xVAE2dJ2AO8b+GEf+ug3w+fD5ynT0nDUKP3xy+HWPmUmlbrpQqVlDe63iXIml66pLpWa6YDNj2E1OpWa6zE+VmulCtWacn/bFZnJsJqdSM11mJxTrpguVmnF22hebGcNu/vEtaMgS2cs31vx/99lCfPTES7V+v77HiJriw8cXN+oxIiKVcX6S2Tg/iUh3nJ1kNs5OIqqLPwFvQ1FRer4fktXYTY7N5NhMjs2MYTc5NpNjMzk2M4bd5NhMjs3k2MwYdpNjMzk2k2MzY9jNP96At6EhQ4ZYvQQtsZscm8mxmRybGcNucmwmx2ZybGYMu8mxmRybybGZMewmx2ZybCbHZsawm3+8AW9D6enpVi9BS+wmx2ZybCbHZsawmxybybGZHJsZw25ybCbHZnJsZgy7ybGZHJvJsZkx7OYfb8ATEREREREREREREQUAb8Db0ODBg61egpbYTY7N5NhMjs2MYTc5NpNjMzk2M4bd5NhMjs3k2MwYdpNjMzk2k2MzY9jNP6fVC6DmN3LkSEufPzw+Br1+9wsAwKHVW3D+SC4AoNe8cXC2cMGdV4RDqzej9R3t0XX8YPh8Phz682Z4Lpaj5zOjEOxy4tTWTFRXXkKXsQPhDA+Fw+nErmkrA7puq7vpyMpmjd1nveaNg6tVOIIcDnwyew2cEWHcZ5phM2PYTU6HM42zU39WN+P8vHmwmRybyVndjPPz5qHDdRpnp/7YzBh2848/AW9DU6ZMsfT5u4wZiM+WpuGTZ9ei6/hBAICI9m1QXeXBvudSEdXpVjhCnLhz8k9xqbwSlyuqUHX+Iu4Y9xDg88Hn9cJ9tgiF2SeQOTcF+f/8Ejmbdgd83VZ305GVzRq7zw4uXo/MOSm45K6Eq3Uk95mG2MwYdpPT4Uzj7NSf1c04P28ebCbHZnJWN+P8vHnocJ3G2ak/NjOG3fzjT8D/R/GFKpSWeQL6HC0jXYhpFRrQ51BBeHwM3HmF8FV7ERzquvLYrTFw5xUBACqLLyI0OhIx3Tvh/ZHzEde7K24bcT9a3dYOJzZ+jPNHv0Xyi+OROScFAJAw8B7snv6qpV9TU1SdvwhPWYWla3BFtkBodJSla2hujd1nFedKENkxDkEOBzwlZdxnAaT7PjOroe6d6jKjm92a1YezszaeaYHD+Vkb91rTcQ7IsVnz4fysjWdaYHB21sZ91jw4C+R0bsYb8P+5+d5pSBoull8K6PNEhYfg1AejbX8Tvjy/GBHxsaj4dwmqq678R43y74qRMKAnACAsOgpV58tQmvsdqis9qLpQhug7O8JdUAxPqRvVFR44Qq5szcgOcXDnF8FX7bX0azKq6vxFvNNnGi6XVVq6DmdkGB7L+outDt7G7rOIhDZImvlz/Ou3/wMA3GcBpPM+M7Ohzp3qMqubnZo1hLPzezzTAovz83vca03HOSDHZs2L8/N7PNMCh7Pze9xnzYOzQE73ZrwBD6C0zBPwm+8AcLH8EkrLPAG/AZ+WlhbQz+/P8bc/wr2/eRzw+XA4ZSv6LJqErOdTERwaguQFE1F6qgDeS5dxfMMO9F86BcFhoTiwcB2Cgh24d+5YAMCJtJ0AgNtHDUDOO7tMWXcgunnKKiwfTABwuawSnrKKZj9ArNxrjd1nD6Y+iwtfn0HfRZPw2bI0HN+wg/ssQHTeZ2Y2DFSnuuzUzU7NGsLZ+T2eaYHF+fk97rWm4xyQY7Pmxfn5PZ5pgcPZ+T3us+bBWSCnezPegLehFStWYNasWZY9f3l+MfbMXFXz66znUwEAB5e8VevPFew9hIK9h2o9tnfW6lq/zl6+MaBrvZbV3XRkZbPG7rOtQ+Ze97HcZ3phM2PYTU6HM42zU39WN+P8vHmwmRybyVndjPPz5qHDdRpnp/7YzBh284//CKsN7du3z+olaInd5NhMjs3k2MwYdpNjMzk2k2MzY9hNjs3k2EyOzYxhNzk2k2MzOTYzht3840/AExERNcLIrNW4XOmB13MZDpcTh9f8Hcc37LB6WUpjMyKimxvngDHsRkR0c+MckFO9GW/A29ATTzxh9RK0xG5ybCbHZnIqNds5aSkunMhD664dMCxjKc7s+BQV3523eln1UqUbm9kbm8mxmTHsJqdKM84BY3TpplIznbCbHJvJsZmcSs10mQNQqJvKzfgWNDbUoUMHq5egJXaTYzM5NpNTsVnJsdPwXHAjIj4Wbft3R/L8CQCA2Ls7o98ffmX18gAFu13bbMBrsxHZIQ4A0GXsQHSbONTq5QEKNtMBm8mxmTHsJqdaM85OY1Sfnyo20wG7ybGZHJvJqdiM81NOxdmp5A34Tz/9FH369EFYWBiSk5Oxbt06hIeHw+v1Wr00LSxcuNDqJWiJ3eTYTI7N5FRsFtenG6pKylD81SkUZB5G1A/aIrxdLO5+eiQ+X5lu9fIABbtd2yz75Y3oOXsUHC4nbhtxP46t/9Dq5QEKNtMBm8mxmTHsJqdaM85OY1Sfnyo20wG7ybGZHJvJqdiM81NOxdmp3FvQZGdn44EHHsDChQuRlpaGbdu2Yfr06ejevTscDmv/e0FMq1Bkv/MzDH9qO7KPFgEAXn6mD1pGujBlwR5L12aFXvPGodPw/ojqeCvevf8pXDiRZ/WStBCV2Bb3/3EGQqOjUHX+Iv751J9w8WSB1ctSGveaMdxrze/B1DkICgpCVGJb7J72CryeywCA7BUbMTB1DvJ3f6HMX3FTRX3NSo5+C5/Xi76LJ+Pr9dvhu1xt9TJNxTPNGJ5pMtxnxnCfNT/OTmM4P2vjmWYMzzQ57jVjuNeaH+ennMqzU7mfgJ8xYwaefPJJPP3000hMTMT06dPRrl07JCUlWb00FF+owsyX/oXXF94PpzMI/ZLi8POHOuGZl9X6134TEhJMeZ5vP9iP9x59AWWnz5nyfIFmVrf7lk7Fkde24d0fPYWjb7yP+5ZONeV5A4F7Tc6sZrDRXjOzmT87Jy3Fu/fPxK4nX8F9y6chrE0r4D9/xS0ioQ1y38uyeok1VOnWULPs5RsRl9wNJzfvtXqJNXimyfFMk+M+M4bXaXKqzwHOzhvTZX7yTDOGZ5oc95ocr9PkdJgDnJ8NU3l2KnUDPicnB3v27MGMGTNqPe5yuWpuwL/44otITk5Gnz598Ic//MH0Nb67IxfHTl3Aoum9kLrwfjz533tx0X3J9HXcyIoVK0x5nn8fOIbyvCJTnssMZnQLi22J6Ls64eSWTwAAJ9/di5junRAa2zLgzx0I3GtyZjWz014zq5lE7tZM5H38OZKeehQA0G3CEBxbl4HuUx6xemk1VOtWt5n7TCHK8wqtXlYtPNPkeKbJcZ8Zw+s0OdXnAGdn46g+P3mmGcMzTY57TY7XaXI6zAHOT/9UnJ1KvQVNdnY2WrdujY4dO9Y8VlFRgW+++QZJSUkoKCjAW2+9hWPHjgEAunXrhsmTJ+OWW2654ecdPnw4cnJyGvx9D1oCwb9s9Dr/7+8zkfv+aKRvP4kP9p5t9McBwKDBg+FCqehj6vPwww83+HubNm3CiBEjGvz9iRMnip+vZXUIpuJ28ccFwuBBg1EaLP+PHjdqBj/djDRDPd0iEtqgPL8I8PkAAD6vF+78YkS0i0VVUdP3xY0Y6aZCMysFYq+Z9fq0aq/p0qwuI/vu4JK3MOyDl3Bozd/RflBvZIxeiPuWTUVMj0QUf3nyhh9rtNO1rHh91iXtdrXZl6v+FxXnSkTPpWsznmk80+qy+3UaNL7m4HWanNE5YNXshObXHNL5qXMzlc41XV6fPNPkdN9nUOSag9dpcrrNT52vOQLxvWfnzp2xZcsW0edU6ifgg4KCUF1dXesfW127di3Ky8uRlJSE6OhoxMfHo6KiAhUVFQgJCUGLFi1MX+eg/u1QXFqF7p2jERwcZPrz+1NSIttYdAW7ybGZHJvJqdIsvc+va70H5MVTBdjQdQLuGPtjHPnrNsDnw+cr09Fz1ihL13mVCt0aaia9ADKLCs10w2ZybGYMu8mp0Iyz0xid5qcqzXTDbnJsJsdmcqo04/yUU312KvUT8L1790ZFRQUWLVqE8ePHY/v27ViyZAni4+MRGxsLABg0aBC6desGn8+HmTNnIjIy0u/n9fdfJU6dvYjEn2xs1BrjYsKw7Ok+GDT1fSz6v/fi2Yk98Ie/ftHIrxD4MCMDnRKiGv3nG7J///4Gfy89PR2PPfZYg7+/dOlS8fNdPH0Of+vza/HHBULGhxmI6hAn/rgbNYOfbkaaoZ5u7rOFCI+PBYKCAJ8PQQ4HIuJj4Dbhr7gZ6aZCMysFYq+Z9fq0aq/p0qyupuy77OXfzw/32UJ89MRLfj/GaKdrWfH6rKupr9cPH1/c6D+razOeaTzT6rL7dRo0vubgdZqc0b1n1eyE5tccVzV2furcTKVzTZfXJ880Od33GRS55uB1mpxu81Pna46rzP7esy6lfgK+Y8eOWLVqFdasWYN77rkHBw4cwJgxY2re/33Hjh3YtWsXvvnmG5w8eRIZGRnYt8/cfwB19XP3YdXbX+HINyWYvjgTM8beha6dWpm6Bn9eeOEFq5egJTO6VRaVouTot0gcfh8AIPHR/0LxV7kB/yuAgcK9JmdWMzvtNe4zY9hNjs3keKbJcZ8Zw+s0Oe41OTaTYzNjeKbJca/J8TpNjvvMGHbzT6kb8AAwdepU5Ofno6SkBGvXrsXJkydrbsBXV1cjOjoaLpcLLpcLrVq1QlGRef84xqghifhBfCSWvfElAOC7ogr89o8H8NcF9yNIoXeiOX36tCnPkzx/Ah47uBbh8bEY+rcFGJbRPP9Vyypmdftkzlrc9auH8eieP+LOST9F5twUU543ELjX5MxqBhvtNTOb2Qm7yfFMk+OZJsd9Zgyv0+Q4B+TYTI5nmjE80+S41+R4nSbHOWAMu/mn1FvQ1OfQoUMYPXo0AOChhx7Cpk2b0L9/fwBAjx49MGTIENPWsvGDk9j4Qe1/3GDdlhNYt+WEaWtojNdffx1Dhw4N+PPsn/8m9s9/M+DPYxazupXm5OEfj/wu4M9jBu41ObOawUZ7zcxmdsJucjzT5HimyXGfGcPrNDnOATk2k+OZZgzPNDnuNTlep8lxDhjDbv4pfQPe7XYjNze35ifgHQ4H1qxZY/WyiIjIxsLjY9Drd78AABxavQXnj+QCAHrNGwdnCxfceUU4tHozes0bB1ercAQ5HPhk9ho4I8LQ85lRCHY5cWprJqorL6HL2IFwhofC4XRi17SVFn9lgddQu+QFE3HLvV2wbdg8AED3acMRmdAGlys8OLh4Pe785U/Rukt7xPRIRPayNJzdmW3p10FERDKcnU3D+UlEdHPi/DROt9mp3FvQXCsiIgJer7fmBjw1Tt++fa1egpbYTY7N5NhMzuxmXcYMxGdL0/DJs2vRdfwgAEBE+zaorvJg33OpiOp0KxwhThxcvB6Zc1JwyV0JV+tI3DHuIcDng8/rhftsEQqzTyBzbgry//klcjbtNvVrgEV7rb52ALD/xTdQmnPlX6R3hDjRMrEt9j2XiuoqDyIS2uDIa9uQOTcFZbnnkLe78f+weXPj61OOzeTYzBh2kzOzGWdn0+g8P/naNIbd5NhMjs3k+L2nMfze0z+lb8CTMbNmzbJ6CVpiNzk2k2MzObObhcfHwJ1XiOpKD4JDXVceuzUG7rwr/+ZIZfFFhEZHAgAiO8YhyOGAp6QMrW5rh9xt+/DpS2+jx4yf1Xy+hIH34OxHn5n6NcCivVZfu7pCoyNR+Z9/kMmdX4zwtjEAgMgOcXDnF8FX7TV1zdfi61OOzeTYzBh2kzOzGWdn0+g8P/naNIbd5NhMjs3k+L2nMfze0z/egLehq++ZTzLsJsdmcmwmZ3az8vxiRMTHIjg0BNVVniuPfXflMQAIi45C1fkyRCS0QdLMn+PAonUAAHdBMTylblRXeOAIufIOb1Z+U2zFXquvXV1V58sQFtMSABDRNgblBcUAgM6PPYCcd3aZut66+PqUYzM5NjOG3eTMbMbZ2TQ6z0++No1hNzk2k2MzOX7vaQy/9/RP6feAJ7pZjcxajcuVHng9l+FwOXF4zd9xfMMOq5dFNsN9Vr/jb3+Ee3/zOODz4XDKVvRZNAlZz6ciODQEyQsmovRUAbyXLuPB1Gdx4esz6LtoEj5blobjG3bg3rljAQAn0nYCAG4fNcDym8pmaqhd0swRuKXXHUiePwH757+J0pMFSF4wEd6qS3CfLQQAxHTvhM9XvGP1l0Aa45lGZuFeux5nZ9NwfpKVeKaRWbjXrsf5aZxus5M34IkUtXPSUlw4kYfWXTtgWMZSnNnxKSq+O2/1sshmuM+uV55fjD0zV9X8Ouv5VADAwSVv1fpzW4fMve5j985aXevX2cs3BmydKmqo3RevbsIXr26qefzwmi3XfezOyctMWiXZGc80Mgv3Wm2cnU3D+UlW45lGZuFeq43z0zjdZiffgsaGUlJSrF6CllTtVnLsNDwX3IiIj0Xb/t2RPH8CACD27s7o94df1fuYWVRtpjJVm127zwa8NhuRHeIAAF3GDkS3iUPrfcwsqjZTHbvJsZmcqs04O+1H1W6cn/bCZnJsZoyq3Tg/7UXlZqrOT5WbqYzd/OMNeBtKT0+3eglaUrVbXJ9uqCopQ/FXp1CQeRhRP2iL8HaxuPvpkfh8ZXq9j5lF1WYqU7XZtfss++WN6Dl7FBwuJ24bcT+Orf+w3sfMomoz1bGbHJvJqdqMs9N+VO3G+WkvbCbHZsao2o3z015Ubqbq/FS5mcrYzT/egAfQMtKFqPCQgD9PVHgIWkbW/y/zNqeMjIxm/5yuyBZwRoY1++eVckaGwRXZIiCfOxDdmuLB1Dl49J+vYuimBchelgav5zIAIHvFRgxMnYMLX5+p+ata9T1mBu41OR32WcnRb+HzetF38WR8vX47fJer633MLGY0M3PfBfIcu5aduuncjGeauTg7rXcz7zXOz8DReQ7UxWaNo8q5djOfaeD8NM3Nss+gwfw0qxlngZzuzfge8ABiWoXi1AejUVpW/7+a21xaRroQ0yo0oM8RKKHRUXgs6y/wlFVYug5XZAuERkdZugazXH1vtB880h//tWIaCjK/QmXhBZQcO42IhDbIfS+r5s/W95iuuNfM1dA+y16+EQ+tn4fMZ9fW/Nn6HrMLM/ednfaWWd10bsYzzVycndbuM3CvcX4GiJ32FZs1jirnmu4dG4vzk/vMLJyfV3AWyOnejDfg/yOmVai2N8frGjlyZEA+b2h0lG1euPUJVLemyt2aicTh9yHpqUeR9cIb6DZhCI6ty0D3KY9g17SVAFDvY2bgXpPTZZ+5zxSiPK+w1p+p7zEzmNXMbvuO3eR4psnpcqZxdupPl73G+ak3NpMLZDM7dapLlzON81Nvqu4zKDw/zWxmp73H+ekf34LGhvr162f1ErSkcreDS97C7aMfRHi7WLQf1BvZL2/EJXcFYnokwhkRdt1jZlG5mapUbnZ1n7WIa231UmpRuZnK2E2OzeRUbsbZaS8qd+P8tA82k2MzY1TuxvlpH6o3U3F+qt5MVezmH2/A29Ds2bOtXoKWVOqW3ufXuHAir+bXF08VYEPXCbhj7I9x5K/bAJ8Pn69MR89Zo/DDJ4df95hZVGqmC5WaNbTPKs6VWLquulRqphN2k2MzOZWacXbam0rdOD/ti83k2MwYlbpxftqXas10mJ+qNdMFu/nHt6Ah0kj28o01/999thAfPfFSrd+v7zEioz58fHGjHiMiUhlnJ5mN85OI7IDzk8zG+Ul2xp+At6GoKD3fD8lq7CbHZnJsJsdmxrCbHJvJsZkcmxnDbnJsJsdmcmxmDLvJsZkcm8mxmTHs5h9vwNvQkCFDrF6ClthNjs3k2EyOzYxhNzk2k2MzOTYzht3k2EyOzeTYzBh2k2MzOTaTYzNj2M0/3oC3ofT0dKuXoCV2k2MzOTaTYzNj2E2OzeTYTI7NjGE3OTaTYzM5NjOG3eTYTI7N5NjMGHbzjzfgiYiIiIiIiIiIiIgCgDfgbWjw4MFWL0FL7CbHZnJsJsdmxrCbHJvJsZkcmxnDbnJsJsdmcmxmDLvJsZkcm8mxmTHs5p/T6gVQ8xs5cqTVS9CSld3C42PQ63e/AAAcWr0F54/kAgB6zRsHZwsX3HlFOLR6M1rf0R5dxw+Gz+fDoT9vhudiOXo+MwrBLidObc1EdeUldBk7EM7wUDicTuyatjKg6+Zek7O6WWP3Wq954+BqFY4ghwOfzF4DZ0SYZXvN6ma6Yjc5NpOzupmO89PqZrrS4TpNpdkJ7jVD2EyOzYzR4UxTaXaCe80Qq5vpOD+tbqYrdvOPN+BtaMqUKUhLS7N6GdqxsluXMQPx2dI0VPy7BMkvjse/fvsaItq3QXWVBwcXr0f/pVPgCHHizsk/RdWFMgBA1fmL6DpxCODzwef1wn22CGWnz6Ew+wRuHzUAlecvBnzd3GtyVjdr7F47uHg9ACB5wUS4Wkfi9tEDLNtrZjWrOn8RnrKKgD+PK7IFQqMD/6/E26mb3ZrZidXNdJyfVjfTlQ7XaSrNTnAOGMJmcjzTjNHhTFNpdoJ7zRCrm+k4P81sxlkgp3Mz3oAnUkB4fAzceYXwVXsRHOq68titMXDnFQEAKosvIjQ6EjHdO+H9kfMR17srbhtxP1rd1g4nNn6M80e/RfKL45E5JwUAkDDwHuye/qqlXxOpqbF7reJcCSI7xiHI4YCnpMz2e63q/EW802caLpdVBvy5nJFheCzrL6ZcCAWaWd3s1IyaF+cnmYGzs2GcA3JsRlbj7CSzcH42jLNATvdmfA94IgWU5xcjIj4WwaEhqK7yXHnsuyuPAUBYdBSqzpehNPc7VFd6UHWhDCGRLeAuKIan1I3qCg8cIVf+e1pkhzi484vgq/Za+jWRmhq71yIS2iBp5s9xYNE6ALD9XvOUVZhy8x0ALpdVmvKT9mYwq5udmlHz4vwkM3B2NoxzQI7NyGqcnWQWzs+GcRbI6d6MPwFvQ/xrWcZY2e342x/h3t88Dvh8OJyyFX0WTULW86kIDg1B8oKJKD1VAO+lyzi+YQf6L52C4LBQHFi4DkHBDtw7dywA4ETaTgDA7aMGIOedXaasm3tNzupmjd1rD6Y+iwtfn0HfRZPw2bI0HN+ww7K9ZnUzXbGbHJvJWd1Mx/lpdTNd6XCdptLsBPeaIWwmx2bG6HCmqTQ7wb1miNXNdJyfVjfTFbv5xxvwNrRixQrMmjXL6mVox8pu5fnF2DNzVc2vs55PBQAcXPJWrT9XsPcQCvYeqvXY3lmra/06e/nGgK71WtxrclY3a+xe2zpk7nUfa9Ves7qZrthNjs3krG6m4/y0upmudLhOU2l2gnvNEDaTYzNjdDjTVJqd4F4zxOpmOs5Pq5vpit3841vQ2NC+ffusXoKW2E2OzeTYTI7NjGE3OTaTYzM5NjOG3eTYTI7N5NjMGHaTYzM5NpNjM2PYzT/+BDwREVEjjMxajcuVHng9l+FwOXF4zd9xfMMOq5elNDYjIrq5cQ4Yw25ERDc3zgE51ZvxBrwNPfHEE1YvQUvsJsdmcmwmp1KznZOW4sKJPLTu2gHDMpbizI5PUfHdeauXVS9VurGZvbGZHJsZw25yqjTjHDBGl24qNdMJu8mxmRybyanUTJc5AIW6qdyMb0FjQx06dLB6CVpiNzk2k2MzORWblRw7Dc8FNyLiY9G2f3ckz58AAIi9uzP6/eFXVi8PULDbtc0GvDYbkR3iAABdxg5Et4lDrV4eoGAzHbCZHJsZw25yqjXj7DRG9fmpYjMdsJscm8mxmZyKzTg/5VScnUregP/000/Rp08fhIWFITk5GevWrUN4eDi8Xq/VS9PCwoULrV6ClthNjs3k2ExOxWZxfbqhqqQMxV+dQkHmYUT9oC3C28Xi7qdH4vOV6VYvD1Cw27XNsl/eiJ6zR8HhcuK2Effj2PoPrV4eoGAzHbCZHJsZw25yqjXj7DRG9fmpYjMdsJscm8mxmZyKzTg/5VScncq9BU12djYeeOABLFy4EGlpadi2bRumT5+O7t27w+FQ8r8XEIn0mjcOnYb3R1THW/Hu/U/hwok8q5dENsR9FhgPps5BUFAQohLbYve0V+D1XAYAZK/YiIGpc5C/+wtl/oqbKuprVnL0W/i8XvRdPBlfr98O3+Vqq5dJiuOZRmbhXmt+nJ3GcH5Sc+CZRmbgPgsMzk85lWencne0Z8yYgSeffBJPP/00EhMTMX36dLRr1w5JSUlWL00bCQkJVi9BS2Z1+/aD/Xjv0RdQdvqcKc8XSNxrctxncirts52TluLd+2di15Ov4L7l0xDWphXwn7/iFpHQBrnvZVm9xBqqdGuoWfbyjYhL7oaTm/davcQaqjTTCc80Oe4zY7jX5FTZa5ydxugyP1VqphOeaXLca3LcZ3Iq7TPOTzmVZ6dSN+BzcnKwZ88ezJgxo9bjLper5gb873//e/Tv3x8/+tGPsHnzZotWqrYVK1ZYvQQtmdXt3weOoTyvyJTnCjTuNTnuMzkV91nu1kzkffw5kp56FADQbcIQHFuXge5THrF6aTVU61a3mftMIcrzCq1eVi2qNdMBzzQ57jNjuNfkVNtrnJ3GqD4/VWymA55pctxrctxnciruM85PORVnp1JvQZOdnY3WrVujY8eONY9VVFTgm2++QVJSEr744gv84x//wN69e1FVVYV+/fph4MCBiIqKuuHnHT58OHJyckz4Cszz8MMPN/h7mzZtwogRIxr8/YkTJwZoVWq7UTP46Wa0WcvqEEzF7YY+trkNHjQYpcGXRB9jRTM7MPv1qfs+gwJnmpGGB5e8hWEfvIRDa/6O9oN6I2P0Qty3bCpieiSi+MuTN/xYo52upcLrU9rtarMvV/0vKs6ViJ7LLs10xDNNvzNNR7xO0/M6zegcsGp2QoHXZ1OuOaTz0y7NdMQzTc8zTUe8TtPzOk23+anC61Ol7z07d+6MLVu2iD6nUj8BHxQUhOrq6lr/2OratWtRXl6OpKQkHD16FL1794bD4UCLFi3QqVMn7Nu3z9I1q6ikRLax6Ap2k2MzOTaTU6VZep9f13o/w4unCrCh6wTcMfbHOPLXbYDPh89XpqPnrFGWrvMqFbo11Ex6AWQWFZrphs3k2MwYdpNToRlnpzE6zU9VmumG3eTYTI7N5FRpxvkpp/rsDPL5fD6rF3HVt99+i86dO+O5557D+PHjsX37dsybNw9OpxN5eXk4evQoxo4di71796KsrAxJSUl45ZVXMGbMGKuXbrr9+/c3+HujR49GWlpag7+fnJwcoFWp7UbN4Keb0WYXT5/D3/r8ut7fG5m1Gh8+/t+m/QMlP89ajagOcaKPsaKZHZj9+tR9n0GBM+1GDQPBaKdrqfD6NLObXZrpiGeafmeajnidpud1mm5zAAq8Ptns5sAzTc8zTUe8TtPzOk23WaDC61O3ZnUp9RPwHTt2xKpVq7BmzRrcc889OHDgAMaMGVPz/u/dunXDjBkzMHToUEybNg29evVC+/btrV62cl544QWrl6AldpNjMzk2k2MzY9hNjs3k2EyOzYxhNzk2k2MzOTYzht3k2EyOzeTYzBh280+pG/AAMHXqVOTn56OkpARr167FyZMna27AA8CkSZOwe/dupKSkwO12o2/fvpauV0WnT5+2eglaMqtb8vwJeOzgWoTHx2Lo3xZgWMZSU543ELjX5LjP5LjPjGE3OTaT45kmx31mDPeaHPeaHJvJsZkxPNPkuNfkuM/kuM+MYTf/lPpHWOtz6NAhjB49uubXP/nJT1BZWYmwsDD86U9/QkhIiKXrU9Hrr7+OoUOHWr0M7ZjVbf/8N7F//psBfx4zcK/JcZ/JcZ8Zw25ybCbHM02O+8wY7jU57jU5NpNjM2N4pslxr8lxn8lxnxnDbv4pfQPe7XYjNze31k/Av/fee5auiYiI7C08Pga9fvcLAMCh1Vtw/kguAKDXvHFwtnDBnVeEQ6s3o9e8cXC1CkeQw4FPZq+BMyIMPZ8ZhWCXE6e2ZqK68hK6jB0IZ3goHE4ndk1bafFXFngNtUteMBG33NsF24bNAwB0nzYckQltcLnCg4OL1+POX/4Urbu0R0yPRGQvS8PZndmWfh1ERCTD2dk0nJ9ERDcnzk/jdJudyr0FzbUiIiLg9Xpr3YAn//i2PMawmxybybGZnNnNuowZiM+WpuGTZ9ei6/hBAICI9m1QXeXBvudSEdXpVjhCnDi4eD0y56TgkrsSrtaRuGPcQ4DPB5/XC/fZIhRmn0Dm3BTk//NL5GzaberXAIv2Wn3tAGD/i2+gNOfKP8bkCHGiZWJb7HsuFdVVHkQktMGR17Yhc24KynLPIW/3F6av+yq+PuXYTI7NjGE3OTObcXY2jc7zk69NY9hNjs3k2EyO33saw+89/VP6BjwZM2vWLKuXoCV2k2MzOTaTM7tZeHwM3HmFqK70IDjUdeWxW2PgzisCAFQWX0RodCQAILJjHIIcDnhKytDqtnbI3bYPn770NnrM+FnN50sYeA/OfvSZqV8DLNpr9bWrKzQ6EpVFpQAAd34xwtvGAAAiO8TBnV8EX7XX1DVfi69POTaTYzNj2E3OzGacnU2j8/zka9MYdpNjMzk2k+P3nsbwe0//eAPehq59z3xqPHaTYzM5NpMzu1l5fjEi4mMRHBqC6irPlce+u/IYAIRFR6HqfBkiEtogaebPcWDROgCAu6AYnlI3qis8cIRceYc3K78ptmKv1deurqrzZQiLaQkAiGgbg/KCYgBA58ceQM47u0xdb118fcqxmRybGcNucmY24+xsGp3nJ1+bxrCbHJvJsZkcv/c0ht97+scb8ERERNc4/vZH6PnsaPR/aQqO/b8P0WfRJLjPFCI4NATJCyai9FQBvJcu48HUZxHscqLvokkIa9MKxzfswA+n/R/c9/KTOJG2EwBw+6gBlt9UNlN97QAgaeYI3NLrDiTPnwDvpcsoPVmA5AUTERwaAvfZQgBATPdONe/bR0REeuHsbBrOTyKimxPnp3G6zU6l/xFWIiIis5XnF2PPzFU1v856PhUAcHDJW7X+3NYhc6/72L2zVtf6dfbyjQFbp4oaavfFq5vwxaubah4/vGbLdR+7c/Iyk1ZJRETNjbOzaTg/iYhuTpyfxuk2O/kT8DaUkpJi9RK0xG5ybCbHZnJsZgy7ybGZHJvJsZkx7CbHZnJsJsdmxrCbHJvJsZkcmxnDbv7xBrwNpaenW70ELQWimyuyBZyRYc3+eaWckWFwRbZo9s/LvSbHfSZnxj4zs2GgOtVlp252amY3PNPkuM+M4V6T4xyQYzM5nmnG8EyT416T4z6TM2ufcRbI6d6Mb0FjQxkZGZg8ebLVy9BOILqFRkfhsay/wFNW0ayfV8oV2QKh0VHN/nm51+S4z+TM2GdmNgxUp7rs1M1OzeyGZ5oc95kx3GtynANybCbHM80Ynmly3Gty3GdyZu0zzgI53ZvxBjxRgIVGR5ly4NHNjfus6djQGHajQOC+IrNwrzUdG8qxGQUK9xaZgfusebCjnM7N+BY0NjRy5Eirl6AldpNjMzk2k2MzY9hNjs3k2EyOzYxhNzk2k2MzOTYzht3k2EyOzeTYzBh284834G2oX79+Vi9BS+wmx2ZybCbHZsawmxybybGZHJsZw25ybCbHZnJsZgy7ybGZHJvJsZkx7OYfb8Db0OzZs61egpbYTY7N5NhMjs2MYTc5NpNjMzk2M4bd5NhMjs3k2MwYdpNjMzk2k2MzY9jNP96AJyIiIiIiIiIiIiIKgCCfz+ezehHUvP785z9j+vTpVi9DO+wmx2ZybCbHZsawmxybybGZHJsZw25ybCbHZnJsZgy7ybGZHJvJsZkx7OYfb8ATEREREREREREREQUA34KGiIiIiIiIiIiIiCgAeAOeiIiIiIiIiIiIiCgAeAOeiIiIiIiIiIiIiCgAeAOeiIiIiIiIiIiIiCgAeAOeiIiIiIiIiIiIiCgAeAOeiIiIiIiIiIiIiCgAeAOeiIiIiIiIiIiIiCgAeAOeiIiIiIiIiIiIiCgAeAOeiIiIiIiIiIiIiCgAeAOeiIiIiIiIiIiIiCgAeAOeiIiIiIiIiIiIiCgAeAOeiIiIiIiIiIiIiCgA/j9Na5uUGy2t7wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# for visualization purposes only, we recombine the slices with barriers between them and draw the resulting circuit\n", "combine_slices(slices, include_barriers=True).draw(\"mpl\", fold=50, scale=0.6)" ] }, { "cell_type": "markdown", "id": "bc9d51da-0a4e-46e2-8a5a-3501456aeb81", "metadata": {}, "source": [ "## Simulating a noiseless expectation value" ] }, { "cell_type": "markdown", "id": "1125cb39-4eda-4928-86b2-24e1872ed87e", "metadata": {}, "source": [ "As our target observable, we choose the `ZZ` observable on the central qubits:" ] }, { "cell_type": "code", "execution_count": 4, "id": "ee438fc3-8196-43d9-bcdb-956fd9ec4cf4", "metadata": {}, "outputs": [], "source": [ "from qiskit.quantum_info import SparsePauliOp\n", "\n", "obs = SparsePauliOp(\"IIIIZZIIII\")" ] }, { "cell_type": "markdown", "id": "d06f10b0-683e-476e-9ac3-5c110364a0c8", "metadata": {}, "source": [ "At this point, we are already set to classically simulate the expectation value using OBP.\n", "To do so, we simply provide the _all_ the slices to the `backpropagate` method, like so:" ] }, { "cell_type": "code", "execution_count": 5, "id": "6402f5f5-08e0-4d05-ab2b-0c8863e9f966", "metadata": {}, "outputs": [], "source": [ "from qiskit_addon_obp import backpropagate\n", "\n", "vacuum_state_obs, _, metadata = backpropagate(obs, slices)" ] }, { "cell_type": "markdown", "id": "7b2d555e-7fab-49f1-82d4-74a770f1be75", "metadata": {}, "source": [ "We have now backpropagated our target observable `obs` through the _entire_ circuit (**including** the `initial_state` which we placed on `slices[0]`) resulting in a new `SparsePauliOp` whose expectation value we obtain by projecting it on the _vacuum state_ (`|00...00>`).\n", "\n", "This can be achieved in a straight forward manner by summing up the coefficients of all Pauli terms defined in the computational basis:" ] }, { "cell_type": "code", "execution_count": 6, "id": "63ae0edc-e8f6-467b-896a-ddd451d40a9a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "np.complex128(-0.8285688012239535+4.9487770271457865e-20j)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vacuum_state_obs.coeffs[~vacuum_state_obs.paulis.x.any(axis=1)].sum()" ] }, { "cell_type": "markdown", "id": "107a0d89-323c-469b-8442-5e3f48169cd4", "metadata": {}, "source": [ "As a sanity check (and to prove that this works) we can compare our result against Qiskit's `Statevector`:" ] }, { "cell_type": "code", "execution_count": 7, "id": "f3cb999d-688a-4e82-bf12-d958ef0e2ec0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "np.complex128(-0.8285687255430366+0j)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from qiskit.quantum_info import Statevector\n", "\n", "Statevector(combine_slices(slices)).expectation_value(obs)" ] }, { "cell_type": "markdown", "id": "02207cde-e89e-4cf6-8b3e-727a750d245c", "metadata": {}, "source": [ "### Some notes on performance\n", "\n", "The computational efficiency of the `backpropagate` call above will heavily depend on many things, including:\n", "- the structure of the `circuit`\n", "- the method of slicing the circuit\n", "- the target observable\n", "- the truncation parameters\n", "\n", "Since the `backpropagate` method simplifies the observable after every _slice_ has been applied, the number of gates in a slice can dramatically influence the computational burden.\n", "The most aggressive strategy in terms of operator simplification can be achieved by slicing your circuit into slices of individual gates.\n", "\n", "Additionally, you can leverage all of the truncation mechanism built into the `backpropagate` method.\n", "We did not do so above, effectively resulting in an exact expectation value, but you can learn how to in the [Pauli term truncation guide](https://qiskit.github.io/qiskit-addon-obp/how_tos/truncate_operator_terms.html)." ] }, { "cell_type": "markdown", "id": "1ba37abf-0f78-4053-8995-2ab8340237ab", "metadata": {}, "source": [ "## Simulating a noisy expectation value" ] }, { "cell_type": "markdown", "id": "3a5e753b-c479-42d9-84d0-5ce4860ec091", "metadata": {}, "source": [ "The `qiskit-addon-obp` package also supports handling of noise models in the form of `PauliLindbladError`s.\n", "This is especially useful when you have characterized the noise model of the 2-qubit layers in your circuit, for example using the [`NoiseLearner`](https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/noise-learner-noise-learner).\n", "\n", "In this section, you will see how you can use the `LayerError` objects returned by the `NoiseLearner` to compute noisy expectation values using OBP." ] }, { "cell_type": "markdown", "id": "2d50dbf1-3abd-4945-bed9-1ed49758e9cc", "metadata": {}, "source": [ "### Obtaining a noise model\n", "\n", "Normally, you would execute the `NoiseLearner` to obtain a noise model of your specific circuit.\n", "To avoid complexity (and randomness) in this tutorial, we will refrain from doing so, and instead hard-code some noise model for our circuit below.\n", "\n", "However, we make sure that the structure of our data matches that of the [`NoiseLearnerResult`](https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/noise-learner-result)." ] }, { "cell_type": "markdown", "id": "54a7aba1-a7ee-4d0f-b95b-095158511ce0", "metadata": {}, "source": [ "In its current (non-transpiled) form, our circuit contains 4 unique layers of 2-qubit gates:\n", "- `slices[1]`: which has `Rxx` gates acting on all odd pairs of qubits\n", "- `slices[2]`: which has `Rxx` gates acting on all even pairs of qubits\n", "- `slices[3]`: which has `Ryy` gates acting on all odd pairs of qubits\n", "- `slices[4]`: which has `Ryy` gates acting on all even pairs of qubits\n", "\n", "In the cell below, we manually construct 4 `LayerError` instances for each one of these layers with some randomized error rates." ] }, { "cell_type": "code", "execution_count": 8, "id": "e7a3b1f9-b60c-4735-8d6b-5151a7c5b92b", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from qiskit.quantum_info import PauliList\n", "from qiskit_ibm_runtime.utils.noise_learner_result import LayerError, PauliLindbladError\n", "\n", "# fmt: off\n", "pauli_errors_even = ['IIIIIIIIIX', 'IIIIIIIIIY', 'IIIIIIIIIZ', 'IIIIIIIIXI', 'IIIIIIIIXX', 'IIIIIIIIXY', 'IIIIIIIIXZ', 'IIIIIIIIYI', 'IIIIIIIIYX', 'IIIIIIIIYY', 'IIIIIIIIYZ', 'IIIIIIIIZI', 'IIIIIIIIZX', 'IIIIIIIIZY', 'IIIIIIIIZZ', 'IIIIIIIXII', 'IIIIIIIXXI', 'IIIIIIIXYI', 'IIIIIIIXZI', 'IIIIIIIYII', 'IIIIIIIYXI', 'IIIIIIIYYI', 'IIIIIIIYZI', 'IIIIIIIZII', 'IIIIIIIZXI', 'IIIIIIIZYI', 'IIIIIIIZZI', 'IIIIIIXIII', 'IIIIIIXXII', 'IIIIIIXYII', 'IIIIIIXZII', 'IIIIIIYIII', 'IIIIIIYXII', 'IIIIIIYYII', 'IIIIIIYZII', 'IIIIIIZIII', 'IIIIIIZXII', 'IIIIIIZYII', 'IIIIIIZZII', 'IIIIIXIIII', 'IIIIIXXIII', 'IIIIIXYIII', 'IIIIIXZIII', 'IIIIIYIIII', 'IIIIIYXIII', 'IIIIIYYIII', 'IIIIIYZIII', 'IIIIIZIIII', 'IIIIIZXIII', 'IIIIIZYIII', 'IIIIIZZIII', 'IIIIXIIIII', 'IIIIXXIIII', 'IIIIXYIIII', 'IIIIXZIIII', 'IIIIYIIIII', 'IIIIYXIIII', 'IIIIYYIIII', 'IIIIYZIIII', 'IIIIZIIIII', 'IIIIZXIIII', 'IIIIZYIIII', 'IIIIZZIIII', 'IIIXIIIIII', 'IIIXXIIIII', 'IIIXYIIIII', 'IIIXZIIIII', 'IIIYIIIIII', 'IIIYXIIIII', 'IIIYYIIIII', 'IIIYZIIIII', 'IIIZIIIIII', 'IIIZXIIIII', 'IIIZYIIIII', 'IIIZZIIIII', 'IIXIIIIIII', 'IIXXIIIIII', 'IIXYIIIIII', 'IIXZIIIIII', 'IIYIIIIIII', 'IIYXIIIIII', 'IIYYIIIIII', 'IIYZIIIIII', 'IIZIIIIIII', 'IIZXIIIIII', 'IIZYIIIIII', 'IIZZIIIIII', 'IXIIIIIIII', 'IXXIIIIIII', 'IXYIIIIIII', 'IXZIIIIIII', 'IYIIIIIIII', 'IYXIIIIIII', 'IYYIIIIIII', 'IYZIIIIIII', 'IZIIIIIIII', 'IZXIIIIIII', 'IZYIIIIIII', 'IZZIIIIIII', 'XIIIIIIIII', 'XXIIIIIIII', 'XYIIIIIIII', 'XZIIIIIIII', 'YIIIIIIIII', 'YXIIIIIIII', 'YYIIIIIIII', 'YZIIIIIIII', 'ZIIIIIIIII', 'ZXIIIIIIII', 'ZYIIIIIIII', 'ZZIIIIIIII']\n", "pauli_errors_odd = ['IIIIIIIIXI', 'IIIIIIIIYI', 'IIIIIIIIZI', 'IIIIIIIXII', 'IIIIIIIXXI', 'IIIIIIIXYI', 'IIIIIIIXZI', 'IIIIIIIYII', 'IIIIIIIYXI', 'IIIIIIIYYI', 'IIIIIIIYZI', 'IIIIIIIZII', 'IIIIIIIZXI', 'IIIIIIIZYI', 'IIIIIIIZZI', 'IIIIIIXIII', 'IIIIIIXXII', 'IIIIIIXYII', 'IIIIIIXZII', 'IIIIIIYIII', 'IIIIIIYXII', 'IIIIIIYYII', 'IIIIIIYZII', 'IIIIIIZIII', 'IIIIIIZXII', 'IIIIIIZYII', 'IIIIIIZZII', 'IIIIIXIIII', 'IIIIIXXIII', 'IIIIIXYIII', 'IIIIIXZIII', 'IIIIIYIIII', 'IIIIIYXIII', 'IIIIIYYIII', 'IIIIIYZIII', 'IIIIIZIIII', 'IIIIIZXIII', 'IIIIIZYIII', 'IIIIIZZIII', 'IIIIXIIIII', 'IIIIXXIIII', 'IIIIXYIIII', 'IIIIXZIIII', 'IIIIYIIIII', 'IIIIYXIIII', 'IIIIYYIIII', 'IIIIYZIIII', 'IIIIZIIIII', 'IIIIZXIIII', 'IIIIZYIIII', 'IIIIZZIIII', 'IIIXIIIIII', 'IIIXXIIIII', 'IIIXYIIIII', 'IIIXZIIIII', 'IIIYIIIIII', 'IIIYXIIIII', 'IIIYYIIIII', 'IIIYZIIIII', 'IIIZIIIIII', 'IIIZXIIIII', 'IIIZYIIIII', 'IIIZZIIIII', 'IIXIIIIIII', 'IIXXIIIIII', 'IIXYIIIIII', 'IIXZIIIIII', 'IIYIIIIIII', 'IIYXIIIIII', 'IIYYIIIIII', 'IIYZIIIIII', 'IIZIIIIIII', 'IIZXIIIIII', 'IIZYIIIIII', 'IIZZIIIIII', 'IXIIIIIIII', 'IXXIIIIIII', 'IXYIIIIIII', 'IXZIIIIIII', 'IYIIIIIIII', 'IYXIIIIIII', 'IYYIIIIIII', 'IYZIIIIIII', 'IZIIIIIIII', 'IZXIIIIIII', 'IZYIIIIIII', 'IZZIIIIIII']\n", "# fmt: on\n", "\n", "np.random.seed(42)\n", "\n", "layer_error_odd_xx = LayerError(\n", " circuit=slices[1],\n", " qubits=list(range(num_qubits)),\n", " error=PauliLindbladError(\n", " PauliList(pauli_errors_odd),\n", " 0.0001 + 0.0004 * np.random.rand(len(pauli_errors_odd)),\n", " ),\n", ")\n", "\n", "layer_error_even_xx = LayerError(\n", " circuit=slices[2],\n", " qubits=list(range(num_qubits)),\n", " error=PauliLindbladError(\n", " PauliList(pauli_errors_even),\n", " 0.0001 + 0.0004 * np.random.rand(len(pauli_errors_even)),\n", " ),\n", ")\n", "\n", "layer_error_odd_yy = LayerError(\n", " circuit=slices[3],\n", " qubits=list(range(num_qubits)),\n", " error=PauliLindbladError(\n", " PauliList(pauli_errors_odd),\n", " 0.0001 + 0.0004 * np.random.rand(len(pauli_errors_odd)),\n", " ),\n", ")\n", "\n", "layer_error_even_yy = LayerError(\n", " circuit=slices[4],\n", " qubits=list(range(num_qubits)),\n", " error=PauliLindbladError(\n", " PauliList(pauli_errors_even),\n", " 0.0001 + 0.0004 * np.random.rand(len(pauli_errors_even)),\n", " ),\n", ")" ] }, { "cell_type": "markdown", "id": "a9dff7ad-2c7a-4fc2-b7b5-5aa1a0e9b9db", "metadata": {}, "source": [ "If you would have used the `NoiseLearner` to identify the unique 2-qubit gate layers of your circuit and characterize their noise, you would obtain a `NoiseLearnerResult` object.\n", "This result would contain a list of `LayerError` objects, just like the ones we have manually constructed above.\n", "\n", "For each unique 2-qubit layer, the `LayerError` contains:\n", "- the `QuantumCircuit` representing that 2-qubit gate layer\n", "- the qubit indices which this circuit is acting upon\n", "- the `PauliLindbladError` which represents the characterized noise model of this layer\n", "\n", "The `PauliLindbladError` will contain two objects:\n", "- the list of Pauli errors that have been characterized\n", "- the error rates corresponding to each one of those Pauli errors\n", "\n", "Normally, the list of Pauli errors will be sparse. More specifically, it will contain the single-qubit Pauli errors on all qubits that have gates acting upon them as well as the two-qubit Pauli errors on all those qubits that are connected." ] }, { "cell_type": "markdown", "id": "9c3a1a9d-6fcb-4345-b9ba-e86e2e362a7e", "metadata": {}, "source": [ "### Inserting the noisy layers into our circuit\n", "\n", "In the previous section, we have specifically constructed one `LayerError` for each of our known unique 2-qubit gate layers.\n", "This means, we know which `LayerError` matches a specific one of our slices exactly.\n", "\n", "Normally, when using the `LayerError`, you will need to figure out what the unique 2-qubit gate layer is, and where it occurs inside of your circuit.\n", "You will then need to adjust your `circuit` and/or `slices` to insert the `LayerError` accordingly.\n", "How to do this in the general case, is beyond the scope of this how-to guide.\n", "**TODO: link to external documentation, once it exists!**" ] }, { "cell_type": "markdown", "id": "dcb5937e-83d8-41ab-a526-d6677201c8f4", "metadata": {}, "source": [ "Here, our life is simpler because we know which slice a `LayerError` corresponds to.\n", "Therefore, it is now just a matter of inserting new slices to represent the noise.\n", "\n", "Note, that we must wrap each `PauliLindbladError` from `LayerError.error` in a `PauliLindbladErrorInstruction` for it to be a valid `QuantumCircuit` instruction." ] }, { "cell_type": "code", "execution_count": 9, "id": "1f5c4655-f6af-439f-8475-0ecf0c673de5", "metadata": {}, "outputs": [], "source": [ "from qiskit_addon_obp.utils.noise import PauliLindbladErrorInstruction\n", "\n", "noisy_slices = []\n", "for slice_ in slices:\n", " if slice_ == layer_error_even_xx.circuit:\n", " noisy_slices.append(\n", " QuantumCircuit.from_instructions(\n", " [(PauliLindbladErrorInstruction(layer_error_even_xx.error), slice_.qubits)]\n", " )\n", " )\n", " elif slice_ == layer_error_odd_xx.circuit:\n", " noisy_slices.append(\n", " QuantumCircuit.from_instructions(\n", " [(PauliLindbladErrorInstruction(layer_error_odd_xx.error), slice_.qubits)]\n", " )\n", " )\n", " elif slice_ == layer_error_even_yy.circuit:\n", " noisy_slices.append(\n", " QuantumCircuit.from_instructions(\n", " [(PauliLindbladErrorInstruction(layer_error_even_yy.error), slice_.qubits)]\n", " )\n", " )\n", " elif slice_ == layer_error_odd_yy.circuit:\n", " noisy_slices.append(\n", " QuantumCircuit.from_instructions(\n", " [(PauliLindbladErrorInstruction(layer_error_odd_yy.error), slice_.qubits)]\n", " )\n", " )\n", " noisy_slices.append(slice_)" ] }, { "cell_type": "markdown", "id": "b3778d94-4d04-4094-990d-a354f2062932", "metadata": {}, "source": [ "We can check our work and draw the circuit below:" ] }, { "cell_type": "code", "execution_count": 10, "id": "dadc314d-452f-465c-a382-d54685ce3f2a", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAADw0AAAIrCAYAAACneee4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/Xl4ldXd/n+fGSEQBkEh3owq4IgGtEKKtipqRS1SteB41yraOtW7VVv0a4uzotVafaq16E9aR9BqpVSpMmjVomIBq6gMikwlgkKYMmfn+cMmYUMgA3uv67PW9X4dR4+aPSRrc55Ze/k5vNgZtbW1tQIAAAAAAAAAAAAAAAAAAAAAAAAAAADgrcyoFwAAAAAAAAAAAAAAAAAAAAAAAAAAAABg93DRMAAAAAAAAAAAAAAAAAAAAAAAAAAAAOA5LhoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAPMdFwwAAAAAAAAAAAAAAAAAAAAAAAAAAAIDnuGgYAAAAAAAAAAAAAAAAAAAAAAAAAAAA8BwXDQMAAAAAAAAAAAAAAAAAAAAAAAAAAACe46JhAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHNcNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAB4jouGAQAAAAAAAAAAAAAAAAAAAAAAAAAAAM9x0TAAAAAAAAAAAAAAAAAAAAAAAAAAAADgOS4aBgAAAAAAAAAAAAAAAAAAAAAAAAAAADzHRcMAAAAAAAAAAAAAAAAAAAAAAAAAAACA57hoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAcFw0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAnuOiYQAAAAAAAAAAAAAAAAAAAAAAAAAAAMBzXDQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAeI6LhgEAAAAAAAAAAAAAAAAAAAAAAAAAAADPcdEwAAAAAAAAAAAAAAAAAAAAAAAAAAAA4DkuGgYAAAAAAAAAAAAAAAAAAAAAAAAAAAA8x0XDAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOe4aBgAAAAAAAAAAAAAAAAAAAAAAAAAAADwHBcNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAJ7jomEAAAAAAAAAAAAAAAAAAAAAAAAAAADAc1w0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAHguO+oFwF9z585t8jGVlZWaNGmSLrjgAuXm5u7ysd/4xjdSuDqEhK7ZRTZwgZ7ZRTZwha7ZRTZwgZ7ZRTZ2kY1dZANX6JpdZAMX6JldZANX6JpdZAMX6JldZGMX2dhFNnCFrtlFNnCBntlFNnCFrtlFNnCBntlFNnaRjX180jDSqrKyUo888ogqKyujXgoCR9fsIhu4QM/sIhu4QtfsIhu4QM/sIhu7yMYusoErdM0usoEL9MwusoErdM0usoEL9MwusrGLbOwiG7hC1+wiG7hAz+wiG7hC1+wiG7hAz+wiG7vIJlpcNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAB4jouGAQAAAAAAAAAAAAAAAAAAAAAAAAAAAM9x0TDSKjs7WyNHjlR2dnbUS0Hg6JpdZAMX6JldZANX6JpdZAMX6JldZGMX2dhFNnCFrtlFNnCBntlFNnCFrtlFNnCBntlFNnaRjV1kA1foml1kAxfomV1kA1foml1kAxfomV1kYxfZRCujtra2NupFwE9z585N6ff7xje+kdLvh3DQNbvIBi7QM7vIBq7QNbvIBi7QM7vIxi6ysYts4Apds4ts4AI9s4ts4Apds4ts4AI9s4ts7CIbu8gGrtA1u8gGLtAzu8gGrtA1u8gGLtAzu8jGLrKxj08aRlqVl5fr1ltvVXl5edRLQeDoml1kAxfomV1kA1foml1kAxfomV1kYxfZ2EU2cIWu2UU2cIGe2UU2cIWu2UU2cIGe2UU2dpGNXWQDV+iaXWQDF+iZXWQDV+iaXWQDF+iZXWRjF9lEi4uGkVbV1dWaOnWqqquro14KAkfX7CIbuEDP7CIbuELX7CIbuEDP7CIbu8jGLrKBK3TNLrKBC/TMLrKBK3TNLrKBC/TMLrKxi2zsIhu4QtfsIhu4QM/sIhu4QtfsIhu4QM/sIhu7yCZa2VEvIDQjr3xVn67aFPUytF/Pjpr6wAlRLyNSM39wpzZ/Xhz1MmKnQ98CDf/juKiXAUjsA5GI2x7gY8filJGP+YQgTh2DfewD7sVtD/CxY3HLaFtW8opzBjtDNnZYySJu6B4sYR9wL257gI8di1NGPuYTgjh1DPaxD7gXtz3Ax47FLaNtWcorzjk0hmzssJRFnMS9d7CFfcC9uO0BPnYsThn5mE8I4tQx2Mc+4F7c9gAfOxa3jLZlKa8459CYOGbDRcMp9umqTfro05KolwFJmz8vVsniVVEvA0CE2AeQbnTMNvIBwD6AdKNjfiEvu8jGDrIAwD6AdKNjtpEPAPYBpBsd8wt52UU2dpAFAPYBpBsds418ALAPIN3omF/Iy644ZpMZ9QIQttzcXI0dO1a5ublRLwWBo2t2kQ1coGd2kQ1coWt2kQ1coGd2kY1dZGMX2cAVumYX2cAFemYX2cAVumYX2cAFemYX2dhFNnaRDVyha3aRDVygZ3aRDVyha3aRDVygZ3aRjV1kEy0+aRhplZubq0suuSTqZSAG6JpdZAMX6JldZANX6JpdZAMX6JldZGMX2dhFNnCFrtlFNnCBntlFNnCFrtlFNnCBntlFNnaRjV1kA1foml1kAxfomV1kA1foml1kAxfomV1kYxfZRItPGkZalZWV6corr1RZWVnUS0Hg6JpdZAMX6JldZANX6JpdZAMX6JldZGMX2dhFNnCFrtlFNnCBntlFNnCFrtlFNnCBntlFNnaRjV1kA1foml1kAxfomV1kA1foml1kAxfomV1kYxfZRIuLhpFWNTU1euedd1RTUxP1UhA4umYX2cAFemYX2cAVumYX2cAFemYX2dhFNnaRDVyha3aRDVygZ3aRDVyha3aRDVygZ3aRjV1kYxfZwBW6ZhfZwAV6ZhfZwBW6ZhfZwAV6ZhfZ2EU20cqOegEAAAAAAACAFUfdd7n6jTlWkpSoqVHZFyVa89aHmnf7kyotXh/18mKPfAAAAAAAAGxhXmMb+QAAAAAAANjDzMauULLhk4YBAAAAAACAbRS//ZEmHzpWzx1xqf5x+X3qekhfHfOHq6NeFv6LfAAAAAAAAGxhXmMb+QAAAAAAANjDzMauELLhomGkVZs2bXT99derTZs2US8FgaNrdpENXKBndpENXKFrdpENXKBndvmaTaKyWmXrSlRavF5fvP2xFj0xQ92+sb9y8vOiXlrK+JqNYpCPz9nAL3TNLrKBC/TMLrKBK3TNLrKBC/TMLl+zCX1eI4+zUQzy8Tkb+IWu2UU2cIGe2UU2cIWu2UU2cIGe2eVzNsxs7Aohm+yoF4Cw5eTkaNSoUVEvAzFA1+wiG7hAz+wiG7hC1+wiG7hAz+wKIZu87nuo76lDlaiuUW1NIurlpEwI2SjQfELJBvbRNbvIBi7QM7vIBq7QNbvIBi7QM7tCyCbEeY0CyUaB5hNKNrCPrtlFNnCBntlFNnCFrtlFNnCBntkVSjbMbOzyNRs+aRhpVVpaqjFjxqi0tDTqpSBwdM0usoEL9MwusoErdM0usoEL9MwuX7Mp+ObBOnfp4zrvsyc1ZsFEFRQdrI8m/k3VZRWSpHYFXXTmew+pbdeOkqSsvFyd/tYD6nxA74hX3ny+ZqNm5HPMxKs14Lzj6x/f5ZB9NOof9ymrTU6Eq24+n7OBX+iaXWQDF+iZXWQDV+iaXWQDF+iZXb5mwzzNNuZpQGrQNbvIBi7QM7vIBq7QNbvIBi7QM7t8zib0mVrI2fgwT/P6ouH3339fp512mjp16qSOHTtq1KhRWrNmjTp06KCzzjor6uVBUiKR0LJly5RI+HMlPfxE1+wiG7hAz+wiG7hC1+wiG7hAz+zyNZt185Zo6vHXatqIcVpw77NaO3eR5k94uv7+0uL1+ujhafrGTRdIkgqvHq3lL7+jkk9WRLjqlvE1GzUjn3d/+ZgGXvk9tenSQcrIUNGdF+ud6x9VTUVVpOtuLp+zgV/oml1kAxfomV1kA1foml1kAxfomV2+ZsM8zTbmaUBq0DW7yAYu0DO7yAau0DW7yAYu0DO7fM4m9JlayNn4ME/LjnoBrTVz5kydeuqp6tOnj2644Qbl5eVp0qRJGjFihLZs2aLCwsKol9giMyaOUE52po658G+qrW24/S+/PV49urVT0fl/VXV17a6+BVqgx3GDdPh156hT/54qW7tBHz36kj56eFrUywLgCHsA0o2O2UdGQLyxByDd6Jj/asortfnzYknSgrsnq0PfAg257SL985rf1z/m40df1qnTJ+jAsSerz8lDNHX4NRGuOF6ayqe0eL0WPjxNR/zyfH05f6k2frZGa978IOJV+4+9DYg39gCkGx2zj4yAeGMPQLrRMf8xT7ONeVo02NsAsA8gneiXfWQEgH0A6US/wsBMza4Q5mleftLwunXrNGbMGA0ePFjz58/XtddeqyuuuEIzZ87UihVfXy3v20XDP7jhdR3Sbw/94sJD62+75Mz9dcLQHjrvute5YDiFuh62n4ZP+oVWzZ6vqSdcowW/nqLDx52j/f/3xKiXBsAB9gCkGx2zj4yAeGMPQLrRsTAt+PVk9RtzrLoetl/9bbWJhOaOn6Qht1yo9255XNVlFZGuMc4ay+eTx6ar8/69NPCKUZp70x8jXV8I2NuAeGMPQLrRMfvICIg39gCkGx0LE/M025inpR97GwD2AaQT/bKPjACwDyCd6Fe4mKnZ5eM8zcuLhidMmKANGzboscceU15eXv3tnTp10uDBgyUPLxpe/UWpLr31Ld102WAVHtBVA/p20r3XDtG1976rRZ9vjHp5rda2bVv99re/Vdu2baNeSr2DLzlVXy74VPNuf0obl6zW0imv6eP/72UNvGJU1EvDbrDYNXzNWjbsAWGy1DM6lsxSNnXIKEwWu4avWcuGPSBMlnpGx5JZymZ3bF5WrJWvvqfB485Our3H8EEqLV6vPQ7oHdnaWiuUbLSzfGprtehPr2rVzHmq+GpTlMtrMYvZsLeFyWLX8DVr2bAHhMlSz+hYMkvZ1CGjMFnsGr5mLRv2gDBZ6hkdS2Ypm93BPM025mnpx94WJotdw9csZsM+EB5LPaNfySxlU4eMwmSxa/iaxWzYB8JjqWf0K5mlbHZXaDO14LMxPk/z8qLhZ555RkcffbQGDBjQ6P3du3dXQUGBJKm6ulpXXXWVunTpos6dO+uiiy5SeXm54xU3z5S/L9OUvy/Tk3d8W0/e8W3941/FenDyx1Eva7dkZ2erqKhI2dnZUS+lXrcjD9Dq2fOTbls9e4Hye3VTu727RLYu7B6LXcPXrGXDHhAmSz2jY8ksZVOHjMJksWv4mrVs2APCZKlndCyZpWx214cPTlWPYwpVUHSwJKnzAb3V+6QjNW3EOPU/Z7jye3eLeoktElI2aiQfSVIiodpEbZTLahWL2bC3hcli1/A1a9mwB4TJUs/oWDJL2dQhozBZ7Bq+Zi0b9oAwWeoZHUtmKZvdxTzNNuZp6cXeFiaLXcPXLGbDPhAeSz2jX8ksZVOHjMJksWv4msVs2AfCY6ln9CuZpWxSIaSZWujZSLbnad79qRcXF2v16tUaM2bMDvclEgl98MEHGjRoUP1tt99+u2bPnq0PPvhAubm5GjlypH7+85/r/vvvb9bPq66uVnFxcbPXV11V1ezHNuaKO+Zo9YyzlEjU6tQrXm3196muqtKqVat2ay1N2bp1a7MeM3r0aE2ZMkXt27ff5WNTvd6qqupGb8/r1lll60qSbitbu+G/9+2h0jXrU7qOuKmqqk55lta7FmfWs2lsH2APSK+47QE+diyVGVnORpwFIhO3fSDurGfj4z7tu7jtAT52LE5nge3t7GywvTf/73eN3r7uvUWatPeZ9V8XTbhEc8dPUmnxes2/6xkNue0izTz/jmatI+4zm+01Nxu1IJ/WriPu2XCGjkbc3j/jzno2Pp5vfBe3PcDHjsXpDM1ZIBpx2wfizno2Pu7TvovbHuBjx+J0FtielXmaHMxtQs1GaZ6niWw4Q0ckbu+fcWc9G/YB9+K2B3CGtpuN2AMiE7d9IO6sZ8M+4F7c9gDOAnazaUw6ZjZW/xs1stm9tbT09RYUFLT44mvvLhquK1VGRsYO97344otau3atCgsL62975JFHdNddd6lHjx6SpBtvvFHf//739Zvf/EZZWVlN/rzi4mL16tWr+Qvsf5PUtkfzH7+d807ZTxnKULu2WTr8oD310hsrW/V9Fi9erF69zm7GI1tv7NixTT6msrJSpaWlmjJlinJzc3f52EceeSSFq5Nu7XqCeuR0TOn3RNMWL16s0S35nWkG612LM+vZsA+4F7c9wMeOpTIjy9nI03xCELd9IO6sZ8M+4F7c9gAfOxans8D2UplX/3OPV/mXG7Vq5jxJ0qfPvq7+Zx+n3icP0YqX3tnlc9Pxe7K9OGezO8jGThZxE7f3z7izng37gHtx2wN87FicztA+5hOCuO0DcWc9G/YB9+K2B/jYsTidBbZnZZ4mB3ObOGezu+KejaUs4iRu759xZz0b9gH34rYH+NixOJ2hfcwnBHHbB+LOejbsA+7FbQ/wsWNxOgtsL9V5Wf5v1OKeze5oTTYrV65Uz549W/Qc7y4a7tWrl7KysvT6668n3b58+XJdeeWVklR/0XBJSYlWrlyZdBHx4MGDtXnzZn3++efab7/9HK9+1w7Yp5Pu+umRuuqut3XQvp31yI1HaeAZz+urkoqolxaUsrUlyturc9Jtbf/7dd3frgEgXOwBSDc6Zh8ZAfHGHoB0o2PxsOTJGVry5Iyk26afPj6y9aBxS6e8pqVTXot6GUFgbwPijT0A6UbH7CMjIN7YA5BudCwemKf5gXla6rC3AWAfQDrRL/vICAD7ANKJfsUHMzX7LM/TMmpra2ujXkRLXXjhhXrsscc0cuRInXLKKVq5cqUmTpyo7t2769///rc+/vhjHXDAAVq5cqV69+6tNWvWqKCgQJJUVVWl3NxczZ8/P+li4p2prq5WcXFxs9c2/MdvavGKpj9ie3vZ2Rl6+4mRWr12q077yQy1yc3Se8+cpkWfl+jMn81q8fcb0Lu9Zv7+qBY/ryWWLl3a5GO2bt2qU089VdOmTWvyo8T79euXwtVJc0bfqa3LdszuW7+7Su177qWXT7uh/rbDbzhP+4z8pp478rKUriGO2u9ToKIp41L6Pa13Lc6sZ9PYPsAekF5x2wN87FgqM7KcjTgLRCZu+0DcWc/Gx33ad3HbA3zsWJzOAtvb2dnAtXT8nmyPbFqHbDhDRyVu759xZz0bH883vovbHuBjx+J0huYsEI247QNxZz0bH/dp38VtD/CxY3E6C2zPysxGDuY2ZNN6cc+GM3Q04vb+GXfWs2EfcC9uewBnaLvZiD0gMnHbB+LOejbsA+7FbQ/gLGA3m8Yws0lGNo1rTTYFBQXKzm7ZZwd790nDknT//fcrJydHL774ombNmqWioiK98MILuvnmm7V06VINGDBAktShQwdJ0saNG+svGi4pKUm6rynZ2dkt+vjm7JycVrwi6ebLDlfP7u014rK/S5IqKmt03nWv6d2nRur87/bT439t+pdp+3W09GOnW2rNmjVNPqZt27Z6+umn1bVrV2VlZe3ysaleb05O4/Ve+IdpOuWvt2nQuLP12XOva89B/XXghSM098Y/pvTnx1VOTst+Z5rDetfizHo2je0D7AHpFbc9wMeOpTIjy9mIs0Bk4rYPxJ31bHzcp30Xtz3Ax47F6SywvZ2dDVxLx+/J9simdciGM3RU4vb+GXfWs/HxfOO7uO0BPnYsTmdozgLRiNs+EHfWs/Fxn/Zd3PYAHzsWp7PA9qzMbORgbkM2rRf3bDhDRyNu759xZz0b9gH34rYHcIa2m43YAyITt30g7qxnwz7gXtz2AM4CdrNpDDObZGTTOBf/jZp8vWg4Pz9fDz/8sB5++OGk2z/88EMNHDhQmZmZkqTOnTurV69eWrBggfbff39J0vz589WhQwf17ds3krU3Ztig7rr2goH63k9naN368vrb31+0XuMfnKf7fzFUr81do5XFLf8E46hlZmaqe/fu9ZlY8NX7n2rWD+/S4OvO0SE/HqmydSWaN+FpLfrTK1EvDbvBYtfwNWvZsAeEyVLP6FgyS9nUIaMwWewavmYtG/aAMFnqGR1LZikbJCMbuyxmw94WJotdw9esZcMeECZLPaNjySxlU4eMwmSxa/iatWzYA8JkqWd0LJmlbJCMbOyymA17W5gsdg1fs5gN+0B4LPWMfiWzlE0dMgqTxa7haxazYR8Ij6We0a9klrJBMrKJlpcXDTempKREq1at0imnnJJ0+9ixY3XHHXfo6KOPVk5Ojm688UZdcMEFTV6h7tJb879QzuDHGr3vzkf/rTsf/bfzNaXK1q1bddxxx2nWrFnKz8+Pejn1Vs2cp1Uz50W9DKSQ1a7BZjbsAeGx1jM61sBaNnXIKDxWuwab2bAHhMdaz+hYA2vZoAHZ2GU1G/a28FjtGmxmwx4QHms9o2MNrGVTh4zCY7VrsJkNe0B4rPWMjjWwlg0akI1dVrNhbwuP1a7BbjbsA2Gx1jP61cBaNnXIKDxWuwa72bAPhMVaz+hXA2vZoAHZRCuYi4Y/+OADSVJhYWHS7ddff72+/PJLHXzwwUokEjrzzDM1YcKEiFYJAAAAAAAAAAAAAAAAAAAAAAAAAAAApF7wFw1nZ2fr/vvv1/333x/RygAAAAAAAGBN/3OGq/9Zx6m2NqE5v5iokk9W1N+X37ubht17mTJzsrXi5Xe18PdT1XlATxXd/SPVJmpVW12jt65+SFtWrJUkDbxilPY++lBlZmdp3oSn9eX8pTrxmV/Wf7+9jhigyYeOVeXGrZG8Vp/tKqfCq0er31nHauOSVXr1nNt2+ZzDfnqm9j5qoCSpwz4F+vB3L+rjR1+K5DUBAAAAAAD4iHmaH5inAQAAAAAA2MA8zQ+hztOCuWj4sssu02WXXRb1MgAAAAAAAGBcbud87f+DE/W3U65Xhz7dVXTnxfr792+qv/+IG87XvDue0rp/LdZJz9+k5X97W+VfbdKM8+5Q1eZS9Ti2UIf99Ey99dMH1eO4QcrKa6NXxtyc9DOmnzFektTl4L46/IbzGMi2QlM5LXr8FS199jUV3Xlxk895/zfP6f3fPCdJ+u4rd2n5396O5DUBAAAAAAD4iHmaH5inAQAAAAAA2MA8zQ8hz9MyI/3pCF779u01a9YstW/fPuqlIHB0zS6ygQv0zC6ygSt0zS6ygQv0zC6r2ew1qJ+K/7lQtdU12vTpf9SmS0cpI6P+/k79e2jdvxZLklbNmKfuQw9U+VebVLW5VJKUqKpRbU1CktT3u0XKbtdGJ04Zr6Puu1zZ7dsm/ax9Tz9anz3/htPX1xxWs9lWUzmVrS2RErUtek7nAT1VuXGrSovXO30tLeFDNggDXbOLbOACPbOLbOAKXbOLbOACPbPLajbM0+xmsy3maXazQRjoml1kAxfomV1kA1foml1kAxfomV1Ws2GeZjebbYU8T+OiYaRVIpHQF198oUQiEfVSEDi6ZhfZwAV6ZhfZwBW6ZhfZwAV6ZpfVbHI75yf9zYpVW8qU27Fd/dcZmQ1DvIqNW9Vmjw71X2e1zVXhtaP10SMvSZLaFXRRbVWNXhl9k9Yv/FyH/Hhkww/KyFDvk47U8pfeSf+LaiGr2WyrqZxa85x9z/iWPnvhzTStODV8yAZhoGt2kQ1coGd2kQ1coWt2kQ1coGd2Wc2GeZrdbLbFPM1uNggDXbOLbOACPbOLbOAKXbOLbOACPbPLajbM0+xms62Q52lcNIy0Kisr09lnn62ysrKol4LA0TW7yAYu0DO7yAau0DW7yAYu0DO7rGZTuXGrcjs2/A2GOfl5qtxUWv917TZ/OWBux3aq2LBZkpSRlalvPXiVFj40VSWfrJAkVWzYotWzF0iSVs+erz0O6lP/3IKig/TVh8tUvbXcxctqEavZbKupnFrznD4nD9HyaXPStOLU8CEbhIGu2UU2cIGe2UU2cIWu2UU2cIGe2WU1G+ZpdrPZFvM0u9kgDHTNLrKBC/TMLrKBK3TNLrKBC/TMLqvZME+zm822Qp6nZUe9AAAAgDg76r7L1W/MsZKkRE2Nyr4o0Zq3PtS8259UafH6qJcHAAAc4Dzg3rp5S1R4zWhlZGUqv1c3VazflDSJ3bh4lfYs7KcvFyxVz+GD9dbPHpQkDbvnUv3ntfe1Yvrc+scWz1moroftV///m5atqb9v39OP1mfPv+H41YWjqZxa+pxuRx6gkiWrmhzsAgAA+zhDAwAQb5wF3GOe5gfmaQAAYGc4QwMAEG+cBdxjnuaHkOdpXDQMAAAQseK3P9Lrl9yrjKxMdejbXUNvH6tj/nC1Xhr5/6JeGgAAcITzgFuVJVu05KmZGvHCLaqtTejt6x5Rj2MLlds5X8teeFP/uv1JDbvnUmVkZ2nl3+dqy4q16nFsofqO/Kbye3XTPqcN0/qFy/TuryZp6eTZGnbPpfrOczeqpqJKb/zkAUlSZm629j5qoN6+7pGoX663msppwHnHa7/vf1ud+vXQiZN/pTd+8oDKvtiww3PqfD0kfzPS1wQAAFKHMzQAAPHGWcAt5ml+YJ4GAAB2hTM0AADxxlnALeZpfgh5nsZFw0i79u3bN+NRwO6ja3aRDVzwuWeJymqVrSuRJJUWr9eiJ2Zo6G0XKSc/T1VbyqJe3m7zORv4ha7ZRTZwwfeehXwesJrN4idmaPETM+q/3vDR8vp/3vx5saafMT7p8atnL9AT+567w/dJVFbrjSsfaPT2Pw+9POXrTiWr2WxrVzltf19Tt789bmIaV5paPmSDMNA1u8gGLvjeM87QwO6ja3aRDVzwvWecBdxjnmY3m20xTwPSi67ZRTZwwfeecYYGdh9ds4ts4ILvPeMs4B7zNLvZbCvUeRoXDSOt8vPzNXv27KiXgRiga3aRDVwIqWd53fdQ31OHKlFdo9qaRNTL2W0hZQPb6JpdZAMXQutZSOeB0LIJCdnYRTZwha7ZRTZwIbSecYYGWo6u2UU2cCG0nnEWgAtkYxfZwBW6ZhfZwIXQesYZGmg5umYX2cCF0HrGWQAukE20MqNeAMJWXV2tOXPmqLq6OuqlIHB0zS6ygQu+96zgmwfr3KWP67zPntSYBRNVUHSwPpr4N1WXVUiS2hV00ZnvPaS2XTtKkrLycnX6Ww+o8wG9d3mfBb5nA3/QNbvIBi6E0LOmzgPHTLxaA847vv7xXQ7ZR6P+cd9Ob89qkxPJ69heCNmEimzsIhu4QtfsIhu4EELPQp2phZAN/EDX7CIbuBBCz5inwTWysYts4Apds4ts4EIIPWOeBuweumYX2cCFEHrGPA2ukU20+KThFNuvZ8eolyAZWkd5ebmuuuoqzZo1S/n5+VEvBwGja3aRDVzwvWfr5i3Rm1f9/5TVJkd9R35T/3P0oZo/4en6+0uL1+ujh6fpGzddoDeuuF+FV4/W8pffUcknKyRpl/dFzfds4A+6ZhfZwIUQetbUeeDdXz6mES/eouUvvaOKDVtUdOfFeuf6R7Vx6epGb6+pqIr09dSxlE2HvgWR/vw6VtZBNjuysg5L2SBsdM0usoELIfQs1JlaCNnAD3TNLrKBCyH0jHla+lmZlcjIWsimcRbWYikbhI2u2UU2cCGEnjFPA3YPXbOLbOBCCD1jnpZ+FuYkdSyshWwa52otXDScYlMfOCHqJQAAAM/UlFdq8+fFkqQFd09Wh74FGnLbRfrnNb+vf8zHj76sU6dP0IFjT1afk4do6vBrmnUfAADwQ1PngdLi9Vr48DQd8cvz9eX8pdr42RqtefMDSdrp7Ug2/I/jol4CdoJsAABAazBTAwAg3pinpR8zG7vIBgAAtAbzNAAA4o15Wvoxs7ErjtlkRr0AAAAAJFvw68nqN+ZYdT1sv/rbahMJzR0/SUNuuVDv3fK4qssqmnUfAADwU2PngU8em67O+/fSwCtGae5Nf2zydgAAACBOmKkBABBvzNMAAACAlmGeBgBAvDFPA8LGRcNIq8zMTO2zzz7KzKRqSC+6ZhfZwIXQerZ5WbFWvvqeBo87O+n2HsMHqbR4vfY4oPcOz9nVfVEKLRvYRdfsIhu4EGLPGj0P1NZq0Z9e1aqZ81Tx1aambzcgxGxCQTZ2kQ1coWt2kQ1cCLFnoczUQswGNtE1u8gGLoTYM+ZpSDeysYts4Apds4ts4EKIPWOeBrQMXbOLbOBCiD1jnoZ0I5to8aeOtGrXrp0mT56sdu3aRb0UBI6u2UU2cCHEnn344FT1OKZQBUUHS5I6H9BbvU86UtNGjFP/c4Yrv3e3+sfu6r6ohZgNbKJrdpENXAi1Z9ufByRJiYRqE7U7Pnhnt0cs1GxCQDZ2kQ1coWt2kQ1cCLVnIczUQs0G9tA1u8gGLoTaM+ZpSCeysYts4Apds4ts4EKoPWOeBjQfXbOLbOBCqD1jnoZ0IptocdEw0qqqqkp/+ctfVFVVFfVSEDi6ZhfZwAWfe/bm//1Or4y5eYfb1723SJP2PlPFcxZKkoomXKK54yeptHi95t/1jIbcdlH9Y3d1X9R8zgZ+oWt2kQ1c8L1nzT0P+Mj3bEJGNnaRDVyha3aRDVzwvWchz9R8zwb+oGt2kQ1c8L1nzNMQBbKxi2zgCl2zi2zggu89Y54G7D66ZhfZwAXfe8Y8DVEgm2hx0TDSqqKiQrfffrsqKiqiXgoCR9fsIhu4EHrP+p97vMq/3KhVM+dJkj599nXltG+r3icP2eV9FoSeDeyga3aRDVygZ3aRjV1kYxfZwBW6ZhfZwIU49MzXmVocsoENdM0usoEL9MwusrGLbOwiG7hC1+wiG7gQh54xTwN2ja7ZRTZwgZ7ZRTZ2kU20sqNeAAAAAHZtyZMztOTJGUm3TT99fNL9O7sPAACEZemU17R0ymvNvh0AAACIK2ZqAABAzNMAAACAZmOeBgAAxDwNCAafNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAB4jouGkXaDBg2KegmICbpmF9nABXpmF9nAFbpmF9nABXpmF9nYRTZ2kQ1coWt2kQ1coGd2kQ1coWt2kQ1coGd2kY1dZGMX2cAVumYX2cAFemYX2cAVumYX2cAFemYX2dhFNtHhomGk3fz586NeAmKCrtlFNnCBntlFNnCFrtlFNnCBntlFNnaRjV1kA1foml1kAxfomV1kA1foml1kAxfomV1kYxfZ2EU2cIWu2UU2cIGe2UU2cIWu2UU2cIGe2UU2dpFNdLhoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAcFw0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAnuOiYaRVdna2Ro4cqezs7KiXgsDRNbvIBi7QM7vIBq7QNbvIBi7QM7vIxi6ysYts4Apds4ts4AI9s4ts4Apds4ts4AI9s4ts7CIbu8gGrtA1u8gGLtAzu8gGrtA1u8gGLtAzu8jGLrKJFn/qSKu2bdvqhhtuiHoZiAG6ZhfZwAXfetb/nOHqf9Zxqq1NaM4vJqrkkxX19+X37qZh916mzJxsrXj5XS38/VRJUtdD99Xg689VZnaW1s79RPMnPCNJGnjFKO199KHKzM7SvAlP68v5S3XiM7+s/357HTFAkw8dq8qNWyN4pf5lA3/RNbvIBi742LOWngc6D+iport/pNpErWqra/TW1Q9py4q1kvHzgI/ZxAXZ2EU2cIWu2UU2cMHHnsVlpuZjNvATXbOLbOCCjz1jnoaokY1dZANX6JpdZAMXfOwZ8zQgteiaXWQDF3zsGfM0RI1sosUnDSOtysvLdeutt6q8vDzqpSBwdM0usoELPvUst3O+9v/BiXr59F/prZ89pCG3/DDp/iNuOF/z7nhKL592g3qdeLjye3VTZk62Bo87W7MvvFt/P/PG+mFsj+MGKSuvjV4Zc7OmnzFea9/9RImqak0/Y7ymnzFe7/7qMRX/c2FkFwzLs2zgN7pmF9nABd961przQPlXmzTjvDs0/Xu/0ocPvqjDfnqm5MF5wLds4oRs7CIbuELX7CIbuOBbz+I0U/MtG/iLrtlFNnDBt54xT4MFZGMX2cAVumYX2cAF33rGPA1IPbpmF9nABd96xjwNFpBNtLhoGGlVXV2tqVOnqrq6OuqlIHB0zS6ygQs+9WyvQf1U/M+Fqq2u0aZP/6M2XTpKGRn193fq30Pr/rVYkrRqxjx1H3qg9jpigKpKK/Tt3/9UJ04Zr70OHyBJ6vvdImW3a6MTp4zXUfddruz2bZN+1r6nH63Pnn/D8StM5lM28Btds4ts4IJvPWvNeaD8q02q2lwqSUpU1ai2JiF5cB7wLZs4IRu7yAau0DW7yAYu+NazOM3UfMsG/qJrdpENXPCtZ8zTYAHZ2EU2cIWu2UU2cMG3njFPA1KPrtlFNnDBt54xT4MFZBOt7KgXAAC+mvmDO7X58+Kol9EiHfoWaPgfx0W9DCDWcjvnJ/1NSlVbypTbsV39bRmZDf9CVrFxq9rs0UGJqmp1ObCPpp54rXI7tdcJT1yvF4+7Wu0Kuqh83Ua9MvomHXTxKTrkxyO14J4pXz85I0O9TzpSC+591v2LBGKCswCA1mrNeaBOVttcFV47WnN+MVGSOA+0gJV9m714R2QDxIeV3/eWYG8AbGCmBoSBswCA1mKeFg1L+zb7cTKyAeLD0u97c7EvADYwTwPCwFkAQGsxT4uGpX2b/ThZHLPhomEAaKXNnxerZPGqqJcBwDOVG7cqt2P7+q9z8vNUuam0/uva2obH5nZsp/IvN6qiZIvWzv1E1VvLv/5faYVy8vNUsWGLVs9eIElaPXu+Bl93bv1zC4oO0lcfLlP11nJXLw2IHc4CAFqrNecBScrIytS3HrxKCx+aqpJPVkgS54EWYN+2i2yA+OD3HUBrMVMDwsBZAEBrMU+LBvu2XWQDxAe/7wBai3kaEAbOAgBai3laNNi37YpjNplRLwBhy83N1dixY5Wbmxv1UhA4umYX2cAFn3q2bt4SdR96oDKyMtWhb4Eq1m9K+jevjYtXac/CfpKknsMH64t3PtaX85ao477/o4ysTOV0aKecDnmq2lKm4jkL1fWw/SRJXQ/bT5uWran/PvuefrQ+e/6NCF5hMp+ygd/oml1kAxd861lrzgOSNOyeS/Wf197Xiulz6x9r/TzgWzZxQjZ2kQ1coWt2kQ1c8K1ncZqp+ZYN/EXX7CIbuOBbz5inwQKysYts4Apds4ts4IJvPWOeBqQeXbOLbOCCbz1jngYLyCZafNIw0io3N1eXXHJJ1MtADNA1u8gGLvjUs8qSLVry1EyNeOEW1dYm9PZ1j6jHsYXK7ZyvZS+8qX/d/qSG3XOpMrKztPLvc7VlxVpJ0qLHX9FJz9+kzOxsvXfz45KkpZNna9g9l+o7z92omooqvfGTByRJmbnZ2vuogXr7ukcifa3yLBv4ja7ZRTZwwbeeteY80OPYQvUd+U3l9+qmfU4bpvULl+ndX00yfx7wLZs4IRu7yAau0DW7yAYu+NazOM3UfMsG/qJrdpENXPCtZ8zTYAHZ2EU2cIWu2UU2cMG3njFPA1KPrtlFNnDBt54xT4MFZBMtLhpGWpWVlennP/+57rrrLuXl5UW9HASMrtlFNnDBt54tfmKGFj8xo/7rDR8tr//nzZ8Xa/oZ43d4zqfPvq5Pn3096bZEZbXeuPKBHR6bqKzWn4denvJ1t4Zv2cBfdM0usoELPvaspeeB1bMX6Il9z93h+1g/D/iYTVyQjV1kA1foml1kAxd87FlcZmo+ZgM/0TW7yAYu+Ngz5mmIGtnYRTZwha7ZRTZwwceeMU8DUouu2UU2cMHHnjFPQ9TIJlqZUS8AYaupqdE777yjmpqaqJeCwNE1u8gGLtAzu8gGrtA1u8gGLtAzu8jGLrKxi2zgCl2zi2zgAj2zi2zgCl2zi2zgAj2zi2zsIhu7yAau0DW7yAYu0DO7yAau0DW7yAYu0DO7yMYusokWFw0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAnsuOegEAAAAAAACAFUfdd7n6jTlWkpSoqVHZFyVa89aHmnf7kyotXh/18mKPfAAAAAAAAGxhXmMb+QAAAAAAANjDzMauULLhk4aRVm3atNH111+vNm3aRL0UBI6u2UU2cIGe2UU2cIWu2UU2cIGe2eVrNsVvf6TJh47Vc0dcqn9cfp+6HtJXx/zh6qiXlVK+ZqMY5ONzNvALXbOLbOACPbOLbOAKXbOLbOACPbPL12xCn9fI42wUg3x8zgZ+oWt2kQ1coGd2kQ1coWt2kQ1coGd2+ZwNMxu7QsiGTxpGWuXk5GjUqFFRLwMxQNfsIhu4QM/sIhu4QtfsIhu4QM/s8jWbRGW1ytaVSJJKi9dr0RMzNPS2i5STn6eqLWVRLy8lfM1GMcjH52zgF7pmF9nABXpmF9nAFbpmF9nABXpml6/ZhD6vkcfZKAb5+JwN/ELX7CIbuEDP7CIbuELX7CIbuEDP7PI5G2Y2doWQDZ80jLQqLS3VmDFjVFpaGvVSEDi6ZhfZwAV6ZhfZwBW6ZhfZwAV6ZlcI2eR130N9Tx2qRHWNamsSUS8nZULIRoHmE0o2sI+u2UU2cIGe2UU2cIWu2UU2cIGe2RVCNiHOaxRINgo0n1CygX10zS6ygQv0zC6ygSt0zS6ygQv0zK5QsmFmY5ev2fBJw0irRCKhZcuWKZHw55cCfqJrdpENXKBndpENXKFrdpENXKBndvmaTcE3D9a5Sx9XRmamsvPaSJI+fGiqqssqJEntCrro5Gm3adp3fqHyrzYpKy9Xp824R7Muulsln6yIePXN42s2akY+x0y8Wv95/X0tfmKGJKnLIfvoWw9epb+ecK1qKqoiXXtz+JwN/ELX7CIbuEDP7CIbuELX7CIbuEDP7PI1G+ZptjFPA1KDrtlFNnCBntlFNnCFrtlFNnCBntnlczahz9RCzsaHeZrXnzT8/vvv67TTTlOnTp3UsWNHjRo1SmvWrFGHDh101llnRb08AAAAAAAAeGjdvCWaevy1mjZinBbc+6zWzl2k+ROerr+/tHi9Pnp4mr5x0wWSpMKrR2v5y+94MYwNQVP5vPvLxzTwyu+pTZcOUkaGiu68WO9c/6iZgSwAAAAAAEBomKfZxjwNAAAAAADAHmZqdoUwT/P2k4ZnzpypU089VX369NENN9ygvLw8TZo0SSNGjNCWLVtUWFgY9RJhVPehB+rgH41Ul0P6Kr/nXpo34Wn9+74/R70sBKbHcYN0+HXnqFP/nipbu0EfPfqSPnp4WtTLwn+xDyDd6Jht5AMXOAvYxj6AdKNj/qspr9Tmz4slSQvunqwOfQs05LaL9M9rfl//mI8ffVmnTp+gA8eerD4nD9HU4ddEuOJ4aSqf0uL1WvjwNB3xy/P15fyl2vjZGq1584OIV+039jW4wBnaNvYBpBsds4184AJnAdvYB5BudMx/zNNsY54WDfY2pBtnaNvYA5BudMw+MkK6cRawjT0A6UbHwsBMza4Q5mleftLwunXrNGbMGA0ePFjz58/XtddeqyuuuEIzZ87UihVfXy3PRcM2tG3bVr/97W/Vtm3bqJdSL7tdW5UsWan3bnlcpV9siHo5SBFLXet62H4aPukXWjV7vqaecI0W/HqKDh93jvb/3xOjXlokLGVTh30gPNZ6RscaWMtG5BMsS13jLJDMUjZ12AfCY61ndKyBtWxaa8GvJ6vfmGPV9bD96m+rTSQ0d/wkDbnlQr13y+OqLquIdI0tFUo22kk+nzw2XZ3376WBV4zS3Jv+GOn6WspiNuxrYbLUNc7QySxlU4d9IDzWekbHGljLRuQTLEtd4yyQzFI2ddgHwmOtZ3SsgbVsWot5mm3M09xgbwuPpa5xhk5mKZs67AHhsdYzOtbAWjZ1yCg8lrrGWSCZpWzqsAeEx1rP6FgDa9nsjtBmaqFnY32e5uVFwxMmTNCGDRv02GOPKS8vr/72Tp06afDgwRIXDZuRnZ2toqIiZWfb+VDr1bPma97tT+nzqf9UotLOx35j91jq2sGXnKovF3yqebc/pY1LVmvplNf08f/3sgZeMSrqpUXCUjZ12AfCY61ndKyBtWxEPsGy1DXOAsksZVOHfSA81npGxxpYy6a1Ni8r1spX39PgcWcn3d5j+CCVFq/XHgf0jmxtrRVKNtpZPrW1WvSnV7Vq5jxVfLUpyuW1mMVs2NfCZKlrnKGTWcqmDvtAeKz1jI41sJaNyCdYlrrGWSCZpWzqsA+Ex1rP6FgDa9m0FvM025inucHeFh5LXeMMncxSNnXYA8JjrWd0rIG1bOqQUXgsdY2zQDJL2dRhDwiPtZ7RsQbWstkdoc3Ugs/G+DzNyz/1Z555RkcffbQGDBjQ6P3du3dXQUGBJGnKlCm6//77tWDBAu255576/PPPW/SzqqurVVxcnJJ1h2br1q3Neszo0aM1ZcoUtW/ffpePXbVqVQpXJ1VVVaf0+6F5qqqqU56l1a7trGPdjjxAS56amXTb6tkLdMhlp6nd3l1UumZ9Sn5+a6Q6H6vZ1GEfcC9Oe4A87VgqM7KcjTzNJwRx2gc4C9jNpg77gHtx2gPkacfidBbY3u7m9eGDU3XKX29TQdHBKp6zUJ0P6K3eJx2paSPG6eS/3qZP//wPbVmxtlnrSPdrjVs2aiQfSVIiodpEbYvWEfdsfNzXQhCn90/O0HazqcM+4F6c9gB52rE4naF9zCcEcdoHOAvYzaYO+4B7cdoD5GnH4nQW2J6VeZoczG3ilo1SNE8T2Xi5r4UgTu+fnKHtZlOHfcC9OO0B8rRjcTpD+5hPCOK0D3AWsJtNHfYB9+K0B8jTjsXpLLC9dMxsrP43amTjdp5WUFDQ4ouvvbtouLi4WKtXr9aYMWN2uC+RSOiDDz7QoEGD6m/bY489dMUVV+iLL77Qb37zm1b9vF69eu32ukM0duzYJh9TWVmp0tJSTZkyRbm5ubt87COPPJLC1Um3dj1BPXI6pvR7ommLFy/W6BT/zljt2s46ltets8rWlSTdVrZ2w3/v2yPSfxFLdT5Ws6nDPuBenPYAedqxVGZkORt5mk8I4rQPcBawm00d9gH34rQHyNOOxekssL3m5vXm//2u0dvXvbdIk/Y+s/7rogmXaO74SSotXq/5dz2jIbddpJnn39Hk90/H78n2Qs1GLcinNcjGz30tBHF6/+QMbTebOuwD7sVpD5CnHYvTGdrHfEIQp32As4DdbOqwD7gXpz1AnnYsTmeB7VmZp8nB3CbUbJTmeZrIxst9LQRxev/kDG03mzrsA+7FaQ+Qpx2L0xnax3xCEKd9gLOA3WzqsA+4F6c9QJ52LE5nge2lY2Zj9b9RI5vWa002K1euVM+ePVv0nMwWritydVeiZ2Rk7HDfiy++qLVr16qwsLD+thNOOEFnnXWW+vTp43SdAAAAAAAACFP/c49X+ZcbtWrmPEnSp8++rpz2bdX75CFRLw0AAAAAAAAwh3kaAAAAAAAA0DLM1LA7vPuk4V69eikrK0uvv/560u3Lly/XlVdeKUlJFw3vroKCAq1cuTJl3y8kS5cubfIxW7du1Z/+9CeNHj26yY8SHz9+fApXJ80Zfae2LitO6fdE0wYMGKCVU/6/lH5Pq13bWcfK1pYob6/OSbe1/e/XdX+LU1RSnY/VbOqwD7gXpz1AnnYslRlZzkae5hOCOO0DnAXsZlOHfcC9OO0B8rRjcToLbC+VeS15coaWPDkj6bbppzdv/en4PdlenLPZ1tIpr2nplNea/Xiy8XNfC0Gc3j85Q9vNpg77gHtx2gPkacfidIb2MZ8QxGkf4CxgN5s67APuxWkPkKcdi9NZYHtW5mlyMLeJczbbauk8TWTj5b4Wgji9f3KGtptNHfYB9+K0B8jTjsXpDO1jPiGI0z7AWcBuNnXYB9yL0x4gTzsWp7PA9lKdl+X/Ri3u2dRxNU8rKCho4co8vGg4NzdX//u//6vHHntMp512mk455RStXLlSEydOVPfu3bV69eqUXjScnZ3d4o9vjos1a9Y0+Zi2bdvq6aefVteuXZWVlbXLx6b6zzknx7t6ByEnJ/W/M1a7trOOrX33E/3PMYV6/zfP1d/W49hCbVm5VqVr1qfkZ7dWqvOxmk0d9gH34rQHyNOOpTIjy9nI03xCEKd9gLOA3WzqsA+4F6c9QJ52LE5nge1ZySsdvyfbI5vWIRs7WcRNnN4/OUPbzaYO+4B7cdoD5GnH4nSG9jGfEMRpH+AsYDebOuwD7sVpD5CnHYvTWWB7lvJK99yGbFov7tlYyiJO4vT+yRnabjZ12Afci9MeIE87FqcztI/5hCBO+wBnAbvZ1GEfcC9Oe4A87ViczgLbs5RX3Gc224tTNnXsvOIWuP/++5WTk6MXX3xRs2bNUlFRkV544QXdfPPNWrp0qQYMGBD1EvFfmZmZ6t69uzIzM6NeSr3sdm3VcZ+vr7DPzMlW3l6d1eXgvqraWq7Nn/v1N3CggaWuLfzDNJ3y19s0aNzZ+uy517XnoP468MIRmnvjH6NeWiQsZVOHfSA81npGxxpYy0bkEyxLXeMskMxSNnXYB8JjrWd0rIG1bNCAbOyymA37WpgsdY0zdDJL2dRhHwiPtZ7RsQbWshH5BMtS1zgLJLOUTR32gfBY6xkda2AtGzQgG7usZsPeFh5LXeMMncxSNnXYA8JjrWd0rIG1bOqQUXgsdY2zQDJL2dRhDwiPtZ7RsQbWskEDsomWl3/q+fn5evjhh1VcXKzNmzfrlVdeUVFRkT788EMNHDiQMhmydetWHXfccdq6dWvUS6m352H7aeSMX2vkjF+rXUEXHXjhCI2c8WsNu+fSqJeG3WCpa1+9/6lm/fAu9Tr+cI2ccY8G/fwszZvwtBb96ZWolxYJS9nUYR8Ij7We0bEG1rIR+QTLUtc4CySzlE0d9oHwWOsZHWtgLRs0IBu7LGbDvhYmS13jDJ3MUjZ12AfCY61ndKyBtWxEPsGy1DXOAsksZVOHfSA81npGxxpYywYNyMYuq9mwt4XHUtc4QyezlE0d9oDwWOsZHWtgLZs6ZBQeS13jLJDMUjZ12APCY61ndKyBtWzQgGyi5eUnDTempKREq1at0imnnJJ0e01NjaqqqlRVVaXa2lqVl5crIyNDbdq0iWytiFbxnIWatPeZUS8DgVs1c55WzZwX9TKwE+wDSDc6Zhv5wAXOAraxDyDd6BiA0LCvwQXO0LaxDyDd6Jht5AMXOAvYxj6AdKNjAELE3oZ04wxtG3sA0o2O2UdGSDfOAraxByDd6BiApgRz0fAHH3wgSSosLEy6/fHHH9cPf/jD+q/z8vLUp08fff75587XCAAAAAAAABv6nzNc/c86TrW1Cc35xUSVfLKi/r783t007N7LlJmTrRUvv6uFv5+qzgN6qujuH6k2Uava6hq9dfVD2rJirSRp4BWjtPfRhyozO0vzJjytL+cv1YnP/LL+++11xABNPnSsKjfytya21K5yKrx6tPqddaw2LlmlV8+5bZfPOeynZ2rvowZKkjrsU6APf/eiPn70pUheEwAAAAAAgI+Yp/mBeRoAAAAAAIANzNP8EOo8LfiLhi+44AJdcMEFEa0KAAAAAAAA1uR2ztf+PzhRfzvlenXo011Fd16sv3//pvr7j7jhfM274ymt+9dinfT8TVr+t7dV/tUmzTjvDlVtLlWPYwt12E/P1Fs/fVA9jhukrLw2emXMzUk/Y/oZ4yVJXQ7uq8NvOI+BbCs0ldOix1/R0mdfU9GdFzf5nPd/85ze/81zkqTvvnKXlv/t7UheEwAAAAAAgI+Yp/mBeRoAAAAAAIANzNP8EPI8LTPSn55Cl112mWprazV06NCol4JttG/fXrNmzVL79u2jXgoCR9fsIhu4QM/sIhu4QtfsIhu4QM/ssprNXoP6qfifC1VbXaNNn/5Hbbp0lDIy6u/v1L+H1v1rsSRp1Yx56j70QJV/tUlVm0slSYmqGtXWJCRJfb9bpOx2bXTilPE66r7Lld2+bdLP2vf0o/XZ8284fX3NYTWbbTWVU9naEilR26LndB7QU5Ubt6q0eL3T19ISPmSDMNA1u8gGLtAzu8gGrtA1u8gGLtAzu6xmwzzNbjbbYp5mNxuEga7ZRTZwgZ7ZRTZwha7ZRTZwgZ7ZZTUb5ml2s9lWyPO0YC4ahk2JREJffPGFEolE1EtB4OiaXWQDF+iZXWQDV+iaXWQDF+iZXVazye2cn/Q3K1ZtKVNux3b1X2dkNgzxKjZuVZs9OtR/ndU2V4XXjtZHj7wkSWpX0EW1VTV6ZfRNWr/wcx3y45ENPygjQ71POlLLX3on/S+qhaxms62mcmrNc/Y941v67IU307Ti1PAhG4SBrtlFNnCBntlFNnCFrtlFNnCBntllNRvmaXaz2RbzNLvZIAx0zS6ygQv0zC6ygSt0zS6ygQv0zC6r2TBPs5vNtkKep3HRMNKqrKxMZ599tsrKyqJeCgJH1+wiG7hAz+wiG7hC1+wiG7hAz+yymk3lxq3K7djwNxjm5OepclNp/de12/zlgLkd26liw2ZJUkZWpr714FVa+NBUlXyyQpJUsWGLVs9eIElaPXu+9jioT/1zC4oO0lcfLlP11nIXL6tFrGazraZyas1z+pw8RMunzUnTilPDh2wQBrpmF9nABXpmF9nAFbpmF9nABXpml9VsmKfZzWZbzNPsZoMw0DW7yAYu0DO7yAau0DW7yAYu0DO7rGbDPM1uNtsKeZ6WHfUCACDujrrvcvUbc6wkKVFTo7IvSrTmrQ817/YnI/84egAA4AbnAQBwa928JSq8ZrQysjKV36ubKtZvSprEbly8SnsW9tOXC5aq5/DBeutnD0qSht1zqf7z2vtaMX1u/WOL5yxU18P2q///TcvW1N+37+lH67Pn33D86sLRVE4tfU63Iw9QyZJVTQ52AdjH+RkAAHAeAAC3mKf5gXkagJ3h/AwAADgPAIBbzNP8EPI8jYuGAcCA4rc/0uuX3KuMrEx16NtdQ28fq2P+cLVeGvn/ol4aAABwhPMAALhTWbJFS56aqREv3KLa2oTevu4R9Ti2ULmd87XshTf1r9uf1LB7LlVGdpZW/n2utqxYqx7HFqrvyG8qv1c37XPaMK1fuEzv/mqSlk6erWH3XKrvPHejaiqq9MZPHpAkZeZma++jBurt6x6J+uV6q6mcBpx3vPb7/rfVqV8PnTj5V3rjJw+o7IsNOzynztdD8jcjfU0AUofzMwAA4DwAAO4wT/MD8zQAu8L5GQAAcB4AAHeYp/kh5HkaFw0j7dq3b9+MRwG7z+euJSqrVbauRJJUWrxei56YoaG3XaSc/DxVbSmLenm7zeds4A96ZhfZwBXfuxbyecD3bOAHemaX1WwWPzFDi5+YUf/1ho+W1//z5s+LNf2M8UmPXz17gZ7Y99wdvk+islpvXPlAo7f/eejlKV93KlnNZlu7ymn7+5q6/e1xE9O40tTyIRuEweeuhXx+lufZwB/0zC6ygSu+dy3k84Dv2cAP9Mwuq9kwT7ObzbaYpwHp5XPXQj4/y/Ns4A96ZhfZwBXfuxbyecD3bOAHemaX1WyYp9nNZluhztO4aBhplZ+fr9mzZ0e9DMRASF3L676H+p46VInqGtXWJKJezm4LKRvYRc/sIhu4ElrXQjoPhJYNbKJndpGNXWRjF9nAlZC6FtL5WYFlA7vomV1kA1dC61pI54HQsoFN9MwusrGLbOwiG7gSUtdCOj8rsGxgFz2zi2zgSmhdC+k8EFo2sIme2UU2dpFNtDKjXgDCVl1drTlz5qi6ujrqpSBwvnet4JsH69ylj+u8z57UmAUTVVB0sD6a+DdVl1VIktoVdNGZ7z2ktl07SpKy8nJ1+lsPqPMBvXd5nwW+ZwM/0DO7yAauhNC1ps4Dx0y8WgPOO77+8V0O2Uej/nHfTm/PapMTyevYXgjZwD56ZhfZ2EU2dpENXPG9a8zTgN1Dz+wiG7gSQteYpwGtR8/sIhu7yMYusoErvneNeRqwe+iZXWQDV0LoGvM0oPXomV1kYxfZRIuLhpFW5eXluuqqq1ReXh71UhA437u2bt4STT3+Wk0bMU4L7n1Wa+cu0vwJT9ffX1q8Xh89PE3fuOkCSVLh1aO1/OV3VPLJil3eZ4Hv2cAP9MwusoErIXStqfPAu798TAOv/J7adOkgZWSo6M6L9c71j+709pqKqkhfT50QsoF99MwusrGLbOwiG7jie9eYpwG7h57ZRTZwJYSuMU8DWo+e2UU2dpGNXWQDV3zvGvM0YPfQM7vIBq6E0DXmaUDr0TO7yMYusolWdtQLAABINeWV2vx5sSRpwd2T1aFvgYbcdpH+ec3v6x/z8aMv69TpE3Tg2JPV5+Qhmjr8mmbdByB9OvQtiHoJLebjmoG4aOo8UFq8XgsfnqYjfnm+vpy/VBs/W6M1b34gSTu9HUB6+fi+6uOaU8XKa7eyDkus/JlYWQeA5mGeBvjJx/dbH9cMxAXzNMA/Pr6v+rjmVLH02i2txQJLfx6W1gJg15inAX7y8b3WxzUDccE8DfCPj++rPq45VSy9dktrscDSn4ertXDRMAAYtODXk/W9f/xWix5/VV+9/6kkqTaR0Nzxk3TS8zdp1oV3qbqsov7xu7oPQPoM/+O4qJcAIGCNnQc+eWy6Tvnb7dp72CH664iGPWhntwNIL84CfiEvu8gGQCowTwP8wPs+gHRingbYx1nAL+RlF9kASAXmaYAfeN8HkE7M0wD7OAv4hbzsimM2mVEvAGHLzMzUPvvso8xMqob0Cq1rm5cVa+Wr72nwuLOTbu8xfJBKi9drjwN67/CcXd0XpdCygU30zC6ygSshdq3R80BtrRb96VWtmjlPFV9tavp2A0LMBvbQM7vIxi6ysYts4EpoXWOeBrQMPbOLbOBKiF1jngY0Hz2zi2zsIhu7yAauhNY15mlAy9Azu8gGroTYNeZpQPPRM7vIxi6yiRZ/6kirdu3aafLkyWrXrl3US0HgQuzahw9OVY9jClVQdLAkqfMBvdX7pCM1bcQ49T9nuPJ7d6t/7K7ui1qI2cAeemYX2cCVULu2/XlAkpRIqDZRu+ODd3Z7xELNBrbQM7vIxi6ysYts4EqIXWOeBjQfPbOLbOBKqF1jngY0Dz2zi2zsIhu7yAauhNg15mlA89Ezu8gGroTaNeZpQPPQM7vIxi6yiRYXDSOtqqqq9Je//EVVVVVRLwWB87lrb/7f7/TKmJt3uH3de4s0ae8zVTxnoSSpaMIlmjt+kkqL12v+Xc9oyG0X1T92V/dFzeds4A96ZhfZwBXfu9bc84CPfM8GfqBndpGNXWRjF9nAFZ+7xjwN2H30zC6ygSu+d415GrB76JldZGMX2dhFNnDF564xTwN2Hz2zi2zgiu9dY54G7B56ZhfZ2EU20eKiYaRVRUWFbr/9dlVUVES9FAQu9K71P/d4lX+5UatmzpMkffrs68pp31a9Tx6yy/ssCD0b2EDP7CIbuELX7CIbuEDP7CIbu8jGLrKBK6F3jXkasGv0zC6ygSt0zS6ygQv0zC6ysYts7CIbuBJ615inAbtGz+wiG7hC1+wiG7hAz+wiG7vIJlrZUS8AANC0JU/O0JInZyTdNv308Un37+w+AAAQlqVTXtPSKa81+3YAAAAgjpinAQCAOszTAAAAgKYxTwMAAHWYpwEA4D8+aRgAAAAAAAAAAAAAAAAAAAAAAAAAAADwHBcNI62ysrI0ZMgQZWVlRb0UBI6u2UU2cIGe2UU2cIWu2UU2cIGe2UU2dpGNXWQDV+iaXWQDF+iZXWQDV+iaXWQDF+iZXWRjF9nYRTZwha7ZRTZwgZ7ZRTZwha7ZRTZwgZ7ZRTZ2kU20uGgYaZWVlaWBAwfyC460o2t2kQ1coGd2kQ1coWt2kQ1coGd2kY1dZGMX2cAVumYX2cAFemYX2cAVumYX2cAFemYX2dhFNnaRDVyha3aRDVygZ3aRDVyha3aRDVygZ3aRjV1kEy0uGkZaVVZW6pFHHlFlZWXUS0Hg6JpdZAMX6JldZANX6JpdZAMX6JldZGMX2dhFNnCFrtlFNnCBntlFNnCFrtlFNnCBntlFNnaRjV1kA1foml1kAxfomV1kA1foml1kAxfomV1kYxfZRIuLhgEAAAAAAAAAAAAAAAAAAAAAAAAAAADPcdEwAAAAAAAAAAAAAAAAAAAAAAAAAAAA4DkuGkZaZWdna+TIkcrOzo56KQgcXbOLbOACPbOLbOAKXbOLbOACPbOLbOwiG7vIBq7QNbvIBi7QM7vIBq7QNbvIBi7QM7vIxi6ysYts4Apds4ts4AI9s4ts4Apds4ts4AI9s4ts7CKbaPGnjrRq27atbrjhhqiXgRjwrWv9zxmu/mcdp9rahOb8YqJKPllRf19+724adu9lyszJ1oqX39XC30+VJHU9dF8Nvv5cZWZnae3cTzR/wjOSpIFXjNLeRx+qzOwszZvwtL6cv1QnPvPL+u+31xEDNPnQsarcuDWCV+pfNvATPbOLbOCKb11r6Vmg84CeKrr7R6pN1Kq2ukZvXf2QtqxYK3EWACR6ZhrZ2EU2dpENXPGta8zTgNSiZ3aRDVzxrWvM04DUomd2kY1dZGMX2cAV37rGPA1ILXpmF9nAFd+6xjwNSC16ZhfZ2EU20eKThpFW5eXluvXWW1VeXh71UhA4n7qW2zlf+//gRL18+q/01s8e0pBbfph0/xE3nK95dzyll0+7Qb1OPFz5vbopMydbg8edrdkX3q2/n3lj/UC2x3GDlJXXRq+MuVnTzxivte9+okRVtaafMV7Tzxivd3/1mIr/uTCyfwmTZ9nAX/TMLrKBKz51rTVngfKvNmnGeXdo+vd+pQ8ffFGH/fRMibMAUI+e2UU2dpGNXWQDV3zqGvM0IPXomV1kA1d86hrzNCD16JldZGMX2dhFNnDFp64xTwNSj57ZRTZwxaeuMU8DUo+e2UU2dpFNtLhoGGlVXV2tqVOnqrq6OuqlIHA+dW2vQf1U/M+Fqq2u0aZP/6M2XTpKGRn193fq30Pr/rVYkrRqxjx1H3qg9jpigKpKK/Tt3/9UJ04Zr70OHyBJ6vvdImW3a6MTp4zXUfddruz2bZN+1r6nH63Pnn/D8StM5lM28Bc9s4ts4IpPXWvNWaD8q02q2lwqSUpU1ai2JiFxFgDq0TO7yMYusrGLbOCKT11jngakHj2zi2zgik9dY54GpB49s4ts7CIbu8gGrvjUNeZpQOrRM7vIBq741DXmaUDq0TO7yMYusolWdtQLCM3IK1/Vp6s2Rb0M7dezo6Y+cELUywDQiNzO+Ul/m1LVljLldmxXf1tGZsO/lFVs3Ko2e3RQoqpaXQ7so6knXqvcTu11whPX68Xjrla7gi4qX7dRr4y+SQddfIoO+fFILbhnytdPzshQ75OO1IJ7n3X/IoGYmPmDO7X58+Kol9EiHfoWaPgfx0W9DCDWWnMWqJPVNleF147WnF9MlCTOAkDEOAv4xUpecc5gZ8gGQFOYpwHhsPK+3xKcEYDoMU8DwsFZwC+W8opzDo0hGwBNYZ4GhMPS+35zcT4Aosc8DQgHZwG/WMorzjk0Jo7ZcNFwin26apM++rQk6mUAMKxy41bldmxf/3VOfp4qN5XWf11b2/DY3I7tVP7lRlWUbNHauZ+oemv51/8rrVBOfp4qNmzR6tkLJEmrZ8/X4OvOrX9uQdFB+urDZareWu7qpQGxs/nzYpUsXhX1MgB4pjVnAUnKyMrUtx68SgsfmqqST1ZIEmcBIGKcBfxCXnaRDYCmME8DwsH7PoDWYJ4GhIOzgF/Iyy6yAdAU5mlAOHjfB9AazNOAcHAW8At52RXHbDKjXgDClpubq7Fjxyo3NzfqpSBwPnVt3bwl6j70QGVkZapD3wJVrN+U9G9fGxev0p6F/SRJPYcP1hfvfKwv5y1Rx33/RxlZmcrp0E45HfJUtaVMxXMWquth+0mSuh62nzYtW1P/ffY9/Wh99vwbEbzCZD5lA3/RM7vIBq741LXWnAUkadg9l+o/r72vFdPn1j+WswDwNXpmF9nYRTZ2kQ1c8alrzNOA1KNndpENXPGpa8zTgNSjZ3aRjV1kYxfZwBWfusY8DUg9emYX2cAVn7rGPA1IPXpmF9nYRTbR4pOGkVa5ubm65JJLol4GYsCnrlWWbNGSp2ZqxAu3qLY2obeve0Q9ji1Ubud8LXvhTf3r9ic17J5LlZGdpZV/n6stK9ZKkhY9/opOev4mZWZn672bH5ckLZ08W8PuuVTfee5G1VRU6Y2fPCBJyszN1t5HDdTb1z0S6WuVZ9nAX/TMLrKBKz51rTVngR7HFqrvyG8qv1c37XPaMK1fuEzv/moSZwHgv+iZXWRjF9nYRTZwxaeuMU8DUo+e2UU2cMWnrjFPA1KPntlFNnaRjV1kA1d86hrzNCD16JldZANXfOoa8zQg9eiZXWRjF9lEi4uGkVZlZWX6+c9/rrvuukt5eXlRLwcB861ri5+YocVPzKj/esNHy+v/efPnxZp+xvgdnvPps6/r02dfT7otUVmtN658YIfHJiqr9eehl6d83a3hWzbwEz2zi2zgim9da+lZYPXsBXpi33N3+D6cBYCv0TO7yMYusrGLbOCKb11jngakFj2zi2zgim9dY54GpBY9s4ts7CIbu8gGrvjWNeZpQGrRM7vIBq741jXmaUBq0TO7yMYusolWZtQLQNhqamr0zjvvqKamJuqlIHB0zS6ygQv0zC6ygSt0zS6ygQv0zC6ysYts7CIbuELX7CIbuEDP7CIbuELX7CIbuEDP7CIbu8jGLrKBK3TNLrKBC/TMLrKBK3TNLrKBC/TMLrKxi2yixScNAwAAAAAAAP911H2Xq9+YYyVJiZoalX1RojVvfah5tz+p0uL1US8v9sgHAAAAAADAFuY1tpEPAAAAAACAPcxs7AolGz5pGAAAAAAAANhG8dsfafKhY/XcEZfqH5ffp66H9NUxf7g66mXhv8gHAAAAAADAFuY1tpEPAAAAAACAPcxs7AohGy4aRlq1adNG119/vdq0aRP1UhA4umYX2cAFemYX2cAVumYX2cAFemaXr9kkKqtVtq5EpcXr9cXbH2vREzPU7Rv7Kyc/L+qlpYyv2SgG+ficDfxC1+wiG7hAz+wiG7hC1+wiG7hAz+zyNZvQ5zXyOBvFIB+fs4Ff6JpdZAMX6JldZANX6JpdZAMX6JldPmfDzMauELLJjnoBCFtOTo5GjRoV9TIQA3TNLrKBC/TMLrKBK3TNLrKBC/TMrhCyyeu+h/qeOlSJ6hrV1iSiXk7KhJCNAs0nlGxgH12zi2zgAj2zi2zgCl2zi2zgAj2zK4RsQpzXKJBsFGg+oWQD++iaXWQDF+iZXWQDV+iaXWQDF+iZXaFkw8zGLl+z4ZOGkValpaUaM2aMSktLo14KAkfX7CIbuEDP7CIbuELX7CIbuEDP7PI1m4JvHqxzlz6u8z57UmMWTFRB0cH6aOLfVF1WIUlqV9BFZ773kNp27ShJysrL1elvPaDOB/SOeOXN52s2akY+x0y8WgPOO77+8V0O2Uej/nGfstrkRLjq5vM5G/iFrtlFNnCBntlFNnCFrtlFNnCBntnlazbM02xjngakBl2zi2zgAj2zi2zgCl2zi2zgAj2zy+dsQp+phZyND/M0ry8afv/993XaaaepU6dO6tixo0aNGqU1a9aoQ4cOOuuss6JeHiQlEgktW7ZMiYQ/V9LDT3TNLrKBC/TMLrKBK3TNLrKBC/TMLl+zWTdviaYef62mjRinBfc+q7VzF2n+hKfr7y8tXq+PHp6mb9x0gSSp8OrRWv7yOyr5ZEWEq24ZX7NRM/J595ePaeCV31ObLh2kjAwV3Xmx3rn+UdVUVEW67ubyORv4ha7ZRTZwgZ7ZRTZwha7ZRTZwgZ7Z5Ws2zNNsY54GpAZds4ts4AI9s4ts4Apds4ts4AI9s8vnbEKfqYWcjQ/ztOyoF9BaM2fO1Kmnnqo+ffrohhtuUF5eniZNmqQRI0Zoy5YtKiwsjHqJLTJj4gjlZGfqmAv/ptrahtv/8tvj1aNbOxWd/1dVV9fu6lugmQ6+dKT6nDxEnfr1UEZGhjYsWqF/3/dnrZ69IOqlIRDdhx6og380Ul0O6av8nntp3oSn9e/7/hz1svBf7AFwocdxg3T4deeoU/+eKlu7QR89+pI+enha1MvCf7EPIN04C9jGHgAXOAv4r6a8Ups/L5YkLbh7sjr0LdCQ2y7SP6/5ff1jPn70ZZ06fYIOHHuy+pw8RFOHXxPhiuOlqXxKi9dr4cPTdMQvz9eX85dq42drtObNDyJetd94/0S6cYa2jT0ALnCGto19AOnGWcA29gC4wFnAf8zTbGOe5h7vn0g3ztD2sQ8g3ThD28YegHTjLGAf+wDSjbNAGJip2RXCPM3LTxpet26dxowZo8GDB2v+/Pm69tprdcUVV2jmzJlaseLrq+V9u2j4Bze8rkP67aFfXHho/W2XnLm/ThjaQ+dd9zoXDKfQ3kcN1JJnZuvvZ96oaSeP09q5izT8T9ep2zf2j3ppCER2u7YqWbJS793yuEq/2BD1crAd9gCkW9fD9tPwSb/QqtnzNfWEa7Tg11N0+LhztP//nhj10vBf7ANIN84CtrEHIN04C4Rpwa8nq9+YY9X1sP3qb6tNJDR3/CQNueVCvXfL46ouq4h0jXHWWD6fPDZdnffvpYFXjNLcm/4Y6fpCwPsn0o0ztG3sAUg3ztD2sQ8g3TgL2MYegHTjLBAm5mm2MU9LP94/kW6coe1jH0A6cYa2jz0A6cZZwD72AaQTZ4FwMVOzy8d5mpefNDxhwgRt2LBBjz32mPLy8upv79SpkwYPHqyZM2d6d9Hw6i9Kdemtb+nx27+t6W+tVml5te69doiuvfddLfp8Y9TLa7W2bdvqt7/9rdq2bRv1UurNOPe2pK//desT6nHsIPU+eYjWzl0U2bqweyx1bfWs+Vo9a74k6Ygbzot6OZGzlI3YA4JlqWcHX3Kqvlzwqebd/pQkaeOS1fWHwUV/eiXq5TlnKZs67ANhstQ1zgLJLGUj9oBgWeoZZ4FklrLZHZuXFWvlq+9p8Liz9erZt9bf3mP4IJUWr9ceB/TWipffjXSNLRVKNtpZPrW1WvSnV7XnYfuq4qtNUS+xRSxmw/tnmCx1jTN0MkvZiD0gWJZ6xhk6maVs6rAPhMlS1zgLJLOUjdgDgmWpZ5wFklnKZncwT7ONeVr68f4ZJktd4wydzFI2ddgHwmOpZ5yhk1nKpg57QJgsdY2zQDJL2dRhHwiPpZ5xFkhmKZvdFdpMLfhsjM/TvPyk4WeeeUZHH320BgwY0Oj93bt3V0FBgSoqKnTxxRdr3333VYcOHTRgwAA98MADztfbXFP+vkxT/r5MT97xbT15x7f1j38V68HJH0e9rN2SnZ2toqIiZWcbvj49I0O5HfJUXcrftuAzL7oWU+azYQ8IgqWedTvyAK2ePT/pttWzFyi/Vze127tLZOuKiqVsdop9IAhedC2mzGfDHhAESz3jLJDMUja768MHp6rHMYUqKDpYktT5gN7qfdKRmjZinPqfM1z5vbtFvcQWCSkbNZKPJCmRUG2iNspltYoX2fD+GQQvuhZT5rNhDwiCpZ5xhk5mKZudYh8Ighddiynz2bAHBMFSzzgLJLOUze5inmYb8zTHeP8MghddiykvsmEf8J6lnnGGTmYpm51iDwiCF12LKS+yYR/wnqWecRZIZimbVAhpphZ6NpLteZp3f+rFxcVavXq1xowZs8N9iURCH3zwgQYNGiRJqq6uVkFBgV555RXtu++++ve//63vfOc76t69u0aPHt2sn1ddXa3i4uJmr6+6qqoFr2ZHV9wxR6tnnKVEolanXvFqq79PdVWVVq1atVtracrWrVub9ZjRo0drypQpat++/S4fm+r1VlVVN+txh151unI7ttfiJ1r/540GVVXVKc/Satea2zFLUp2P1WzqNCcj9oDUitMeoJ10LK9bZ5WtK0m6rWzthv/et4dK16xP2c9vjVRmZDkbcRaITJz2Ac4CdrOpw1nAvTjtAeIsYDqbxjR3337z/37X6O3r3lukSXufWf910YRLNHf8JJUWr9f8u57RkNsu0szz72jWOuI+s9leS95Tm5tPa9cR92w4Q0cjTu+fnKHtZlOHM7R7cdoDxBnadDbiLBCZOO0DnAXsZlOHs4B7cdoDxFnAdDaNsTJPk4O5TajZKM3zNJENZ+iIxOn9kzO03WzqsA+4F6c9QJyhTWcj9oDIxGkf4CxgN5s67APuxWkPEGcB09k0Jh0zG6v/jRrZ7N5aWvp6CwoKWnzxtXcXDdeVKiMjY4f7XnzxRa1du1aFhYWSpPbt2+uWW26pv7+wsFAjR47Um2++2eyLhouLi9WrV6/mL7D/TVLbHs1//HbOO2U/ZShD7dpm6fCD9tRLb6xs1fdZvHixevU6u9XraI6xY8c2+ZjKykqVlpZqypQpys3N3eVjH3nkkRSuTrq16wnqkdNxl4/Z/wff0aE/OV0zf3Bn5G+MoVi8eLFGt+R3phmsdq05HbMm1flYzaZOUxmxB6RenPYAsQ+YzkacBSITp30g7nuADGdTh7OAe3HaA8Q+YDqbxqQyr/7nHq/yLzdq1cx5kqRPn31d/c8+Tr1PHqIVL72zy+em4/dke3HOZneQDWfoqMTp/dPK73tLcIZOxh6QenHaA8Q+YDobcRaITJz2gbjvATKcTR3OAu7FaQ8Q+4DpbBpjZZ4mB3ObOGezu+KeDWfoaMTp/dPS73tzcYbeEftAasVpDxD7gOlsxB4QmTjtA3HfA2Q4mzrsA+7FaQ8Q+4DpbBqT6rws/zdqcc9md7Qmm5UrV6pnz54teo53Fw336tVLWVlZev3115NuX758ua688krpvxcHN6aqqkpvvPGGrrnmGidrbakD9umku356pK66620dtG9nPXLjURp4xvP6qqQi6qUF6eAfj1ThtaM18wd3as0bH0S9HACOsQcgXcrWlihvr85Jt7X979d1f4sTbGAfAOKNPQDpwlkgHpY8OUNLnpyRdNv008dHth40bumU17R0ymtRLyMovH8C8cYegHThDO0P9gEg3tgDkC6cBeKBeZofmKelHu+fANgHkA6cof3BHgCAfQDpwFkgPpip2Wd5npZRW1tbG/UiWurCCy/UY489ppEjR+qUU07RypUrNXHiRHXv3l3//ve/9fHHH+uAAw7Y4Xk/+tGPNG/ePL311ltNXqFep7q6WsXFxc1e2/Afv6nFK5r+iO3tZWdn6O0nRmr12q067Scz1CY3S+89c5oWfV6iM382q8Xfb0Dv9pr5+6Na/LyWWLp0aZOP2bp1q0499VRNmzatyY8S79evXwpXJ80Zfae2Lms8u8Jrx+jgS07VjP+9Q1/M+SilPzfu2u9ToKIp41L6Pa12bVcdq3Pmuw9q8VMz9e/7/pySn7m7Up2P1Wzq7Cwj9oD0idMeoJ107Fu/u0rte+6ll0+7of62w284T/uM/KaeO/KylP3s1kplRpazEWeByMRpH+AsYDebOpwF3IvTHiDOAqazaUxz9m0X0vF7sj2yaR2y4QwdlTi9f3KGtptNHc7Q7sVpDxBnaNPZiLNAZOK0D3AWsJtNHc4C7sVpDxBnAdPZNMbKzEYO5jZk03pxz4YzdDTi9P7JGdpuNnXYB9yL0x4gztCmsxF7QGTitA9wFrCbTR32AffitAeIs4DpbBrDzCYZ2TSuNdkUFBQoO7tlnx3s3ScNS9L999+vnJwcvfjii5o1a5aKior0wgsv6Oabb9bSpUs1YMCAHZ7zs5/9THPmzNGsWbOafcGwJGVnZ7fo45uzc3Ka/dht3XzZ4erZvb1GXPZ3SVJFZY3Ou+41vfvUSJ3/3X56/K9N/zJtv46Wfux0S61Zs6bJx7Rt21ZPP/20unbtqqysrF0+NtXrzclpvN5H3nyBBpx3gv5x2X3atPQ/9X/DRnV5pao2l6Z0DXGUk9Oy35nmsNq1nXUsu11bddynQJKUmZOtvL06q8vBfVW1tVybP4/2TSbV+VjNpk5jGbEHpFec9gDtpGML/zBNp/z1Ng0ad7Y+e+517Tmovw68cITm3vjHlP3c3ZHKjCxnI84CkYnTPsBZwG42dTgLuBenPUCcBUxn05id7duupeP3ZHtk0zpkwxk6KnF6/+QMbTebOpyh3YvTHiDO0KazEWeByMRpH+AsYDebOpwF3IvTHiDOAqazaYyVmY0czG3IpvXing1n6GjE6f2TM7TdbOqwD7gXpz1AnKFNZyP2gMjEaR/gLGA3mzrsA+7FaQ8QZwHT2TSGmU0ysmmci/9GTb5eNJyfn6+HH35YDz/8cNLtH374oQYOHKjMzMyk2//v//5PM2fO1KxZs7Tnnns6Xm3Thg3qrmsvGKjv/XSG1q0vr7/9/UXrNf7Bebr/F0P12tw1Wlnc8k8wjlpmZqa6d+++QyZROujiUyVJxz32i6Tbl06erTf/73cRrQq7y1LX9jxsP530/E31Xx944QgdeOEIFf9zoaafMT7StUXBUjZiDwiWpZ599f6nmvXDuzT4unN0yI9HqmxdieZNeFqL/vRK1EuLhKVs6rAPhMlS1zgLJLOUjdgDgmWpZ5wFklnKBsnIxi6L2fD+GSZLXeMMncxSNmIPCJalnnGGTmYpmzrsA2Gy1DXOAsksZSP2gGBZ6hlngWSWskEysrHLYja8f4bJUtc4QyezlE0d9oHwWOoZZ+hklrKpwx4QJktd4yyQzFI2ddgHwmOpZ5wFklnKBsnIJlpeXjTcmJKSEq1atUqnnHJK0u0/+clPNGvWLM2ePVt77bVXZOvblbfmf6GcwY81et+dj/5bdz76b+drSpWtW7fquOOO06xZs5Sfnx/1ciRJk/Y+M+olIA0sda14zkJ6tg1L2Yg9IFjWerZq5jytmjkv6mWYYC0bsQ8Ey1LXOAsks5SN2AOCZa1nnAUaWMsGDcjGLovZ8P4ZJktd4wydzFI2Yg8IlrWecYZuYC0bsQ8Ey1LXOAsks5SN2AOCZa1nnAUaWMsGDcjGLovZ8P4ZJktd4wydzFI2dcgnPNZ6xhm6gbVsxB4QLEtd4yyQzFI2dcgnPNZ6xlmggbVs0IBsohXMpdoffPCBJKmwsLD+tuXLl+uBBx7Q0qVLtc8++yg/P1/5+fkaMWJEhCsFAAAAAAAAAAAAAAAAAAAAAAAAAAAAUiuYTxpu7KLhPn36qLa2NsJVAQAAAAAAwKL+5wxX/7OOU21tQnN+MVEln6yovy+/dzcNu/cyZeZka8XL72rh76eq84CeKrr7R6pN1Kq2ukZvXf2QtqxYK0kaeMUo7X30ocrMztK8CU/ry/lLdeIzv6z/fnsdMUCTDx2ryo1bI3mtPttVToVXj1a/s47VxiWr9Oo5t+3yOYf99EztfdRASVKHfQr04e9e1MePvhTJawIAAAAAAPAR8zQ/ME8DAAAAAACwgXmaH0KdpwVz0fBll12myy67LOplAAAAAAAAwLjczvna/wcn6m+nXK8Ofbqr6M6L9ffv31R//xE3nK95dzyldf9arJOev0nL//a2yr/apBnn3aGqzaXqcWyhDvvpmXrrpw+qx3GDlJXXRq+MuTnpZ0w/Y7wkqcvBfXX4DecxkG2FpnJa9PgrWvrsayq68+Imn/P+b57T+795TpL03Vfu0vK/vR3JawIAAAAAAPAR8zQ/ME8DAAAAAACwgXmaH0Kep2VG+tMRvPbt22vWrFlq37591EtB4OiaXWQDF+iZXWQDV+iaXWQDF+iZXVaz2WtQPxX/c6Fqq2u06dP/qE2XjlJGRv39nfr30Lp/LZYkrZoxT92HHqjyrzapanOpJClRVaPamoQkqe93i5Tdro1OnDJeR913ubLbt036WfuefrQ+e/4Np6+vOaxms62mcipbWyIlalv0nM4Deqpy41aVFq93+lpawodsEAa6ZhfZwAV6ZhfZwBW6ZhfZwAV6ZpfVbJin2c1mW8zT7GaDMNA1u8gGLtAzu8gGrtA1u8gGLtAzu6xmwzzNbjbbCnmexkXDSKtEIqEvvvhCiUQi6qUgcHTNLrKBC/TMLrKBK3TNLrKBC/TMLqvZ5HbOT/qbFau2lCm3Y7v6rzMyG4Z4FRu3qs0eHeq/zmqbq8JrR+ujR16SJLUr6KLaqhq9MvomrV/4uQ758ciGH5SRod4nHanlL72T/hfVQlaz2VZTObXmOfue8S199sKbaVpxaviQDcJA1+wiG7hAz+wiG7hC1+wiG7hAz+yymg3zNLvZbIt5mt1sEAa6ZhfZwAV6ZhfZwBW6ZhfZwAV6ZpfVbJin2c1mWyHP07hoGGlVVlams88+W2VlZVEvBYGja3aRDVygZ3aRDVyha3aRDVygZ3ZZzaZy41bldmz4Gwxz8vNUuam0/uvabf5ywNyO7VSxYbMkKSMrU9968CotfGiqSj5ZIUmq2LBFq2cvkCStnj1fexzUp/65BUUH6asPl6l6a7mLl9UiVrPZVlM5teY5fU4eouXT5qRpxanhQzYIA12zi2zgAj2zi2zgCl2zi2zgAj2zy2o2zNPsZrMt5ml2s0EY6JpdZAMX6JldZANX6JpdZAMX6JldVrNhnmY3m22FPE/LjnoBAAAAcXbUfZer35hjJUmJmhqVfVGiNW99qHm3P6nS4vVRLw8AADjAecC9dfOWqPCa0crIylR+r26qWL8paRK7cfEq7VnYT18uWKqewwfrrZ89KEkads+l+s9r72vF9Ln1jy2es1BdD9uv/v83LVtTf9++px+tz55/w/GrC0dTObX0Od2OPEAlS1Y1OdgFAAD2cYYGACDeOAu4xzzND8zTAADAznCGBgAg3jgLuMc8zQ8hz9O4aBgAACBixW9/pNcvuVcZWZnq0Le7ht4+Vsf84Wq9NPL/Rb00AADgCOcBtypLtmjJUzM14oVbVFub0NvXPaIexxYqt3O+lr3wpv51+5Mads+lysjO0sq/z9WWFWvV49hC9R35TeX36qZ9Thum9QuX6d1fTdLSybM17J5L9Z3nblRNRZXe+MkDkqTM3GztfdRAvX3dI1G/XG81ldOA847Xft//tjr166ETJ/9Kb/zkAZV9sWGH59T5ekj+ZqSvCQAApA5naAAA4o2zgFvM0/zAPA0AAOwKZ2gAAOKNs4BbzNP8EPI8jYuGkXbt27dvxqOA3UfX7CIbuOBzzxKV1SpbVyJJKi1er0VPzNDQ2y5STn6eqraURb283eZzNvALXbOLbOCC7z0L+TxgNZvFT8zQ4idm1H+94aPl9f+8+fNiTT9jfNLjV89eoCf2PXeH75OorNYbVz7Q6O1/Hnp5ytedSlaz2dauctr+vqZuf3vcxDSuNLV8yAZhoGt2kQ1c8L1nnKGB3UfX7CIbuOB7zzgLuMc8zW4222KeBqQXXbOLbOCC7z3jDA3sPrpmF9nABd97xlnAPeZpdrPZVqjzNC4aRlrl5+dr9uzZUS8DMUDX7CIbuBBSz/K676G+pw5VorpGtTWJqJez20LKBrbRNbvIBi6E1rOQzgOhZRMSsrGLbOAKXbOLbOBCaD3jDA20HF2zi2zgQmg94ywAF8jGLrKBK3TNLrKBC6H1jDM00HJ0zS6ygQuh9YyzAFwgm2hlRr0AhK26ulpz5sxRdXV11EtB4OiaXWQDF3zvWcE3D9a5Sx/XeZ89qTELJqqg6GB9NPFvqi6rkCS1K+iiM997SG27dpQkZeXl6vS3HlDnA3rv8j4LfM8G/qBrdpENXAihZ02dB46ZeLUGnHd8/eO7HLKPRv3jvp3entUmJ5LXsb0QsgkV2dhFNnCFrtlFNnAhhJ6FOlMLIRv4ga7ZRTZwIYSeMU+Da2RjF9nAFbpmF9nAhRB6xjwN2D10zS6ygQsh9Ix5Glwjm2jxScMptl/PjlEvQTK0jvLycl111VWaNWuW8vPzo14OAhZF1zr0LXDyc1IpijWzD8AF33u2bt4SvXnV/09ZbXLUd+Q39T9HH6r5E56uv7+0eL0+eniavnHTBXrjivtVePVoLX/5HZV8skKSdnlf1HzPBv7gLNA8nAUQqhB61tR54N1fPqYRL96i5S+9o4oNW1R058V65/pHtXHp6kZvr6moivT11LGUjZV928o6yGZHVtZhKRuEjTN083CGRqhC6FmoM7UQsoEfOAs0D2cBhCqEnjFPSz9L+7aFtZBN4yysxVI2CBtn6ObhDI1QhdAz5mnA7uEs0DycBRCqEHrGPC39LO3bFtZCNo1ztRYuGk6xqQ+cEPUSADgy/I/jol4CgEDUlFdq8+fFkqQFd09Wh74FGnLbRfrnNb+vf8zHj76sU6dP0IFjT1afk4do6vBrmnUfgPThLAAglZo6D5QWr9fCh6fpiF+ery/nL9XGz9ZozZsfSNJOb0cy9m27yAaID37fAaQSMzXAP5wFAKQS87T0Y9+2i2yA+OD3HUAqMU8D/MNZAEAqMU9LP/Ztu+KYTWbUCwAAAECyBb+erH5jjlXXw/arv602kdDc8ZM05JYL9d4tj6u6rKJZ9wEAAD81dh745LHp6rx/Lw28YpTm3vTHJm8HAAAA4oSZGgAA8cY8DQAAAGgZ5mkAAMQb8zQgbFw0jLTKzMzUPvvso8xMqob0omt2kQ1cCK1nm5cVa+Wr72nwuLOTbu8xfJBKi9drjwN67/CcXd0XpdCygV10zS6ygQsh9qzR80BtrRb96VWtmjlPFV9tavp2A0LMJhRkYxfZwBW6ZhfZwIUQexbKTC3EbGATXbOLbOBCiD1jnoZ0Ixu7yAau0DW7yAYuhNgz5mlAy9A1u8gGLoTYM+ZpSDeyiRZ/6kirdu3aafLkyWrXrl3US0Hg6JpdZAMXQuzZhw9OVY9jClVQdLAkqfMBvdX7pCM1bcQ49T9nuPJ7d6t/7K7ui1qI2cAmumYX2cCFUHu2/XlAkpRIqDZRu+ODd3Z7xELNJgRkYxfZwBW6ZhfZwIVQexbCTC3UbGAPXbOLbOBCqD1jnoZ0Ihu7yAau0DW7yAYuhNoz5mlA89E1u8gGLoTaM+ZpSCeyiRYXDSOtqqqq9Je//EVVVVVRLwWBo2t2kQ1c8Llnb/7f7/TKmJt3uH3de4s0ae8zVTxnoSSpaMIlmjt+kkqL12v+Xc9oyG0X1T92V/dFzeds4Be6ZhfZwAXfe9bc84CPfM8mZGRjF9nAFbpmF9nABd97FvJMzfds4A+6ZhfZwAXfe8Y8DVEgG7vIBq7QNbvIBi743jPmacDuo2t2kQ1c8L1nzNMQBbKJFhcNI60qKip0++23q6KiIuqlIHB0zS6ygQuh96z/ucer/MuNWjVzniTp02dfV077tup98pBd3mdB6NnADrpmF9nABXpmF9nYRTZ2kQ1coWt2kQ1ciEPPfJ2pxSEb2EDX7CIbuEDP7CIbu8jGLrKBK3TNLrKBC3HoGfM0YNfoml1kAxfomV1kYxfZRCs76gUAAABg15Y8OUNLnpyRdNv008cn3b+z+wAAQFiWTnlNS6e81uzbAQAAgLhipgYAAMQ8DQAAAGg25mkAAEDM04Bg8EnDAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOe4aBhpN2jQoKiXgJiga3aRDVygZ3aRDVyha3aRDVygZ3aRjV1kYxfZwBW6ZhfZwAV6ZhfZwBW6ZhfZwAV6ZhfZ2EU2dpENXKFrdpENXKBndpENXKFrdpENXKBndpGNXWQTHS4aRtrNnz8/6iUgJuiaXWQDF+iZXWQDV+iaXWQDF+iZXWRjF9nYRTZwha7ZRTZwgZ7ZRTZwha7ZRTZwgZ7ZRTZ2kY1dZANX6JpdZAMX6JldZANX6JpdZAMX6JldZGMX2USHi4YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAz3HRMAAAAAAAAAAAAAAAAAAAAAAAAAAAAOA5LhpGWmVnZ2vkyJHKzs6OeikIHF2zi2zgAj2zi2zgCl2zi2zgAj2zi2zsIhu7yAau0DW7yAYu0DO7yAau0DW7yAYu0DO7yMYusrGLbOAKXbOLbOACPbOLbOAKXbOLbOACPbOLbOwim2jxp460atu2rW644Yaol4EYoGt2kQ1c8K1n/c8Zrv5nHafa2oTm/GKiSj5ZUX9ffu9uGnbvZcrMydaKl9/Vwt9PlSR1PXRfDb7+XGVmZ2nt3E80f8IzkqSBV4zS3kcfqszsLM2b8LS+nL9UJz7zy/rvt9cRAzT50LGq3Lg1glfqXzbwF12zi2zggo89a+l5oPOAniq6+0eqTdSqtrpGb139kLasWCsZPw/4mE1ckI1dZANX6JpdZAMXfOxZXGZqPmYDP9E1u8gGLvjYM+ZpiBrZ2EU2cIWu2UU2cMHHnjFPA1KLrtlFNnDBx54xT0PUyCZafNIw0qq8vFy33nqrysvLo14KAkfX7CIbuOBTz3I752v/H5yol0//ld762UMacssPk+4/4obzNe+Op/TyaTeo14mHK79XN2XmZGvwuLM1+8K79fczb6wfxvY4bpCy8trolTE3a/oZ47X23U+UqKrW9DPGa/oZ4/Xurx5T8T8XRnbBsDzLBn6ja3aRDVzwrWetOQ+Uf7VJM867Q9O/9yt9+OCLOuynZ0oenAd8yyZOyMYusoErdM0usoELvvUsTjM137KBv+iaXWQDF3zrGfM0WEA2dpENXKFrdpENXPCtZ8zTgNSja3aRDVzwrWfM02AB2USLi4aRVtXV1Zo6daqqq6ujXgoCR9fsIhu44FPP9hrUT8X/XKja6hpt+vQ/atOlo5SRUX9/p/49tO5fiyVJq2bMU/ehB2qvIwaoqrRC3/79T3XilPHa6/ABkqS+3y1Sdrs2OnHKeB113+XKbt826Wfte/rR+uz5Nxy/wmQ+ZQO/0TW7yAYu+Naz1pwHyr/apKrNpZKkRFWNamsSkgfnAd+yiROysYts4Apds4ts4IJvPYvTTM23bOAvumYX2cAF33rGPA0WkI1dZANX6JpdZAMXfOsZ8zQg9eiaXWQDF3zrGfM0WEA20cqOegEA4KuZP7hTmz8vjnoZLdKhb4GG/3Fc1MsAYi23c37S36RUtaVMuR3b1d+WkdnwL2QVG7eqzR4dlKiqVpcD+2jqidcqt1N7nfDE9XrxuKvVrqCLytdt1Cujb9JBF5+iQ348UgvumfL1kzMy1PukI7Xg3mfdv0ggJjgLAGit1pwH6mS1zVXhtaM15xcTJYnzQAtY2bfZi3dENkB8WPl9bwn2BsAGZmpAGDgLAGgt5mnRsLRvsx8nIxsgPiz9vjcX+wJgA/M0IAycBQC0FvO0aFjat9mPk8UxGy4aBoBW2vx5sUoWr4p6GQA8U7lxq3I7tq//Oic/T5WbSuu/rq1teGxux3Yq/3KjKkq2aO3cT1S9tfzr/5VWKCc/TxUbtmj17AWSpNWz52vwdefWP7eg6CB99eEyVW8td/XSgNjhLACgtVpzHpCkjKxMfevBq7Twoakq+WSFJHEeaAH2bbvIBogPft8BtBYzNSAMnAUAtBbztGiwb9tFNkB88PsOoLWYpwFh4CwAoLWYp0WDfduuOGaTGfUCELbc3FyNHTtWubm5US8FgaNrdpENXPCpZ+vmLVH3oQcqIytTHfoWqGL9pqR/89q4eJX2LOwnSeo5fLC+eOdjfTlviTru+z/KyMpUTod2yumQp6otZSqes1BdD9tPktT1sP20adma+u+z7+lH67Pn34jgFSbzKRv4ja7ZRTZwwbeeteY8IEnD7rlU/3ntfa2YPrf+sdbPA75lEydkYxfZwBW6ZhfZwAXfehanmZpv2cBfdM0usoELvvWMeRosIBu7yAau0DW7yAYu+NYz5mlA6tE1u8gGLvjWM+ZpsIBsosUnDSOtcnNzdckll0S9DMQAXbOLbOCCTz2rLNmiJU/N1IgXblFtbUJvX/eIehxbqNzO+Vr2wpv61+1Patg9lyojO0sr/z5XW1aslSQtevwVnfT8TcrMztZ7Nz8uSVo6ebaG3XOpvvPcjaqpqNIbP3lAkpSZm629jxqot697JNLXKs+ygd/oml1kAxd861lrzgM9ji1U35HfVH6vbtrntGFav3CZ3v3VJPPnAd+yiROysYts4Apds4ts4IJvPYvTTM23bOAvumYX2cAF33rGPA0WkI1dZANX6JpdZAMXfOsZ8zQg9eiaXWQDF3zrGfM0WEA20eKiYaRVWVmZfv7zn+uuu+5SXl5e1MtBwOiaXWQDF3zr2eInZmjxEzPqv97w0fL6f978ebGmnzF+h+d8+uzr+vTZ15NuS1RW640rH9jhsYnKav156OUpX3dr+JYN/EXX7CIbuOBjz1p6Hlg9e4Ge2PfcHb6P9fOAj9nEBdnYRTZwha7ZRTZwwceexWWm5mM28BNds4ts4IKPPWOehqiRjV1kA1foml1kAxd87BnzNCC16JpdZAMXfOwZ8zREjWyilRn1AhC2mpoavfPOO6qpqYl6KQgcXbOLbOACPbOLbOAKXbOLbOACPbOLbOwiG7vIBq7QNbvIBi7QM7vIBq7QNbvIBi7QM7vIxi6ysYts4Apds4ts4AI9s4ts4Apds4ts4AI9s4ts7CKbaHHRMAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC57KgXAAAAAAAAAFhx1H2Xq9+YYyVJiZoalX1RojVvfah5tz+p0uL1US8v9sgHAAAAAADAFuY1tpEPAAAAAACAPcxs7AolGz5pGGnVpk0bXX/99WrTpk3US0Hg6JpdZAMX6JldZANX6JpdZAMX6JldvmZT/PZHmnzoWD13xKX6x+X3qeshfXXMH66Oelkp5Ws2ikE+PmcDv9A1u8gGLtAzu8gGrtA1u8gGLtAzu3zNJvR5jTzORjHIx+ds4Be6ZhfZwAV6ZhfZwBW6ZhfZwAV6ZpfP2TCzsSuEbPikYaRVTk6ORo0aFfUyEAN0zS6ygQv0zC6ygSt0zS6ygQv0zC5fs0lUVqtsXYkkqbR4vRY9MUNDb7tIOfl5qtpSFvXyUsLXbBSDfHzOBn6ha3aRDVygZ3aRDVyha3aRDVygZ3b5mk3o8xp5nI1ikI/P2cAvdM0usoEL9MwusoErdM0usoEL9Mwun7NhZmNXCNnwScNIq9LSUo0ZM0alpaVRLwWBo2t2kQ1coGd2kQ1coWt2kQ1coGd2hZBNXvc91PfUoUpU16i2JhH1clImhGwUaD6hZAP76JpdZAMX6JldZANX6JpdZAMX6JldIWQT4rxGgWSjQPMJJRvYR9fsIhu4QM/sIhu4QtfsIhu4QM/sCiUbZjZ2+ZoNnzSMtEokElq2bJkSCX9+KeAnumYX2cAFemYX2cAVumYX2cAFemaXr9kUfPNgnbv0cWVkZio7r40k6cOHpqq6rEKS1K6gi06edpumfecXKv9qk7LycnXajHs066K7VfLJiohX3zy+ZqNm5HPMxKv1n9ff1+InZkiSuhyyj7714FX66wnXqqaiKtK1N4fP2cAvdM0usoEL9MwusoErdM0usoEL9MwuX7NhnmYb8zQgNeiaXWQDF+iZXWQDV+iaXWQDF+iZXT5nE/pMLeRsfJinef1Jw++//75OO+00derUSR07dtSoUaO0Zs0adejQQWeddVbUywMAAAAAAICH1s1boqnHX6tpI8Zpwb3Pau3cRZo/4en6+0uL1+ujh6fpGzddIEkqvHq0lr/8jhfD2BA0lc+7v3xMA6/8ntp06SBlZKjozov1zvWPmhnIAgAAAAAAhIZ5mm3M0wAAAAAAAOxhpmZXCPM0bz9peObMmTr11FPVp08f3XDDDcrLy9OkSZM0YsQIbdmyRYWFhVEvEUbte+a3dNDFp6hD7+7KapOjLavWafGTM/TRw9OiXhoC0uO4QTr8unPUqX9Pla3doI8efYmOGcEeABe6Dz1QB/9opLoc0lf5PffSvAlP69/3/TnqZeG/2AfgAmcBu9gD4AJnAf/VlFdq8+fFkqQFd09Wh74FGnLbRfrnNb+vf8zHj76sU6dP0IFjT1afk4do6vBrIlxxvDSVT2nxei18eJqO+OX5+nL+Um38bI3WvPlBxKv2G++fcIEztG3sA0g3ztC2sQfABc4CtrEPIN04C/iPeZptzNPc470TLnCGto19AOnGGdo29gC4wFnANvYBpBtngTAwU7MrhHmalxcNr1u3TmPGjNHgwYM1Y8YM5eXlSZLOP/987bPPPpLERcNGtG3bVr/97W/Vtm3bqJdSr/zLjfr3b57Txk//o5qKKnUfcqCG3nmxamsS+viRl6JeHlrJUte6Hrafhk/6hT78/VS9ftl92mtQfxVNuEQ1ZZVa9KdXol6ec5ayEXtAsKz1LLtdW5UsWanPXnhDR978w6iXEylr2Yh9IFiWusZZIJmlbMQeECxrPeMs0MBaNq214NeT9b1//FaLHn9VX73/qSSpNpHQ3PGTdNLzN2nWhXepuqwi6mW2SCjZaCf5fPLYdJ3yt9u197BD9NcR46JeYotYzIb3zzBZ6hpn6GSWsqnDPhAeaz3jDN3AWjZiDwiWpa5xFkhmKZs67APhsdYzzgINrGXTWszTbGOeln68d4bJUtc4QyezlE0d9oHwWOsZZ+gG1rIRe0CwLHWNs0AyS9nUYR8Ij7WecRZoYC2b3RHaTC30bKzP07y8aHjChAnasGGDHnvssfoLhiWpU6dOGjx4sGbOnMlFw0ZkZ2erqKgo6mUk+c9r7yd9vWXFWvUecaQKvnkwBzCPWerawZecqi8XfKp5tz8lSdq4ZLU6799LA68YFct/EbOUjdgDgmWtZ6tnzdfqWfMlSUfccF7Uy4mUtWzEPhAsS13jLJDMUjZiDwiWtZ5xFmhgLZvW2rysWCtffU+Dx52tV8++tf72HsMHqbR4vfY4oLdWvPxupGtsqVCy0c7yqa3Voj+9qj0P21cVX22KeoktYjEb3j/DZKlrnKGTWcqmDvtAeKz1jDN0A2vZiD0gWJa6xlkgmaVs6rAPhMdazzgLNLCWTWsxT7ONeVr68d4ZJktd4wydzFI2ddgHwmOtZ5yhG1jLRuwBwbLUNc4CySxlU4d9IDzWesZZoIG1bHZHaDO14LMxPk/z8qLhZ555RkcffbQGDBjQ6P3du3dXQUGBJOmyyy7TX//6V23cuFEdOnTQ97//fd11113Kzc1t1s+qrq5WcXFxStcfiq1btzbrMaNHj9aUKVPUvn37XT521apVKVydVFVV3azH7VnYT92+cYD+fd+fU/rz46qqqjrlWVrt2s461u3IA7TkqZlJt62evUCHXHaa2u3dRaVr1qfk57dGqvOxmk2d5uwD7AGpFac9QC14r7EklRlZzkacBSITp32As4DdbOpwFnAvTnuAOAuYzqYxu5vXhw9O1Sl/vU0FRQereM5CdT6gt3qfdKSmjRink/96mz798z+0ZcXaZq0j3a81btmokXwkSYmEahO1LVpH3LPhDB2NOL1/coa2m00d9gH34rQHiDO06WzEHhCZOO0DnAXsZlOHfcC9OO0B4ixgOpvGWJmnycHcJm7ZKEXzNJEN750RidP7J2dou9nUYR9wL057gDhDm85G7AGRidM+wFnAbjZ12Afci9MeIM4CprNpTDpmNlb/GzWycTtPKygoUHZ2yy4D9u6i4eLiYq1evVpjxozZ4b5EIqEPPvhAgwYNqr/tiiuu0N1336327dvryy+/1Pe//33dfvvtuvHGG5v983r16pXS1xCKsWPHNvmYyspKlZaWasqUKU1eqP3II4+kcHXSrV1PUI+cjo3el9OhnUbPf1iZOdnKyMzUgnuf1ceP8je2pMLixYs1OsW/M1a7trOO5XXrrLJ1JUm3la3d8N/79oj0X8RSnY/VbOrsLCP2gPSJ0x6gJt5rrEplRpazEWeByMRpH+AsYDebOpwF3IvTHiDOAqazaUxz83rz/37X6O3r3lukSXufWf910YRLNHf8JJUWr9f8u57RkNsu0szz72jy+6fj92R7oWajFuTTGmTDGToqcXr/5AxtN5s67APuxWkPEGdo09mIPSAycdoHOAvYzaYO+4B7cdoDxFnAdDaNsTJPk4O5TajZKM3zNJEN750RidP7J2dou9nUYR9wL057gDhDm85G7AGRidM+wFnAbjZ12Afci9MeIM4CprNpTDpmNlb/GzWyab3WZLNy5Ur17NmzRc/x7qLhuivRMzIydrjvxRdf1Nq1a1VYWFh/20EHHVT/z7W1tcrMzNSSJUscrRZWVW0p09Tjr1V2Xht1+8b+GnzdOSorXq8lT8+KemkAHGAPAMA+AMQbewCA3dX/3ONV/uVGrZo5T5L06bOvq//Zx6n3yUO04qV3ol4ekBa8fwJgHwDijT0AAPsAgN3BPA1xxHsnAPYBIN7YAwCwDwDYXczUsDsyamtrW/YZyBGrrKxUu3btNGjQIM2dO7f+9uXLl2vYsGFavXq1nn76aZ111ln1991555269dZbtXXrVnXt2lUvv/yyvvGNbzTr51VXV6u4uDgtr8V3S5cubfIxW7du1amnnqpp06Y1+VHi/fr1S+HqpDmj79TWZc3LbuCV39NBY0/W5MMuTuka4qj9PgUqmjIupd/Tatd21rEz5z6kJU/N1Pu/ea7+toJhh+ik527UlMGXRPq3N6U6H6vZ1GnuPsAekDpx2gPUzI6d+e6DWvzUTP37vj+n7OfujlRmZDkbcRaITJz2Ac4CdrOpw1nAvTjtAeIsYDqbxrTkbJBO6fg92R7ZtA7ZcIaOSpzePzlD282mDvuAe3HaA8QZ2nQ2Yg+ITJz2Ac4CdrOpwz7gXpz2AHEWMJ1NY6zMbORgbkM2rRf3bHjvjEac3j85Q9vNpg77gHtx2gPEGdp0NmIPiEyc9gHOAnazqcM+4F6c9gBxFjCdTWOY2SQjm8a1JpuCggJlZ7fss4O9+6Th3Nxc/e///q8ee+wxnXbaaTrllFO0cuVKTZw4Ud27d9fq1auTPmlYksaNG6dx48bp448/1pNPPqm999672T8vOzu7xR/fHBdr1qxp8jFt27bV008/ra5duyorK2uXj031n3NOTvPrnZGZoaw2u/6oczRPTk7qf2esdm1nHVv77if6n2MKk/5FrMexhdqycm2k/xKmNORjNZs6zd0H2ANSJ057gFr4XmNFKjOynI04C0QmTvsAZwG72dThLOBenPYAcRYwnU1jrOSVjt+T7ZFN65ANZ+ioxOn9kzO03WzqsA+4F6c9QIbe91siTmdo9oBoxGkf4CxgN5s67APuxWkPEGcB09k0xlJe6Z7bkE3rxT0b3jujEaf3T87QdrOpwz7gXpz2ABl732+uOJ2h2QOiEad9gLOA3WzqsA+4F6c9QJwFTGfTGEt5xX1ms704ZVPHzitugfvvv185OTl68cUXNWvWLBUVFemFF17QzTffrKVLl2rAgAGNPu/AAw/UYYcdpvPPP1+zZ892vu44yszMVPfu3ZWZmRn1UuoVXjNaX7zzsTYv/0KZOdnqPvQgHXL5KC2dTCd8ZqlrC/8wTaf89TYNGne2Pnvude05qL8OvHCE5t74x6iXFglL2Yg9IFjWepbdrq067lMgScrMyVbeXp3V5eC+qtpars2f2/gbalyxlo3YB4JlqWucBZJZykbsAcGy1jPOAg2sZYMGZGOXxWx4/wyTpa5xhk5mKZs67APhsdYzztANrGUj9oBgWeoaZ4FklrKpwz4QHms94yzQwFo2aEA2dlnMhvfOMFnqGmfoZJayqcM+EB5rPeMM3cBaNmIPCJalrnEWSGYpmzrsA+Gx1jPOAg2sZYMGZBMtLy8azs/P18MPP6yHH3446fYPP/xQAwcO3GWZqqqqtHjxYgerhP77UeLHHXecZs2apfz8/KiXI0nK6dBORRMuUbuCLqqpqNLmFV9o3u1PadGfXol6adgNlrr21fufatYP79Lg687RIT8eqbJ1JZo34enYdsxSNmIPCJa1nu152H466fmb6r8+8MIROvDCESr+50JNP2N8pGtzzVo2Yh8IlqWucRZIZikbsQcEy1rPOAs0sJYNGpCNXRaz4f0zTJa6xhk6maVs6rAPhMdazzhDN7CWjdgDgmWpa5wFklnKpg77QHis9YyzQANr2aAB2dhlMRveO8NkqWucoZNZyqYO+0B4rPWMM3QDa9mIPSBYlrrGWSCZpWzqsA+Ex1rPOAs0sJYNGpBNtLy8aLgxJSUlWrVqlU455ZT62zZu3KgXXnhBo0aNUqdOnfTBBx/o1ltv1Xe+851I14pozR0/SXPHT4p6GQjcqpnztGrmvKiXgUawB8CF4jkLNWnvM6NeBnaCfQAucBawiz0ALnAWABAa3j/hAmdo29gHkG6coW1jD4ALnAVsYx9AunEWABAa3jvhAmdo29gHkG6coW1jD4ALnAVsYx9AunEWANCUYC4a/uCDDyRJhYWF9bdlZGToiSee0M9+9jNVVlaqW7duOv3003XTTTft4jsBAAAAAAAgdP3PGa7+Zx2n2tqE5vxioko+WVF/X37vbhp272XKzMnWipff1cLfT1XnAT1VdPePVJuoVW11jd66+iFtWbFWkjTwilHa++hDlZmdpXkTntaX85fqxGd+Wf/99jpigCYfOlaVG7dG8lp9tqucCq8erX5nHauNS1bp1XNu2+VzDvvpmdr7qIGSpA77FOjD372ojx99KZLXBAAAAAAA4CPmaX5gngYAAAAAAGAD8zQ/hDpPC/qi4Y4dO2rGjBkRrgoAAAAAAADW5HbO1/4/OFF/O+V6dejTXUV3Xqy/f7/hL5k74obzNe+Op7TuX4t10vM3afnf3lb5V5s047w7VLW5VD2OLdRhPz1Tb/30QfU4bpCy8trolTE3J/2M6WeMlyR1ObivDr/hPAayrdBUTosef0VLn31NRXde3ORz3v/Nc3r/N89Jkr77yl1a/re3I3lNAAAAAAAAPmKe5gfmaQAAAAAAADYwT/NDyPO0zEh/egpddtllqq2t1dChQ6NeCrbRvn17zZo1S+3bt496KQgcXbOLbOACPbOLbOAKXbOLbOACPbPLajZ7Deqn4n8uVG11jTZ9+h+16dJRysiov79T/x5a96/FkqRVM+ap+9ADVf7VJlVtLpUkJapqVFuTkCT1/W6Rstu10YlTxuuo+y5Xdvu2ST9r39OP1mfPv+H09TWH1Wy21VROZWtLpERti57TeUBPVW7cqtLi9U5fS0v4kA3CQNfsIhu4QM/sIhu4QtfsIhu4QM/sspoN8zS72WyLeZrdbBAGumYX2cAFemYX2cAVumYX2cAFemaX1WyYp9nNZlshz9OCuWgYNiUSCX3xxRdKJBJRLwWBo2t2kQ1coGd2kQ1coWt2kQ1coGd2Wc0mt3N+0t+sWLWlTLkd29V/nZHZMMSr2LhVbfboUP91VttcFV47Wh898pIkqV1BF9VW1eiV0Tdp/cLPdciPRzb8oIwM9T7pSC1/6Z30v6gWsprNtprKqTXP2feMb+mzF95M04pTw4dsEAa6ZhfZwAV6ZhfZwBW6ZhfZwAV6ZpfVbJin2c1mW8zT7GaDMNA1u8gGLtAzu8gGrtA1u8gGLtAzu6xmwzzNbjbbCnmexkXDSKuysjKdffbZKisri3opCBxds4ts4AI9s4ts4Apds4ts4AI9s8tqNpUbtyq3Y8PfYJiTn6fKTaX1X9du85cD5nZsp4oNmyVJGVmZ+taDV2nhQ1NV8skKSVLFhi1aPXuBJGn17Pna46A+9c8tKDpIX324TNVby128rBaxms22msqpNc/pc/IQLZ82J00rTg0fskEY6JpdZAMX6JldZANX6JpdZAMX6JldVrNhnmY3m20xT7ObDcJA1+wiG7hAz+wiG7hC1+wiG7hAz+yymg3zNLvZbCvkeVp21AsAgLg76r7L1W/MsZKkRE2Nyr4o0Zq3PtS825+M/OPoAQCAG5wHAMCtdfOWqPCa0crIylR+r26qWL8paRK7cfEq7VnYT18uWKqewwfrrZ89KEkads+l+s9r72vF9Ln1jy2es1BdD9uv/v83LVtTf9++px+tz55/w/GrC0dTObX0Od2OPEAlS1Y1OdgFYB/nZwAAwHkAANxinuYH5mkAdobzMwAA4DwAAG4xT/NDyPM0LhoGAAOK3/5Ir19yrzKyMtWhb3cNvX2sjvnD1Xpp5P+LemkAAMARzgMA4E5lyRYteWqmRrxwi2prE3r7ukfU49hC5XbO17IX3tS/bn9Sw+65VBnZWVr597nasmKtehxbqL4jv6n8Xt20z2nDtH7hMr37q0laOnm2ht1zqb7z3I2qqajSGz95QJKUmZutvY8aqLeveyTql+utpnIacN7x2u/731anfj104uRf6Y2fPKCyLzbs8Jw6Xw/J34z0NQFIHc7PAACA8wAAuMM8zQ/M0wDsCudnAADAeQAA3GGe5oeQ52lcNIy0a9++fTMeBew+n7uWqKxW2boSSVJp8XotemKGht52kXLy81S1pSzq5e02n7OBP+iZXWQDV3zvWsjnAd+zgR/omV1Ws1n8xAwtfmJG/dcbPlpe/8+bPy/W9DPGJz1+9ewFemLfc3f4PonKar1x5QON3v7noZenfN2pZDWbbe0qp+3va+r2t8dNTONKU8uHbBAGn7sW8vlZnmcDf9Azu8gGrvjetZDPA75nAz/QM7usZsM8zW4222KeBvz/2bvz+Cqrc+3jV0ZICIMgEMogKKBW0YBWQLRVUStqkaoFxw6KnjrVetSKvipFK4pWj9bW4aAH6gxarRSVKoOKioAGrKCMIlMJIBCmzNl5/7AJbAlkYO/13M96ft/P53zesndCVrwu7n27XjdJrjB3zef9WSHPBuFBz+wiG7gS9q75vA+EPRuEAz2zy2o23KfZzWZ3vt6n8aZhJFVOTo5mzJgR9DEQAT51Lav9Aep6dj/FKipVVRkL+jj7zadsYBc9s4ts4IpvXfNpH/AtG9hEz+wiG7vIxi6ygSs+dc2n/VmeZQO76JldZANXfOuaT/uAb9nAJnpmF9nYRTZ2kQ1c8alrPu3P8iwb2EXP7CIbuOJb13zaB3zLBjbRM7vIxi6yCVZq0AeA3yoqKjRr1ixVVFQEfRR4Luxdyz3+CF287Fld8tXzGjZ/rHL7H6Evxr6hiuJSSVJ2bmud/8njatqmhSQpLStT5374qFod1mWfz1kQ9mwQDvTMLrKBKz50ra594KSxN6rnJafWfHzrI7tpyPsP7/XxtCYZgXwf3+VDNrCPntlFNnaRjV1kA1fC3jXu04D9Q8/sIhu44kPXuE8DGo+e2UU2dpGNXWQDV8LeNe7TgP1Dz+wiG7jiQ9e4TwMaj57ZRTZ2kU2weNMwkqqkpETXX3+9SkpKgj4KPBf2rm3MX6pJp96syYNGaP5DL2vD3MWaN+bFmueLCjbriycn6wejfilJyrtxqFa+NVuFi1bt8zkLwp4NwoGe2UU2cMWHrtW1D8y5Y5x6XfdTNWndXEpJUf/7rtDs257e6+OVpeWBfj/VfMgG9tEzu8jGLrKxi2zgSti7xn0asH/omV1kA1d86Br3aUDj0TO7yMYusrGLbOBK2LvGfRqwf+iZXWQDV3zoGvdpQOPRM7vIxi6yCVZ60AcAAEiVJWXa/nWBJGn+AxPUvGuu+t5zuT666Ymaj/ny6bd09pQxOnz4mTrozL6aNPCmej0HIHmad80N+ggNFsYzA1FR1z5QVLBZC5+crGPvuFTfzFumrV+t07oPPpekvT4OILnC+LoaxjMnipXv3co5LLHyz8TKOQDUD/dpQDiF8fU2jGcGooL7NCB8wvi6GsYzJ4ql793SWSyw9M/D0lkA7Bv3aUA4hfG1NoxnBqKC+zQgfML4uhrGMyeKpe/d0lkssPTPw9VZeNMwABg0/48T9NP3H9HiZ9/Rps+WS5KqYjHNHTleZ7w6StMvu18VxaU1H7+v5wAkz8C/jgj6CAA8Vts+sGjcFJ31xmh1GHCk/jFo1wza2+MAkotdIFzIyy6yAZAI3KcB4cDrPoBk4j4NsI9dIFzIyy6yAZAI3KcB4cDrPoBk4j4NsI9dIFzIy64oZpMa9AHgt9TUVHXr1k2pqVQNyeVb17avKNDqdz5RnxEXxj3ecWBvFRVs1gGHddnjc/b1XJB8ywY20TO7yAau+Ni1WveBqiotfuYdrZmWr9JN2+p+3AAfs4E99MwusrGLbOwiG7jiW9e4TwMahp7ZRTZwxceucZ8G1B89s4ts7CIbu8gGrvjWNe7TgIahZ3aRDVzxsWvcpwH1R8/sIhu7yCZY/FNHUmVnZ2vChAnKzs4O+ijwnI9dW/DYJHU8KU+5/Y+QJLU6rIu6nHGcJg8aoR4XDVROl3Y1H7uv54LmYzawh57ZRTZwxdeufXcfkCTFYqqKVe35wXt7PGC+ZgNb6JldZGMX2dhFNnDFx65xnwbUHz2zi2zgiq9d4z4NqB96ZhfZ2EU2dpENXPGxa9ynAfVHz+wiG7jia9e4TwPqh57ZRTZ2kU2weNMwkqq8vFx///vfVV5eHvRR4Lkwd+2D3/5Fbw+7a4/HN36yWOM7nK+CWQslSf3HXKm5I8erqGCz5t3/kvrec3nNx+7ruaCFORuEBz2zi2zgSti7Vt99IIzCng3CgZ7ZRTZ2kY1dZANXwtw17tOA/UfP7CIbuBL2rnGfBuwfemYX2dhFNnaRDVwJc9e4TwP2Hz2zi2zgSti7xn0asH/omV1kYxfZBIs3DSOpSktLNXr0aJWWlgZ9FHjO9671uPhUlXyzVWum5UuSlr/8njKaNVWXM/vu8zkLfM8GNtAzu8gGrtA1u8gGLtAzu8jGLrKxi2zgiu9d4z4N2Dd6ZhfZwBW6ZhfZwAV6ZhfZ2EU2dpENXPG9a9ynAftGz+wiG7hC1+wiG7hAz+wiG7vIJljpQR8AAFC3pc9P1dLnp8Y9NuXckXHP7+05AADgl2UT39Wyie/W+3EAAAAgirhPAwAA1bhPAwAAAOrGfRoAAKjGfRoAAOHHTxoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAQo43DSOp0tLS1LdvX6WlpQV9FHiOrtlFNnCBntlFNnCFrtlFNnCBntlFNnaRjV1kA1foml1kAxfomV1kA1foml1kAxfomV1kYxfZ2EU2cIWu2UU2cIGe2UU2cIWu2UU2cIGe2UU2dpFNsHjTMJIqLS1NvXr14g84ko6u2UU2cIGe2UU2cIWu2UU2cIGe2UU2dpGNXWQDV+iaXWQDF+iZXWQDV+iaXWQDF+iZXWRjF9nYRTZwha7ZRTZwgZ7ZRTZwha7ZRTZwgZ7ZRTZ2kU2weNMwkqqsrExPPfWUysrKgj4KPEfX7CIbuEDP7CIbuELX7CIbuEDP7CIbu8jGLrKBK3TNLrKBC/TMLrKBK3TNLrKBC/TMLrKxi2zsIhu4QtfsIhu4QM/sIhu4QtfsIhu4QM/sIhu7yCZYvGkYAAAAAAAAAAAAAAAAAAAAAAAAAAAACDneNAwAAAAAAAAAAAAAAAAAAAAAAAAAAACEHG8aRlKlp6dr8ODBSk9PD/oo8Bxds4ts4AI9s4ts4Apds4ts4AI9s4ts7CIbu8gGrtA1u8gGLtAzu8gGrtA1u8gGLtAzu8jGLrKxi2zgCl2zi2zgAj2zi2zgCl2zi2zgAj2zi2zsIptg8U8dSdW0aVPdfvvtQR8DERC2rvW4aKB6XHCKqqpimnXLWBUuWlXzXE6Xdhrw0NVKzUjXqrfmaOETkyRJbY46WH1uu1ip6WnaMHeR5o15SZLU69oh6nDiUUpNT1P+mBf1zbxlOv2lO2p+v7bH9tSEo4arbOvOAL7T8GWDcKJndpENXAlb1xq6C7Tq2Un9H/gvVcWqVFVRqQ9vfFw7Vm2Q2AUAiZ6ZRjZ2kY1dZANXwtY17tOAxKJndpENXAlb17hPAxKLntlFNnaRjV1kA1fC1jXu04DEomd2kQ1cCVvXuE8DEoue2UU2dpFNsPhJw0iqkpIS/eEPf1BJSUnQR4HnwtS1zFY5OvQXp+utc+/Uh//9uPre/au454+9/VLl3/uC3jrndnU+/RjldG6n1Ix09RlxoWZc9oD+ef7vay5kO57SW2lZTfT2sLs05byR2jBnkWLlFZpy3khNOW+k5tw5TgUfLQzsX8IUsmwQXvTMLrKBK2HqWmN2gZJN2zT1kns15ad3asFjr+voG86X2AWAGvTMLrKxi2zsIhu4EqaucZ8GJB49s4ts4EqYusZ9GpB49MwusrGLbOwiG7gSpq5xnwYkHj2zi2zgSpi6xn0akHj0zC6ysYtsgsWbhpFUFRUVmjRpkioqKoI+CjwXpq617d1dBR8tVFVFpbYt/7eatG4hpaTUPN+yR0dt/HSJJGnN1Hy173e42h7bU+VFpfrREzfo9Ikj1faYnpKkrj/pr/TsJjp94kid8PA1Sm/WNO5rHXzuifrq1ZmOv8N4YcoG4UXP7CIbuBKmrjVmFyjZtE3l24skSbHySlVVxiR2AaAGPbOLbOwiG7vIBq6EqWvcpwGJR8/sIhu4EqaucZ8GJB49s4ts7CIbu8gGroSpa9ynAYlHz+wiG7gSpq5xnwYkHj2zi2zsIptgpQd9AN8Mvu4dLV+zLehj6JBOLTTp0dOCPgaAWmS2yon725TKdxQrs0V2zWMpqbv+pax06041OaC5YuUVan34QZp0+s3KbNlMpz13m14/5UZl57ZWycatenvoKH3/irN05K8Ha/6DE7/95JQUdTnjOM1/6GX33yQQEdN+cZ+2f10Q9DEapHnXXA3864igjwFEWmN2gWppTTOVd/NQzbplrCSxCwABYxcIFyt5RTmDvSEbAHXhPg3wh5XX/YZgRwCCx30a4A92gXCxlFeUc6gN2QCoC/dpgD8sve7XF/sBEDzu0wB/sAuEi6W8opxDbaKYDW8aTrDla7bpi+WFQR8DgGFlW3cqs0Wzml9n5GSpbFtRza+rqnZ9bGaLbJV8s1WlhTu0Ye4iVews+fb/ikqVkZOl0i07tHbGfEnS2hnz1OfWi2s+N7f/97VpwQpV7Cxx9a0BkbP96wIVLlkT9DEAhExjdgFJSklL1Q8fu14LH5+kwkWrJIldAAgYu0C4kJddZAOgLtynAf7gdR9AY3CfBviDXSBcyMsusgFQF+7TAH/wug+gMbhPA/zBLhAu5GVXFLNJDfoA8FtmZqaGDx+uzMzMoI8Cz4Wpaxvzl6p9v8OVkpaq5l1zVbp5W9y/fW1dskYH5nWXJHUa2EfrZ3+pb/KXqsXB31NKWqoymmcro3mWyncUq2DWQrU5+hBJUpujD9G2Fetqfp+Dzz1RX706M4DvMF6YskF40TO7yAauhKlrjdkFJGnAg1fp3+9+plVT5tZ8LLsA8C16ZhfZ2EU2dpENXAlT17hPAxKPntlFNnAlTF3jPg1IPHpmF9nYRTZ2kQ1cCVPXuE8DEo+e2UU2cCVMXeM+DUg8emYX2dhFNsHiJw0jqTIzM3XllVcGfQxEQJi6Vla4Q0tfmKZBr92tqqqYPr71KXU8OU+ZrXK04rUP9Ono5zXgwauUkp6m1f+cqx2rNkiSFj/7ts54dZRS09P1yV3PSpKWTZihAQ9epR+/8ntVlpZr5m8elSSlZqarwwm99PGtTwX6vSpk2SC86JldZANXwtS1xuwCHU/OU9fBxyunczt1O2eANi9coTl3jmcXAP6DntlFNnaRjV1kA1fC1DXu04DEo2d2kQ1cCVPXuE8DEo+e2UU2dpGNXWQDV8LUNe7TgMSjZ3aRDVwJU9e4TwMSj57ZRTZ2kU2weNMwkqq4uFi/+93vdP/99ysrKyvo48BjYevakuemaslzU2t+veWLlTX/e/vXBZpy3sg9Pmf5y+9p+cvvxT0WK6vQzOse3eNjY2UV+lu/axJ+7sYIWzYIJ3pmF9nAlbB1raG7wNoZ8/XcwRfv8fuwCwDfomd2kY1dZGMX2cCVsHWN+zQgseiZXWQDV8LWNe7TgMSiZ3aRjV1kYxfZwJWwdY37NCCx6JldZANXwtY17tOAxKJndpGNXWQTrNSgDwC/VVZWavbs2aqsrAz6KPAcXbOLbOACPbOLbOAKXbOLbOACPbOLbOwiG7vIBq7QNbvIBi7QM7vIBq7QNbvIBi7QM7vIxi6ysYts4Apds4ts4AI9s4ts4Apds4ts4AI9s4ts7CKbYPGThgEAAAAAAID/OOHha9R92MmSpFhlpYrXF2rdhwuUP/p5FRVsDvp4kUc+AAAAAAAAtnBfYxv5AAAAAAAA2MOdjV2+ZMNPGgYAAAAAAAB2U/DxF5pw1HC9cuxVev+ah9XmyK466X9vDPpY+A/yAQAAAAAAsIX7GtvIBwAAAAAAwB7ubOzyIRveNIykatKkiW677TY1adIk6KPAc3TNLrKBC/TMLrKBK3TNLrKBC/TMrrBmEyurUPHGQhUVbNb6j7/U4uemqt0PDlVGTlbQR0uYsGajCOQT5mwQLnTNLrKBC/TMLrKBK3TNLrKBC/TMrrBm4/t9jUKcjSKQT5izQbjQNbvIBi7QM7vIBq7QNbvIBi7QM7vCnA13Nnb5kE160AeA3zIyMjRkyJCgj4EIoGt2kQ1coGd2kQ1coWt2kQ1coGd2+ZBNVvsD1PXsfopVVKqqMhb0cRLGh2zkaT6+ZAP76JpdZAMX6JldZANX6JpdZAMX6JldPmTj432NPMlGnubjSzawj67ZRTZwgZ7ZRTZwha7ZRTZwgZ7Z5Us23NnYFdZs+EnDSKqioiINGzZMRUVFQR8FnqNrdpENXKBndpENXKFrdpENXKBndoU1m9zjj9DFy57VJV89r2Hzxyq3/xH6YuwbqigulSRl57bW+Z88rqZtWkiS0rIyde6Hj6rVYV0CPnn9hTUb1SOfk8beqJ6XnFrz8a2P7KYh7z+stCYZAZ66/sKcDcKFrtlFNnCBntlFNnCFrtlFNnCBntkV1my4T7ON+zQgMeiaXWQDF+iZXWQDV+iaXWQDF+iZXWHOxvc7NZ+zCcN9WqjfNPzZZ5/pnHPOUcuWLdWiRQsNGTJE69atU/PmzXXBBRcEfTxIisViWrFihWKx8LyTHuFE1+wiG7hAz+wiG7hC1+wiG7hAz+wKazYb85dq0qk3a/KgEZr/0MvaMHex5o15seb5ooLN+uLJyfrBqF9KkvJuHKqVb81W4aJVAZ66YcKajeqRz5w7xqnXdT9Vk9bNpZQU9b/vCs2+7WlVlpYHeu76CnM2CBe6ZhfZwAV6ZhfZwBW6ZhfZwAV6ZldYs+E+zTbu04DEoGt2kQ1coGd2kQ1coWt2kQ1coGd2hTkb3+/UfM4mDPdpoX3T8LRp09SvXz8tXrxYt99+u0aPHq01a9Zo0KBB2rFjh/Ly8oI+YoNMHTtI7407Sykp8Y///ZFTNffFwUpPT9nbp2I/5Q44Uj9fM0HnfvRo0EeBJ9r3O1ynjLtF5899XL9c94qO+u15QR8J+8AMQDJ0PKW3Br/zgC79+kWdP+cxff+/zg76SNgH5gASjV0gXJgBSAZ2gfCrLCnT9q8LVLh4teY/MEHbV29Q33suj/uYL59+S616dtbhw8/UQWf21WcPvhzYeaOmrnyKCjZr4ZOTdewdl+rQS0/T1q/Wad0Hnwd6Zt/w+olEY4cOF2YAkoEdOlyYA0g0doFwYQYgGdgFwo/7NNu4Twser59INHbocGEGIBnYocOFOYBEYxcIF2YAkoFdwA/cqdnlw31aKN80vHHjRg0bNkx9+vTRvHnzdPPNN+vaa6/VtGnTtGrVt++WD9ubhn9x+3s6svsBuuWyo2oeu/L8Q3Vav4665Nb3VFFRFej5fJXVtpVOfORa/fu9fwV9FHgkPbupCpeu1id3P6ui9VuCPg72gRmAZGhz9CEaOP4WrZkxT5NOu0nz/zhRx4y4SIf+/PSgj4ZaMAeQDOwC4cEMQDKwC/hp/h8nqPuwk9Xm6ENqHquKxTR35Hj1vfsyfXL3s6ooLg30jFFWWz6Lxk1Rq0M7q9e1QzR31F8DPZ9veP1EMrBDhwczAMnADh0uzAEkA7tAeDADkAzsAn7iPs027tPc4vUTycAOHR7MACQDO3S4MAeQDOwC4cEMQDKwC/iLOzW7wnifFso3DY8ZM0ZbtmzRuHHjlJWVVfN4y5Yt1adPHymEbxpeu75IV/3hQ426uo/yDmujnl1b6qGb++rmh+Zo8ddbgz5eozVt2lSPPPKImjZtGvRR9pSSohP//BstGj9F3+QvDfo02E+WurZ2+jzlj35BX0/6SLEyOz9aPiiWsonDDPCKpZ4dceXZ+mb+cuWPfkFbl67Vsonv6sv/e0u9rh0S9NECYSmbPTAHvGKpa+wC8SxlE4cZ4BVLPWMXiGcpm/2xfUWBVr/zifqMuDDu8Y4De6uoYLMOOKxLYGdrLF+y0d7yqarS4mfe0Zpp+SrdtC3I4zWY6Wx4/fSKpa6xQ8ezlE0cZoBXLPWMHTqepWz2wBzwiqWusQvEs5RNHGaAVyz1jF0gnqVs9gf3abZxn+YQr59esdQ1duh4lrKJwwzwiqWesUPHs5TNHpgDXrHUNXaBeJayicMM8IqlnrELxLOUzf7y7U7N+2yM36eF8k3DL730kk488UT17Nmz1ufbt2+v3NzcuMeKi4vVvXt35eTkODplw0385wpN/OcKPX/vj/T8vT/S+58W6LEJXwZ9rP2Snp6u/v37Kz09Peij7OHoG86Xqqr0+Z//HvRRkACWuxZ1VrNhBvjFUs/aHXeY1s6YF/fY2hnzldO5nbI7tA7sXEGxlM13MQf8YrlrUWc1G2aAXyz1jF0gnqVs9teCxyap40l5yu1/hCSp1WFd1OWM4zR50Aj1uGigcrq0C/qIDeJTNqolH0lSLKaqWFWQx2oUy9nw+ukXy12LOqvZMAP8Yqln7NDxLGXzXcwBv1juWtRZzYYZ4BdLPWMXiGcpm/3FfZpt3Ke5weunXyx3LeqsZsMM8IulnrFDx7OUzXcxB/xiuWtRZzUbZoBfLPWMXSCepWwSwac7Nd+zkWzfp4Xun3pBQYHWrl2rYcOG7fFcLBbT559/rt69e+/x3J133qmDDjpIBQUFDfp6FRUVDfqcivL9+5tarr13ltZOvUCxWJXOvvadRv8+FeXlWrNmzX6dpS47d+6s18cMHTpUEydOVLNmzfb5sYk+b3l5xV6fyz3+CB3689P1j9NuTujXxLf/3BOdpdWu7atjViU6H6vZVNtbRsyA5InSDNBeOpbVrpWKNxbGPVa8Yct/njtARes2J+zrN0YiM7KcjdgFAhOlOcAuYDebauwC7kVpBohdwHQ2tanv3P7gt3+p9fGNnyzW+A7n1/y6/5grNXfkeBUVbNa8+19S33su17RL763XOaJ+Z/NdDXlNrW8+jT1H1LNhhw5GlF4/2aHtZlONHdq9KM0AsUObzkbsAoGJ0hxgF7CbTTV2AfeiNAPELmA6m9pYuU+Tg3sbX7NRku/TRDbs0AGJ0usnO7TdbKqxQ7sXpRkgdmjT2YhdIDBRmgPsAnazqcYu4F6UZoDYBUxnU5tk3NlY/W/UyGb/ztLQ7zc3N7fBb74O3ZuGq0uVkpKyx3Ovv/66NmzYoLy8vLjHP/30U02ZMkUPPvigzj333AZ9vYKCAnXu3Ln+n9BjlNS0Y4O+xu4uOesQpShF2U3TdMz3D9SbM1c36vdZsmSJOne+sB4f2XjDhw+v82PKyspUVFSkiRMnKjMzc58f+9RTTyXwdNIf2pymjhkt9ni8SevmOvHPv9GHN/xljxdK7L8lS5ZoaEP+zNSD1a7trWOWJTofq9lUqy0jZkByRWkGiDlgOhuxCwQmSnMg6jNAhrOpxi7gXpRmgJgDprOpTSLz6nHxqSr5ZqvWTMuXJC1/+T31uPAUdTmzr1a9OXufn5uMPyffFeVs9gfZsEMHJUqvn1b+vDcEOzQzINmiNAPEHDCdjdgFAhOlORD1GSDD2VRjF3AvSjNAzAHT2dTGyn2aHNzbRDmb/RX1bNihgxGl109Lf97rix2aGZBsUZoBYg6YzkbsAoGJ0hyI+gyQ4WyqsQu4F6UZIOaA6Wxqk+i8LP83alHPZn80JpvVq1erU6dODfqc0L1puHPnzkpLS9N7770X9/jKlSt13XXXSVLcm4YrKip0xRVX6C9/+YtisZjz8zbEYd1a6v4bjtP193+s7x/cSk/9/gT1Ou9VbSosDfpoXjng0C5q1qGNBj5za81jKakpSklN1c9XT9DM3zyqFa99EOgZASQPMwDJVryhUFltW8U91vQ/v67+W5wQLOYAEG3MACQbu0A0LH1+qpY+PzXusSnnjgzsPKjdsonvatnEd4M+hhd4/QSijRmAZGOHto85AEQbMwDJxi4QDdynhQP3aYnD6ycQbcwAJBs7tH3MASDamAFINnaB6OBOzT7L92kpVVVVVUEfoqEuu+wyjRs3ToMHD9ZZZ52l1atXa+zYsWrfvr3+9a9/6csvv9Rhhx0mSbr33nu1bNkyPf3003r33Xd19tlna8eOHfX+WhUVFSooKKj3xw/89QdasqruH7H9XenpKfr4ucFau2GnzvnNVDXJTNMnL52jxV8X6vz/nt7g369nl2aa9sQJDf68hli2bFmdH7Nz506dffbZmjx5cp0/Srx79+4JPJ00a+h92rliz+zSs5oop0u7uMcO++WP1em0YzT14tHa+e9NKt9elNCzREmzbrnqP3FEQn9Pq13bW8d2d/6cx7TkhWn618N/S8jX3F+JzsdqNtVqy4gZkFxRmgHaS8d++Jfr1axTW711zu01jx1z+yXqNvh4vXLc1Qn72o2VyIwsZyN2gcBEaQ6wC9jNphq7gHtRmgFiFzCdTW3qM7ddSMafk+8im8YhG3booETp9ZMd2m421dih3YvSDBA7tOlsxC4QmCjNAXYBu9lUYxdwL0ozQOwCprOpjZU7Gzm4tyGbxot6NuzQwYjS6yc7tN1sqrFDuxelGSB2aNPZiF0gMFGaA+wCdrOpxi7gXpRmgNgFTGdTG+5s4pFN7RqTTW5urtLTG/azg0P3k4Yl6U9/+pMyMjL0+uuva/r06erfv79ee+013XXXXVq2bJl69uwp/aeATzzxhObNm9for5Went6gH9+cnpHRqK9z19XHqFP7Zhp09T8lSaVllbrk1nc154XBuvQn3fXsP+r+w/TdczT0x0431Lp16+r8mKZNm+rFF19UmzZtlJaWts+PTfR5MzJqr3dFcakKF6+Oe6zkm22KlVXs8TgaLiOjYX9m6sNq1/bWsfTspmrRLVeSlJqRrqy2rdT6iK4q31mi7V8H+yKT6HysZlOttoyYAckVpRmgvXRs4f9O1ln/uEe9R1yor155Twf27qHDLxukub//a8K+7v5IZEaWsxG7QGCiNAfYBexmU41dwL0ozQCxC5jOpjZ7m9uuJePPyXeRTeOQDTt0UKL0+skObTebauzQ7kVpBogd2nQ2YhcITJTmALuA3WyqsQu4F6UZIHYB09nUxsqdjRzc25BN40U9G3boYETp9ZMd2m421dih3YvSDBA7tOlsxC4QmCjNAXYBu9lUYxdwL0ozQOwCprOpDXc28cimdi7+GzWF9U3DOTk5evLJJ/Xkk0/GPb5gwQL16tVLqampkqQPPvhA69evr3kTcXl5uXbu3KkDDzxQr776qn74wx8Gcv7vGtC7vW7+ZS/99Iap2ri5pObxzxZv1sjH8vWnW/rp3bnrtLqg4T/BOGipqalq3759TSZAsljq2oFHH6IzXh1V8+vDLxukwy8bpIKPFmrKeSMDPVsQLGUDf1nq2abPlmv6r+5Xn1sv0pG/HqzijYXKH/OiFj/zdtBHC4SlbOA3S11jF4hnKRv4y1LP2AXiWcoG8cjGLrKBK5a6xg4dz1I28JelnrFDx7OUDfxmqWvsAvEsZQN/WeoZu0A8S9kgHtnYRTZwxVLX2KHjWcoG/rLUM3boeJaygd8sdY1dIJ6lbOAvSz1jF4hnKRvEI5tghfJNw7UpLCzUmjVrdNZZZ9U8NnToUJ166qk1v541a5Z++ctfav78+Wrbtm1AJ93Th/PWK6PPuFqfu+/pf+m+p//l/EyJsnPnTp1yyimaPn26cnJygj7OXs1/cKLmPzgx6GNgP1jqWsGshRrf4fxAz2CJpWz2hhkQftZ6tmZavtZMyw/6GCZYy2ZvmAPhZ6lr7ALxLGWzN8yA8LPWM3aBXaxlg13Ixq6wZMPrZ/hZ6ho7dDxL2ewNMyD8rPWMHXoXa9nsDXMg/Cx1jV0gnqVs9oYZEH7WesYusIu1bLAL2dgVlmx4/Qw/S11jh45nKZu9YQaEn7WesUPvYi2bvWEOhJ+lrrELxLOUzd4wA8LPWs/YBXaxlg12IZtgefOm4c8//1ySlJeXV/NYdna2srOza37dtm1bpaSkOPkRzgAAAAAAAAAAAAAAAAAAAAAAAAAAAIArXr9p+LtOOukk7dixw+GpAAAAAAAAYFGPiwaqxwWnqKoqplm3jFXholU1z+V0aacBD12t1Ix0rXprjhY+MUmtenZS/wf+S1WxKlVVVOrDGx/XjlUbJEm9rh2iDicepdT0NOWPeVHfzFum01+6o+b3a3tsT004arjKtu4M5HsNs33llHfjUHW/4GRtXbpG71x0zz4/5+gbzleHE3pJkpp3y9WCv7yuL59+M5DvCQAAAAAAIIy4TwsH7tMAAAAAAABs4D4tHHy9T/PmTcNXX321rr766qCPAQAAAAAAAOMyW+Xo0F+crjfOuk3ND2qv/vddoX/+bFTN88fefqny731BGz9dojNeHaWVb3yskk3bNPWSe1W+vUgdT87T0Tecrw9veEwdT+mttKwmenvYXXFfY8p5IyVJrY/oqmNuv4QL2UaoK6fFz76tZS+/q/73XVHn53z2P6/os/95RZL0k7fv18o3Pg7kewIAAAAAAAgj7tPCgfs0AAAAAAAAG7hPCwef79NSA/3q8F6zZs00ffp0NWvWLOijwHN0zS6ygQv0zC6ygSt0zS6ygQv0zC6r2bTt3V0FHy1UVUWlti3/t5q0biGlpNQ837JHR238dIkkac3UfLXvd7hKNm1T+fYiSVKsvFJVlTFJUtef9Fd6dhOdPnGkTnj4GqU3axr3tQ4+90R99epMp99ffVjNZnd15VS8oVCKVTXoc1r17KSyrTtVVLDZ6ffSEGHIBn6ga3aRDVygZ3aRDVyha3aRDVygZ3ZZzYb7NLvZ7I77NLvZwA90zS6ygQv0zC6ygSt0zS6ygQv0zC6r2XCfZjeb3fl8n8abhpFUsVhM69evVywWC/oo8Bxds4ts4AI9s4ts4Apds4ts4AI9s8tqNpmtcuL+ZsXyHcXKbJFd8+uU1F2XeKVbd6rJAc1rfp3WNFN5Nw/VF0+9KUnKzm2tqvJKvT10lDYv/FpH/nrwri+UkqIuZxynlW/OTv431UBWs9ldXTk15nMOPu+H+uq1D5J04sQIQzbwA12zi2zgAj2zi2zgCl2zi2zgAj2zy2o23KfZzWZ33KfZzQZ+oGt2kQ1coGd2kQ1coWt2kQ1coGd2Wc2G+zS72ezO5/s03jSMpCouLtaFF16o4uLioI8Cz9E1u8gGLtAzu8gGrtA1u8gGLtAzu6xmU7Z1pzJb7PobDDNyslS2rajm11W7/eWAmS2yVbpluyQpJS1VP3zsei18fJIKF62SJJVu2aG1M+ZLktbOmKcDvn9Qzefm9v++Ni1YoYqdJS6+rQaxms3u6sqpMZ9z0Jl9tXLyrCSdODHCkA38QNfsIhu4QM/sIhu4QtfsIhu4QM/sspoN92l2s9kd92l2s4Ef6JpdZAMX6JldZANX6JpdZAMX6JldVrPhPs1uNrvz+T4tPegDAAAARNkJD1+j7sNOliTFKitVvL5Q6z5coPzRz6uoYHPQxwMAAA6wD7i3MX+p8m4aqpS0VOV0bqfSzdvibmK3LlmjA/O665v5y9RpYB99+N+PSZIGPHiV/v3uZ1o1ZW7NxxbMWqg2Rx9S8/9uW7Gu5rmDzz1RX7060/F354+6cmro57Q77jAVLl1T58UuAACwjx0aAIBoYxdwj/u0cOA+DQAA7A07NAAA0cYu4B73aeHg830abxoGAAAIWMHHX+i9Kx9SSlqqmndtr36jh+uk/71Rbw7+f0EfDQAAOMI+4FZZ4Q4tfWGaBr12t6qqYvr41qfU8eQ8ZbbK0YrXPtCno5/XgAevUkp6mlb/c652rNqgjifnqevg45XTuZ26nTNAmxeu0Jw7x2vZhBka8OBV+vErv1dlablm/uZRSVJqZro6nNBLH9/6VNDfbmjVlVPPS07VIT/7kVp276jTJ9ypmb95VMXrt+zxOdW+vST/INDvCQAAJA47NAAA0cYu4Bb3aeHAfRoAANgXdmgAAKKNXcAt7tPCwef7NN40jKRr1qxZPT4K2H90zS6ygQth7lmsrELFGwslSUUFm7X4uanqd8/lysjJUvmO4qCPt9/CnA3Cha7ZRTZwIew983kfsJrNkuemaslzU2t+veWLlTX/e/vXBZpy3si4j187Y76eO/jiPX6fWFmFZl73aK2P/63fNQk/dyJZzWZ3+8rpu8/V9fjHI8Ym8aSJFYZs4Ae6ZhfZwIWw94wdGth/dM0usoELYe8Zu4B73KfZzWZ33KcByUXX7CIbuBD2nrFDA/uPrtlFNnAh7D1jF3CP+zS72ezO1/s03jSMpMrJydGMGTOCPgYigK7ZRTZwwaeeZbU/QF3P7qdYRaWqKmNBH2e/+ZQNbKNrdpENXPCtZz7tA75l4xOysYts4Apds4ts4IJvPWOHBhqOrtlFNnDBt56xC8AFsrGLbOAKXbOLbOCCbz1jhwYajq7ZRTZwwbeesQvABbIJVmrQB4DfKioqNGvWLFVUVAR9FHiOrtlFNnAh7D3LPf4IXbzsWV3y1fMaNn+scvsfoS/GvqGK4lJJUnZua53/yeNq2qaFJCktK1PnfvioWh3WZZ/PWRD2bBAedM0usoELPvSsrn3gpLE3quclp9Z8fOsju2nI+w/v9fG0JhmBfB/f5UM2viIbu8gGrtA1u8gGLvjQM1/v1HzIBuFA1+wiG7jgQ8+4T4NrZGMX2cAVumYX2cAFH3rGfRqwf+iaXWQDF3zoGfdpcI1sgsVPGk6wQzq1CPoIkqFzlJSU6Prrr9f06dOVk5MT9HHgsSC61rxrrpOvk0hBnJk5ABfC3rON+Uv1wfV/VlqTDHUdfLy+d+JRmjfmxZrniwo264snJ+sHo36pmdf+SXk3DtXKt2arcNEqSdrnc0ELezYID3aB+mEXgK986Fld+8CcO8Zp0Ot3a+Wbs1W6ZYf633eFZt/2tLYuW1vr45Wl5YF+P9UsZWNlbls5B9nsyco5LGUDv7FD1w87NHzlQ898vVPzIRuEA7tA/bALwFc+9Iz7tOSzNLctnIVsamfhLJaygd/YoeuHHRq+8qFn3KcB+4ddoH7YBeArH3rGfVryWZrbFs5CNrVzdRbeNJxgkx49LegjAHBk4F9HBH0EAJ6oLCnT9q8LJEnzH5ig5l1z1feey/XRTU/UfMyXT7+ls6eM0eHDz9RBZ/bVpIE31es5AMnDLgAgkeraB4oKNmvhk5N17B2X6pt5y7T1q3Va98HnkrTXxxGPuW0X2QDRwZ93AInEnRoQPuwCABKJ+7TkY27bRTZAdPDnHUAicZ8GhA+7AIBE4j4t+ZjbdkUxm9SgDwAAAIB48/84Qd2Hnaw2Rx9S81hVLKa5I8er792X6ZO7n1VFcWm9ngMAAOFU2z6waNwUtTq0s3pdO0RzR/21zscBAACAKOFODQCAaOM+DQAAAGgY7tMAAIg27tMAv/GmYSRVamqqunXrptRUqobkomt2kQ1c8K1n21cUaPU7n6jPiAvjHu84sLeKCjbrgMO67PE5+3ouSL5lA7voml1kAxd87Fmt+0BVlRY/847WTMtX6aZtdT9ugI/Z+IJs7CIbuELX7CIbuOBjz3y5U/MxG9hE1+wiG7jgY8+4T0OykY1dZANX6JpdZAMXfOwZ92lAw9A1u8gGLvjYM+7TkGxkEyz+qSOpsrOzNWHCBGVnZwd9lEY54eFrdPqEO4M+Buoh7F3zWdizYQ6EQ9h7VpsFj01Sx5PylNv/CElSq8O6qMsZx2nyoBHqcdFA5XRpV/Ox+3ouaGHPhhkQHmHvms/Cng1zIBzC3rO9+e4+IEmKxVQVq9rzg/f2eMB8zcYHZGNX2LPhtTM8wt41n4U9G+ZAOIS9Z3vjw51a2LNhBoRH2Lvms7BnwxwIh7D3bG+4T0MykY1dPmTD62c4+NA1X4U9G2ZAOIS9Z3vDfZoNzIFw8KFrvgp7NsyAcAh7z/aG+zQkE9kEizcNI6nKy8v197//XeXl5UEfxRupGemN/tyU9LTE/X4pKUox9Lc90DW7yCbxmAN7CnPPPvjtX/T2sLv2eHzjJ4s1vsP5Kpi1UJLUf8yVmjtyvIoKNmve/S+p7z2X13zsvp4LWpizsYoZUDu6ZhfZJB5zYE9h71l994EwCns2PiMbu8gm8XjtrB1ds4tsEo85sKew98znO7WwZ2MRM6B2dM0uskk85sCewt4z7tMQBLKxi2ySg9fPPdE1u8gm8ZgBewp7z7hPQ0MxB/ZE1+wim8RjBuwp7D3jPg1BIJtgNX6SA/VQWlqq0aNH69RTT1VGRkbQx0mobj89Qd8ffpZadv+eYhWV2pi/VHNHjte2r9ZJks742yht/erfmnXzk3Gfd+6sP2vZxHf1r/955dvf55wB6nXtELXs3lHFGwu18s3ZmjfmJVUUl9b8Ptu+LlDx+i3qcdFApaRIE46+Qs275uqY2y/R907opaqqKn3z2XLN/f1fVbholSSp+9CTdPyDV+ntYXfpB7//pVod2knTf3W/el0zpNbfr22fHjrmjkt14NGHqLK0XGunz9OcO8epZNM2SVLejUN18HknKv++F9X75mFq3jVXr5/y39q6dK3jf/K187lrYedzNswBO3PA555JUo+LT1XJN1u1Zlq+JGn5y++px4WnqMuZfdXkgOZ7fW7Vm7MDPrnf2TAD7MwAed61sPM5G+aAnTngc8/CjmzsIhu7fM6G1047r53yvGth53M2zAE7c8DnnlUL652az9kwA+zMAHnetbDzORvmgJ054HPPwo5s7CIbu3zPhtdPXj9RN5+zYQYwA1ziPs0m5gBzAHXzORtmADMAdSMbu8gmWLxpGGiktMwMffbwK9q6ZI0ymmcr76ahOvXZ2/T3k25QrLxCi599W8c/8GvNHflXVRSVSJI6nNBLOZ3aaukL06T/LEk/GPVLzb7j/7RhziI1+14b9b1nuJq2aaGZ1z1a87W6DT5eX706U/8cOkopqalqemBLnfn63Vr51hy9OeQOxcordPivztAZfxul1354vUr/szSlpKbomNsv0dzfj9eONRtVvrOk1t8vq20rnfbSHVrzzqeafOtTymyRrX73XqGTnrpJU356Z805snNb67Bf/lgzf/NnlW3doaL1Wxz/UwdsYQ4wB1xZ+vxULX1+atxjU84dGff83p5D8jADmAEAc4A5EIRlE9/Vsonv1vtxALCE105eOwHmAHPAJe7U7GEGMAMA5gBzIAjcpwEIO14/ef1EtDEDmAEucZ9mE3OAOYBoYwYwA4LAfRrgBxs/px0IoWUTZmjNO59q+8r12rxghT747V/U4uAOOjDvEEnSyjdnq7K0TN2GDKj5nB4XDdSaqfkq/s/iknfTUOXf+4K+euV97Vi1Qes//lKz/99TOuT8HymzZbOazytav0WzRozV1iVrVLholQ77xY+1Y/VGfTxirAoXrdK25f/W7Nv/T2XbduqQc0+s+byU1FTNHfWMCj5aqB2rNtQsZnv8fr86Q+Xbi/XBb/+iwkWrtGHOIs287k/K7fd9te93eM3vl9YkQzOve1TfzFuqbV+tU8V/FjogqpgDzAFEGzOAGQAwB5gDAICG4bWT106AOcAcQLQxA5gBAHOAOQAAaDheP3n9RLQxA5gBAHOAOYBoYwYwAwCgsfhJw0i63r17B32EpGh9RFcdfePP1PqIrmrauoWU8u3jzTq1leYuVqysQssmvKueF5+qpS9MU5MDcnTQoOM044oHJUlN2rRQTud2+sHvf6Fj77x012+c8u1v1LxrrjZ9tlyStOlfX0lVVTUf0ibvELU56mBdvOzZuDOlNc1U824d4h7bNH/ZHmf/7u/X6tDO2pi/RLHyiprHtnyxUmVbd6pVz85a//GXkqTijVu1c+03+/XPLZl87ZoPfM2GOWCLrz3zga/ZMAPs8bVrPvA1G+aALb72zAdkYxfZ2OVrNrx22uNr13zgazbMAVt87ZkPfM2GGWCPr13zga/ZMAds8bVnPiAbu8jGLp+z4fXTFp+7Fna+ZsMMsMXXnvnA52yYA7b43LWw8zUbZoAtvvbMB2RjF9kEhzcNI+nmzZsX9BESLi0rU6e9dIc2zFmkD3/7mIq/KZQkDXn3f5SWseuP1eJn39ERv/6JDjj8IHU44UiVbNqmtdO//eeR8p9Fa/Yd41Tw4YI9vkbRuk01/7uiKP5vR0lJTdW6Dz7Xx7c9vcfnlW0vqvnfsYpKVZaW7/Ex3/396quxn+eKj13zhY/ZMAfs8bFnvvAxG2aATT52zRc+ZsMcsMfHnvmCbOwiG7t8zIbXTpt87JovfMyGOWCPjz3zhY/ZMANs8rFrvvAxG+aAPT72zBdkYxfZ2OVrNrx+2uNr13zgYzbMAHt87JkvfM2GOWCPr13zgY/ZMAPs8bFnviAbu8gmOLxpGGiEVj06KevAlsq/7wVtXbpWktT22EOVkpoa93Hbvy7Qug8WqOfFA5U74EgtfWm6qmIxSVLJN1u1Y+1GtTzke1r6/NQGff1Nny1X96EnqWjdploXrIYqXLxa3YedrNSM9Jq/ueWA7x+kzJbNtGXx6v3+/QEfMQeAaGMGAGAOAADQMLx2AmAOANHGDADAHAAAoOF4/QSijRkAgDkARBszAACwP1Lr8TFApGU0a6rWR3SN+7+0ppmqLCnT4ZcNUvOD2qvDCb3U9+5f1SxXu1v87Dvqeclpatmjo5a8MC3uufz7XtThlw/SUdefq1aHdlaLQ76nLmf8QP3vv3KfZ/ry/95SSlqqThl/i9r1PVw5ndqq3XGHqfeIC9X22EMb/D1++X9vKaN5lk54+Bq1OrSz2h13mE589Dcq+PgLbZj9ZYN/P8A3zAHmAKKNGcAMAJgDzAEAQMPw2slrJ8AcYA4g2pgBzACAOcAcAAA0HK+fvH4i2pgBzACAOcAcQLQxA5gBAJBo/KRhJFV6eroGDx6s9PTwVq3tMT01eOof4x7bumyt3r/2TzrmtovV44JTVLh0reaMHKcfTxy5x+evmjJHZduL9M38ZSr696a457565X1V7CjWkdcM0VHXn6dYRaV2rFyvlW/O3ueZSr7Zqjd+cpv63HqxTnn6JmXkZKt4Y6HWz/5Sxeu3NPh7LPlmq9654G4dc8elOvut+xQrq9Caafmac+e4Bv9eQfGha77yIRvmgH0+9MxXPmTDDAgHH7rmKx+yYQ7Y50PPfEU2dpGNXT5kw2tnOPjQNV/5kA1zwD4feuYrH7JhBoSDD13zlQ/ZMAfs86FnviIbu8jGLl+y4fXTPl+65iMfsmEG2OdDz3zlSzbMAft86ZqPfMiGGWCfDz3zFdnYRTbBSqmqqqoK+hAIp7lz5yb09/vBD36Q0N/v7z/6rQqXrEno79kYTQ7I0c8+fVLvXfWwVv8zsf/MLGrVs5OGvPdwQn9P612LMuvZMAfci9oMaGzHelw0UD0uOEVVVTHNumWsChetqnkup0s7DXjoaqVmpGvVW3O08IlJkqQ2Rx2sPrddrNT0NG2Yu0jzxrwkSep17RB1OPEopaanKX/Mi/pm3jKd/tIdNb9f22N7asJRw1W2daeU4IwsZyNmQGCiNgeizno2zAH3ojYD9qdjDd0HWvXspP4P/JeqYlWqqqjUhzc+rh2rNkgN3AeitAtEGdnYZT0bXjuDEbXXz6izng1zwL2ozQCXO7QSdKcWpR2aGRCMqM2BqLOeDXPAvajNAO7T7GYTdWRjl/VsrLx2itfP/Wa9a1FmPRsrc4AZsH8s94z7NLvZyNAMEHNgv1nvWpRZz8bKHGAG7B/LPeM+zW42UUc29qUGfQD4raSkRH/4wx9UUlIS9FGcS0lPU1bbVuoz4iIVFWzW6rc/CfpIXoty16yLcjbMAXfC1LPMVjk69Ben661z79SH//24+t79q7jnj739UuXf+4LeOud2dT79GOV0bqfUjHT1GXGhZlz2gP55/u9rLmM7ntJbaVlN9PawuzTlvJHaMGeRYuUVmnLeSE05b6Tm3DlOBR8trHnDcBDClE2iMQPcinLXrItyNswBd8LWs8bsAyWbtmnqJfdqyk/v1ILHXtfRN5wvhWAfCFs2UUI2dkU5G1473Ypy16yLcjbMAXfC1rMo3amFLZtEYga4FeWuWRflbJgD7oStZ9ynwQKysSvq2fD66U7Uu2ZZlLNhBrgTtp5xnxYdzAF3ot41y6KcDTPAnbD1jPs0WEA2weJNw0iqiooKTZo0SRUVFUEfxbn2PzhMw/71lL73o6P1wfV/lvih3kkV5a5ZF+VsmAPuhKlnbXt3V8FHC1VVUalty/+tJq1bSCkpNc+37NFRGz9dIklaMzVf7fsdrrbH9lR5Ual+9MQNOn3iSLU9pqckqetP+is9u4lOnzhSJzx8jdKbNY37Wgefe6K+enWm4+8wXpiySTRmgFtR7pp1Uc6GOeBO2HrWmH2gZNM2lW8vkiTFyitVVRmTQrAPhC2bKCEbu6KcDa+dbkW5a9ZFORvmgDth61mU7tTClk0iMQPcinLXrItyNswBd8LWM+7TYAHZ2BX1bHj9dCfqXbMsytkwA9wJW8+4T4sO5oA7Ue+aZVHOhhngTth6xn0aLCCbYKUHfQDAVwWzFmp8h/ODPgaSaNov7tP2rwuCPkaDNO+aq4F/HRH0MSKDOYDaZLbKifublMp3FCuzRXbNYympu/6FrHTrTjU5oLli5RVqffhBmnT6zcps2UynPXebXj/lRmXntlbJxq16e+goff+Ks3Tkrwdr/oMTv/3klBR1OeM4zX/oZfffJCRmQCSwC6AuzAHsTWP2gWppTTOVd/NQzbplrCSxDzSAlbnNLN4T2aAar53+s/LnvSGYDW4xB7A33KlFAzPAf+wCqAtzAHvDfVowLM1t5nE8ssHueP30m6U/7/XFXHCLGYC94T4tOpgDfmMXQF2YAdgb7tOCYWluM4/jRTEb3jQMAI20/esCFS5ZE/QxAIRM2dadymzRrObXGTlZKttWVPPr3f+Sr8wW2Sr5ZqtKC3dow9xFqthZ8u3/FZUqIydLpVt2aO2M+ZKktTPmqc+tF9d8bm7/72vTghWq2Fni6lsDIoddAEBjNWYfkKSUtFT98LHrtfDxSSpctEqS2AcagLltF9kA0cGfdwCNxZ0a4Ad2AQCNxX1aMJjbdpENEB38eQfQWNynAX5gFwDQWNynBYO5bVcUs0kN+gDwW2ZmpoYPH67MzMygjwLP0TW7yAYuhKlnG/OXqn2/w5WSlqrmXXNVunlb3L95bV2yRgfmdZckdRrYR+tnf6lv8peqxcHfU0paqjKaZyujeZbKdxSrYNZCtTn6EElSm6MP0bYV62p+n4PPPVFfvTozgO8wXpiyQbjRNbvIBi6ErWeN2QckacCDV+nf736mVVPm1nys9X0gbNlECdnYRTZwha7ZRTZwIWw9i9KdWtiyQXjRNbvIBi6ErWfcp8ECsrGLbOAKXbOLbOBC2HrGfRqQeHTNLrKBC2HrGfdpsIBsgsVPGkZSZWZm6sorrwz6GIgAumYX2cCFMPWsrHCHlr4wTYNeu1tVVTF9fOtT6nhynjJb5WjFax/o09HPa8CDVyklPU2r/zlXO1ZtkCQtfvZtnfHqKKWmp+uTu56VJC2bMEMDHrxKP37l96osLdfM3zwqSUrNTFeHE3rp41ufCvR7VciyQbjRNbvIBi6ErWeN2Qc6npynroOPV07ndup2zgBtXrhCc+4cb34fCFs2UUI2dpENXKFrdpENXAhbz6J0pxa2bBBedM0usoELYesZ92mwgGzsIhu4QtfsIhu4ELaecZ8GJB5ds4ts4ELYesZ9Giwgm2DxpmEkVXFxsX73u9/p/vvvV1ZWVtDHgcfoml1kAxfC1rMlz03Vkuem1vx6yxcra/739q8LNOW8kXt8zvKX39Pyl9+LeyxWVqGZ1z26x8fGyir0t37XJPzcjRG2bBBedM0usoELYexZQ/eBtTPm67mDL97j97G+D4Qxm6ggG7vIBq7QNbvIBi6EsWdRuVMLYzYIJ7pmF9nAhTD2jPs0BI1s7CIbuELX7CIbuBDGnnGfBiQWXbOLbOBCGHvGfRqCRjbBSg36APBbZWWlZs+ercrKyqCPAs/RNbvIBi7QM7vIBq7QNbvIBi7QM7vIxi6ysYts4Apds4ts4AI9s4ts4Apds4ts4AI9s4ts7CIbu8gGrtA1u8gGLtAzu8gGrtA1u8gGLtAzu8jGLrIJFm8aBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEIuPegDAAAAAAAAAFac8PA16j7sZElSrLJSxesLte7DBcof/byKCjYHfbzIIx8AAAAAAABbuK+xjXwAAAAAAADs4c7GLl+y4ScNI6maNGmi2267TU2aNAn6KPAcXbOLbOACPbOLbOAKXbOLbOACPbMrrNkUfPyFJhw1XK8ce5Xev+ZhtTmyq0763xuDPlZChTUbRSCfMGeDcKFrdpENXKBndpENXKFrdpENXKBndoU1G9/vaxTibBSBfMKcDcKFrtlFNnCBntlFNnCFrtlFNnCBntkV5my4s7HLh2z4ScNIqoyMDA0ZMiToYyAC6JpdZAMX6JldZANX6JpdZAMX6JldYc0mVlah4o2FkqSigs1a/NxU9bvncmXkZKl8R3HQx0uIsGajCOQT5mwQLnTNLrKBC/TMLrKBK3TNLrKBC/TMrrBm4/t9jUKcjSKQT5izQbjQNbvIBi7QM7vIBq7QNbvIBi7QM7vCnA13Nnb5kA0/aRhJVVRUpGHDhqmoqCjoo8BzdM0usoEL9MwusoErdM0usoEL9MwuH7LJan+Aup7dT7GKSlVVxoI+TsL4kI08zceXbGAfXbOLbOACPbOLbOAKXbOLbOACPbPLh2x8vK+RJ9nI03x8yQb20TW7yAYu0DO7yAau0DW7yAYu0DO7fMmGOxu7wpoNP2kYSRWLxbRixQrFYuH5Q4Fwomt2kQ1coGd2kQ1coWt2kQ1coGd2hTWb3OOP0MXLnlVKaqrSs5pIkhY8PkkVxaWSpOzc1jpz8j2a/ONbVLJpm9KyMnXO1Ac1/fIHVLhoVcCnr5+wZqN65HPS2Bv17/c+05LnpkqSWh/ZTT987Hr947SbVVlaHujZ6yPM2SBc6JpdZAMX6JldZANX6JpdZAMX6JldYc2G+zTbuE8DEoOu2UU2cIGe2UU2cIWu2UU2cIGe2RXmbHy/U/M5mzDcp4X6Jw1/9tlnOuecc9SyZUu1aNFCQ4YM0bp169S8eXNdcMEFQR8PAAAAAAAAIbQxf6kmnXqzJg8aofkPvawNcxdr3pgXa54vKtisL56crB+M+qUkKe/GoVr51uxQXMb6oK585twxTr2u+6matG4upaSo/31XaPZtT5u5kAUAAAAAAPAN92m2cZ8GAAAAAABgD3dqdvlwnxbanzQ8bdo0nX322TrooIN0++23KysrS+PHj9egQYO0Y8cO5eXlBX1EGJV341Dl3TR0j8f/1v9abf+6IJAzwT8dT+mtY269SC17dFLxhi364uk39cWTk4M+FpgBcKR9v8N1xH8NVusjuyqnU1vlj3lR/3r4b0EfC//BHIAL7AJ2MQPgArtA+FWWlNXMhPkPTFDzrrnqe8/l+uimJ2o+5sun39LZU8bo8OFn6qAz+2rSwJsCPHG01JVPUcFmLXxyso6941J9M2+Ztn61Tus++DzgU4cbr59wgR3aLmYAXGCHto05ABfYBWxjDiDZ2AXCj/s027hPc4/XTrjADm0bcwDJxg5tGzMALrAL2MYcQLKxC/iBOzW7fLhPC+Wbhjdu3Khhw4apT58+mjp1qrKysiRJl156qbp16yZJvGnYiKZNm+qRRx5R06ZNgz5KnO2r1uvNs/9f3GMlm7YFdh7sP0tda3P0IRo4/hYteGKS3rv6YbXt3UP9x1ypyuIyLX7m7aCP55ylbKoxA/xjrWfp2U1VuHS1vnptpo6761dBHydQ1rKpxhzwj6WusQvEs5RNNWaAf6z1jF1gF2vZNNb8P07QT99/RIuffUebPlsuSaqKxTR35Hid8eooTb/sflUUlwZ9zAbxJRvtJZ9F46borDdGq8OAI/WPQSOCPmKDWM2G10//WOoaO3Q8S9lUYwb4x1rP2KF3sZZNNeaAfyx1jV0gnqVsdscc8Iu1nrEL7GItm8biPs027tPc4LXTP5a6xg4dz1I2u2MO+MVaz9ihd7GWTTVmgH8sdY1dIJ6lbHbHHPCLtZ6xC+xiLZv94dudmu/ZWL9PC+WbhseMGaMtW7Zo3LhxNW8YlqSWLVuqT58+mjZtGm8aNiI9PV39+/cP+hh7qKqMqXhjYdDHQAJZ6toRV56tb+YvV/7oFyRJW5euVatDO6vXtUMi+S9ilrKpxgzwj7WerZ0+T2unz5MkHXv7JUEfJ1DWsqnGHPCPpa6xC8SzlE01ZoB/rPWMXWAXa9k01vYVBVr9zifqM+JCvXPhH2oe7ziwt4oKNuuAw7po1VtzAj1jQ/mSjfaWT1WVFj/zjg48+mCVhuz/081qNrx++sdS19ih41nKphozwD/WesYOvYu1bKoxB/xjqWvsAvEsZbM75oBfrPWMXWAXa9k0FvdptnGf5gavnf6x1DV26HiWstkdc8Av1nrGDr2LtWyqMQP8Y6lr7ALxLGWzO+aAX6z1jF1gF2vZ7A/f7tS8z8b4fVoo3zT80ksv6cQTT1TPnj1rfb59+/bKzc2VJP3yl7/UCy+8oMzMzJrnX3nlFZ1xxhn1+loVFRUqKChI0Mn9snPnznp9zNChQzVx4kQ1a9Zsnx+7Zs2aBJ5OKi+v2OtzzTq00c8+fVKStGXRKn32P69o4yeLE/r1o6q8vCLhWVrt2t461u64w7T0hWlxj62dMV9HXn2Osju0VtG6zQn5+o2R6HysZlNtbxkxA5InSjNAdbzWWJXIjCxnI3aBwERpDrAL2M2mGruAe1GaAWIXMJ1NbfY3rwWPTdJZ/7hHuf2PUMGshWp1WBd1OeM4TR40Qmf+4x4t/9v72rFqQ73OkezvNWrZqJZ8JEmxmKpiVQ06R9SzYYcORpReP9mh7WZTjR3avSjNALFDm85G7AKBidIcYBewm0015oB7UZoBYhcwnU1trNynycG9TdSyUYLu00Q2vHYGJEqvn+zQdrOpxhxwL0ozQOzQprMRMyAwUZoD7AJ2s6nGHHAvSjNA7AKms6lNMu5srP43amTj9j4tNzdX6ekNextw6N40XFBQoLVr12rYsGF7PBeLxfT555+rd+/ecY9feeWV+vOf/9zor9e5c+dGn9dnw4cPr/NjysrKVFRUpIkTJ8a9cbs2Tz31VAJPJ/2hzWnqmNFij8c3zluqD274iwqXrFFG82wdeulpGvT3u/TORfdo3fv/SugZomjJkiUamuA/M1a7treOZbVrtcffClS8Yct/njsg0H8RS3Q+VrOpVltGzIDkitIM0D7mgGWJzMhyNmIXCEyU5gC7gN1sqrELuBelGSB2AdPZ1Ka+eX3w27/U+vjGTxZrfIfza37df8yVmjtyvIoKNmve/S+p7z2Xa9ql99b5+yfjz8l3+ZqNGpBPY5ANO3RQovT6yQ5tN5tq7NDuRWkGiB3adDZiFwhMlOYAu4DdbKoxB9yL0gwQu4DpbGpj5T5NDu5tfM1GSb5PE9nw2hmQKL1+skPbzaYac8C9KM0AsUObzkbMgMBEaQ6wC9jNphpzwL0ozQCxC5jOpjbJuLOx+t+okU3jNSab1atXq1OnTg36nNC9abj6negpKSl7PPf6669rw4YNysvLC+BkCIu10+fF/XrD7C/VrEMbHXn1OSxgQAQwAwAwB4BoYwYASIQeF5+qkm+2as20fEnS8pffU48LT1GXM/tq1Zuzgz4ekHC8fgLRxgwAwBwAwBwAsL+4T0PU8NoJgDkARBszAABzAEAicKeG/RG6Nw137txZaWlpeu+99+IeX7lypa677jpJ2uNNw88//7xeeOEFtW/fXpdccoluueWWev9I5tzcXK1evTqB34E/li1bVufH7Ny5U88884yGDh1a548SHzlyZAJPJ80aep92riio18du+HSxDjqzX0K/flT17NlTqyf+X0J/T6td21vHijcUKqttq7jHmv7n19V/i1NQEp2P1Wyq1XcOMAMSJ0ozQA18rbEikRlZzkbsAoGJ0hxgF7CbTTV2AfeiNAPELmA6m9okMq+lz0/V0uenxj025dz6nT8Zf06+K8rZ7G7ZxHe1bOK79f54smGHDkqUXj/Zoe1mU40d2r0ozQCxQ5vORuwCgYnSHGAXsJtNNeaAe1GaAWIXMJ1Nbazcp8nBvU2Us9ldQ+/TRDa8dgYkSq+f7NB2s6nGHHAvSjNA7NCmsxEzIDBRmgPsAnazqcYccC9KM0DsAqazqU2i87L836hFPZtqru7TcnNzG3iyEL5pODMzUz//+c81btw4nXPOOTrrrLO0evVqjR07Vu3bt9fatWvj3jT8m9/8Rvfff78OPPBA5efn68ILL1RJSYnuvvvuen299PT0Bv/45qhYt25dnR/TtGlTvfjii2rTpo3S0tL2+bGJ/ueckVH/erfpdbB2/ntTQr9+VGVkJP7PjNWu7a1jG+Ys0vdOytNn//NKzWMdT87TjtUbVLRuc0K+dmMlOh+r2VSr7xxgBiROlGaAGvhaY0UiM7KcjdgFAhOlOcAuYDebauwC7kVpBohdwHQ2tbGSVzL+nHwX2TQO2bBDByVKr5/s0HazqcYO7V6UZoAMve43RJR2aHaBYERpDrAL2M2mGnPAvSjNALELmM6mNpbySva9Ddk0XtSz4bUzGFF6/WSHtptNNeaAe1GaATL2ul9fUdqhmQHBiNIcYBewm0015oB7UZoBYhcwnU1tLOUV9Tub74pSNtVSk/4VkuBPf/qTrrzySs2ePVs33nijZs+erddee03f+973lJ2drZ49e9Z8bJ8+fdSuXTulpqbq2GOP1ahRo/TSSy8Fev4oSU1NVfv27ZWaaqdqP/j9L5Q74EjldGmn1kd0Vd/Rw/W9Hx6lL8ZODvpo2A+Wurbwfyerbe/u6j3iQrXs/j0d8rMf6fDLBunzP/896KMFwlI2YgZ4y1rP0rObqvURXdX6iK5KzUhXVttWan1EVzXv2vC/4SXsrGUj5oC3LHWNXSCepWzEDPCWtZ6xC+xiLRvsQjZ2WcyG108/WeoaO3Q8S9mIGeAtaz1jh97FWjZiDnjLUtfYBeJZyqYac8A/1nrGLrCLtWywC9nYZTEbXjv9ZKlr7NDxLGVTjTngH2s9Y4fexVo2YgZ4y1LX2AXiWcqmGnPAP9Z6xi6wi7VssAvZBMvO26QbICcnR08++aSefPLJuMcXLFigXr167bNMqampqqqqcnBK6D8/SvyUU07R9OnTlZOTE/RxJElZ7Q7QiX+6Tk3btFDZ9iJt+WKl/jn0LhV8uCDoo2E/WOraps+Wa/qv7lefWy/Skb8erOKNhcof86IWP/N2oOcKiqVsxAzwlrWeHXj0ITrj1VE1vz78skE6/LJBKvhooaacNzLQs7lmLRsxB7xlqWvsAvEsZSNmgLes9YxdYBdr2WAXsrHLYja8fvrJUtfYoeNZykbMAG9Z6xk79C7WshFzwFuWusYuEM9SNtWYA/6x1jN2gV2sZYNdyMYui9nw2uknS11jh45nKZtqzAH/WOsZO/Qu1rIRM8BblrrGLhDPUjbVmAP+sdYzdoFdrGWDXcgmWKF803BtCgsLtWbNGp111llxj0+YMEFnnHGGWrRooc8//1yjRo3Sz372s8DOieC9f/XDQR8BEbBmWr7WTMsP+hioBTMALhTMWqjxHc4P+hjYC+YAXGAXsIsZABfYBQD4htdPuMAObRczAC6wQ9vGHIAL7AK2MQeQbOwCAHzDaydcYIe2jTmAZGOHto0ZABfYBWxjDiDZ2AUA1MWbNw1//vnnkqS8vLy4xx977DH9+te/Vnl5uTp06KBLL71Ut956a0CnBAAAAAAAgAU9LhqoHhecoqqqmGbdMlaFi1bVPJfTpZ0GPHS1UjPSteqtOVr4xCS16tlJ/R/4L1XFqlRVUakPb3xcO1ZtkCT1unaIOpx4lFLT05Q/5kV9M2+ZTn/pjprfr+2xPTXhqOEq27ozkO81zPaVU96NQ9X9gpO1dekavXPRPfv8nKNvOF8dTuglSWreLVcL/vK6vnz6zUC+JwAAAAAAgDDiPi0cuE8DAAAAAACwgfu0cPD1Ps37Nw2/9957AZ0IAAAAAAAAFmW2ytGhvzhdb5x1m5of1F7977tC//zZqJrnj739UuXf+4I2frpEZ7w6Sivf+Fglm7Zp6iX3qnx7kTqenKejbzhfH97wmDqe0ltpWU309rC74r7GlPNGSpJaH9FVx9x+CReyjVBXTouffVvLXn5X/e+7os7P+ex/XtFn//OKJOknb9+vlW98HMj3BAAAAAAAEEbcp4UD92kAAAAAAAA2cJ8WDj7fp6UG+tUT6Oqrr1ZVVZX69esX9FGwm2bNmmn69Olq1qxZ0EeB5+iaXWQDF+iZXWQDV+iaXWQDF+iZXVazadu7uwo+WqiqikptW/5vNWndQkpJqXm+ZY+O2vjpEknSmqn5at/vcJVs2qby7UWSpFh5paoqY5Kkrj/pr/TsJjp94kid8PA1Sm/WNO5rHXzuifrq1ZlOv7/6sJrN7urKqXhDoRSratDntOrZSWVbd6qoYLPT76UhwpAN/EDX7CIbuEDP7CIbuELX7CIbuEDP7LKaDfdpdrPZHfdpdrOBH+iaXWQDF+iZXWQDV+iaXWQDF+iZXVaz4T7Nbja78/k+zZs3DcOmWCym9evXKxaLBX0UeI6u2UU2cIGe2UU2cIWu2UU2cIGe2WU1m8xWOXF/s2L5jmJltsiu+XVK6q5LvNKtO9XkgOY1v05rmqm8m4fqi6felCRl57ZWVXml3h46SpsXfq0jfz141xdKSVGXM47TyjdnJ/+baiCr2eyurpwa8zkHn/dDffXaB0k6cWKEIRv4ga7ZRTZwgZ7ZRTZwha7ZRTZwgZ7ZZTUb7tPsZrM77tPsZgM/0DW7yAYu0DO7yAau0DW7yAYu0DO7rGbDfZrdbHbn830abxpGUhUXF+vCCy9UcXFx0EeB5+iaXWQDF+iZXWQDV+iaXWQDF+iZXVazKdu6U5ktdv0Nhhk5WSrbVlTz66rd/nLAzBbZKt2yXZKUkpaqHz52vRY+PkmFi1ZJkkq37NDaGfMlSWtnzNMB3z+o5nNz+39fmxasUMXOEhffVoNYzWZ3deXUmM856My+Wjl5VpJOnBhhyAZ+oGt2kQ1coGd2kQ1coWt2kQ1coGd2Wc2G+zS72eyO+zS72cAPdM0usoEL9MwusoErdM0usoEL9Mwuq9lwn2Y3m935fJ+WHvQBACDqTnj4GnUfdrIkKVZZqeL1hVr34QLlj34+8B9HDwAA3GAfAAC3NuYvVd5NQ5WSlqqczu1Uunlb3E3s1iVrdGBed30zf5k6DeyjD//7MUnSgAev0r/f/Uyrpsyt+diCWQvV5uhDav7fbSvW1Tx38Lkn6qtXZzr+7vxRV04N/Zx2xx2mwqVr6rzYBWAf+zMAAGAfAAC3uE8LB+7TAOwN+zMAAGAfAAC3uE8LB5/v03jTMAAYUPDxF3rvyoeUkpaq5l3bq9/o4Trpf2/Um4P/X9BHAwAAjrAPAIA7ZYU7tPSFaRr02t2qqorp41ufUseT85TZKkcrXvtAn45+XgMevEop6Wla/c+52rFqgzqenKeug49XTud26nbOAG1euEJz7hyvZRNmaMCDV+nHr/xelaXlmvmbRyVJqZnp6nBCL31861NBf7uhVVdOPS85VYf87Edq2b2jTp9wp2b+5lEVr9+yx+dU+/aS/INAvycAicP+DAAA2AcAwB3u08KB+zQA+8L+DAAA2AcAwB3u08LB5/s03jSMpGvWrFk9PgrYf2HuWqysQsUbCyVJRQWbtfi5qep3z+XKyMlS+Y7ioI+338KcDcKDntlFNnAl7F3zeR8IezYIB3pml9Vsljw3VUuem1rz6y1frKz539u/LtCU80bGffzaGfP13MEX7/H7xMoqNPO6R2t9/G/9rkn4uRPJaja721dO332ursc/HjE2iSdNrDBkAz+EuWs+788KeTYID3pmF9nAlbB3zed9IOzZIBzomV1Ws+E+zW42u+M+DUiuMHfN5/1ZIc8G4UHP7CIbuBL2rvm8D4Q9G4QDPbPLajbcp9nNZne+3qfxpmEkVU5OjmbMmBH0MRABPnUtq/0B6np2P8UqKlVVGQv6OPvNp2xgFz2zi2zgim9d82kf8C0b2ETP7CIbu8jGLrKBKz51zaf9WZ5lA7vomV1kA1d865pP+4Bv2cAmemYX2dhFNnaRDVzxqWs+7c/yLBvYRc/sIhu44lvXfNoHfMsGNtEzu8jGLrIJVmrQB4DfKioqNGvWLFVUVAR9FHgu7F3LPf4IXbzsWV3y1fMaNn+scvsfoS/GvqGK4lJJUnZua53/yeNq2qaFJCktK1PnfvioWh3WZZ/PWRD2bBAO9MwusoErPnStrn3gpLE3quclp9Z8fOsju2nI+w/v9fG0JhmBfB/f5UM2sI+e2UU2dpGNXWQDV8LeNe7TgP1Dz+wiG7jiQ9e4TwMaj57ZRTZ2kY1dZANXwt417tOA/UPP7CIbuOJD17hPAxqPntlFNnaRTbB40zCSqqSkRNdff71KSkqCPgo8F/aubcxfqkmn3qzJg0Zo/kMva8PcxZo35sWa54sKNuuLJyfrB6N+KUnKu3GoVr41W4WLVu3zOQvCng3CgZ7ZRTZwxYeu1bUPzLljnHpd91M1ad1cSklR//uu0Ozbnt7r45Wl5YF+P9V8yAb20TO7yMYusrGLbOBK2LvGfRqwf+iZXWQDV3zoGvdpQOPRM7vIxi6ysYts4ErYu8Z9GrB/6JldZANXfOga92lA49Ezu8jGLrIJVnrQBwAASJUlZdr+dYEkaf4DE9S8a6763nO5PrrpiZqP+fLpt3T2lDE6fPiZOujMvpo08KZ6PQcgeZp3zQ36CA0WxjMDUVHXPlBUsFkLn5ysY++4VN/MW6atX63Tug8+l6S9Pg4gucL4uhrGMyeKle/dyjkssfLPxMo5ANQP92lAOIXx9TaMZwaigvs0IHzC+LoaxjMniqXv3dJZLLD0z8PSWQDsG/dpQDiF8bU2jGcGooL7NCB8wvi6GsYzJ4ql793SWSyw9M/D1Vl40zAAGDT/jxP00/cf0eJn39Gmz5ZLkqpiMc0dOV5nvDpK0y+7XxXFpTUfv6/nACTPwL+OCPoIADxW2z6waNwUnfXGaHUYcKT+MWjXDNrb4wCSi10gXMjLLrIBkAjcpwHhwOs+gGTiPg2wj10gXMjLLrIBkAjcpwHhwOs+gGTiPg2wj10gXMjLrihmkxr0AeC31NRUdevWTampVA3J5VvXtq8o0Op3PlGfERfGPd5xYG8VFWzWAYd12eNz9vVckHzLBjbRM7vIBq742LVa94GqKi1+5h2tmZav0k3b6n7cAB+zgT30zC6ysYts7CIbuOJb17hPAxqGntlFNnDFx65xnwbUHz2zi2zsIhu7yAau+NY17tOAhqFndpENXPGxa9ynAfVHz+wiG7vIJlj8U0dSZWdna8KECcrOzg76KPCcj11b8NgkdTwpT7n9j5AktTqsi7qccZwmDxqhHhcNVE6XdjUfu6/nguZjNrCHntlFNnDF1659dx+QJMViqopV7fnBe3s8YL5mA1vomV1kYxfZ2EU2cMXHrnGfBtQfPbOLbOCKr13jPg2oH3pmF9nYRTZ2kQ1c8bFr3KcB9UfP7CIbuOJr17hPA+qHntlFNnaRTbB40zCSqry8XH//+99VXl4e9FHguTB37YPf/kVvD7trj8c3frJY4zucr4JZCyVJ/cdcqbkjx6uoYLPm3f+S+t5zec3H7uu5oIU5G4QHPbOLbOBK2LtW330gjMKeDcKBntlFNnaRjV1kA1fC3DXu04D9R8/sIhu4EvaucZ8G7B96ZhfZ2EU2dpENXAlz17hPA/YfPbOLbOBK2LvGfRqwf+iZXWRjF9kEizcNI6lKS0s1evRolZaWBn0UeM73rvW4+FSVfLNVa6blS5KWv/yeMpo1VZcz++7zOQt8zwY20DO7yAau0DW7yAYu0DO7yMYusrGLbOCK713jPg3YN3pmF9nAFbpmF9nABXpmF9nYRTZ2kQ1c8b1r3KcB+0bP7CIbuELX7CIbuEDP7CIbu8gmWOlBHwAAULelz0/V0uenxj025dyRcc/v7TkAAOCXZRPf1bKJ79b7cQAAACCKuE8DAADVuE8DAAAA6sZ9GgAAqMZ9GgAA4cdPGgYAAAAAAAAAAAAAAAAAAAAAAAAAAABCjjcNI6nS0tLUt29fpaWlBX0UeI6u2UU2cIGe2UU2cIWu2UU2cIGe2UU2dpGNXWQDV+iaXWQDF+iZXWQDV+iaXWQDF+iZXWRjF9nYRTZwha7ZRTZwgZ7ZRTZwha7ZRTZwgZ7ZRTZ2kU2weNMwkiotLU29evXiDziSjq7ZRTZwgZ7ZRTZwha7ZRTZwgZ7ZRTZ2kY1dZANX6JpdZAMX6JldZANX6JpdZAMX6JldZGMX2dhFNnCFrtlFNnCBntlFNnCFrtlFNnCBntlFNnaRTbB40zCSqqysTE899ZTKysqCPgo8R9fsIhu4QM/sIhu4QtfsIhu4QM/sIhu7yMYusoErdM0usoEL9MwusoErdM0usoEL9MwusrGLbOwiG7hC1+wiG7hAz+wiG7hC1+wiG7hAz+wiG7vIJli8aRgAAAAAAAAAAAAAAAAAAAAAAAAAAAAIOd40DAAAAAAAAAAAAAAAAAAAAAAAAAAAAIQcbxpGUqWnp2vw4MFKT08P+ijwHF2zi2zgAj2zi2zgCl2zi2zgAj2zi2zsIhu7yAau0DW7yAYu0DO7yAau0DW7yAYu0DO7yMYusrGLbOAKXbOLbOACPbOLbOAKXbOLbOACPbOLbOwim2DxTx1J1bRpU91+++1BHwMRELau9bhooHpccIqqqmKadctYFS5aVfNcTpd2GvDQ1UrNSNeqt+Zo4ROTJEltjjpYfW67WKnpadowd5HmjXlJktTr2iHqcOJRSk1PU/6YF/XNvGU6/aU7an6/tsf21ISjhqts684AvtPwZYNwomd2kQ1cCVvXGroLtOrZSf0f+C9VxapUVVGpD298XDtWbZDYBQCJnplGNnaRjV1kA1fC1jXu04DEomd2kQ1cCVvXuE8DEoue2UU2dpGNXWQDV8LWNe7TgMSiZ3aRDVwJW9e4TwMSi57ZRTZ2kU2w+EnDSKqSkhL94Q9/UElJSdBHgefC1LXMVjk69Ben661z79SH//24+t79q7jnj739UuXf+4LeOud2dT79GOV0bqfUjHT1GXGhZlz2gP55/u9rLmQ7ntJbaVlN9PawuzTlvJHaMGeRYuUVmnLeSE05b6Tm3DlOBR8tDOxfwhSybBBe9MwusoErYepaY3aBkk3bNPWSezXlp3dqwWOv6+gbzpfYBYAa9MwusrGLbOwiG7gSpq5xnwYkHj2zi2zgSpi6xn0akHj0zC6ysYts7CIbuBKmrnGfBiQePbOLbOBKmLrGfRqQePTMLrKxi2yCxZuGkVQVFRWaNGmSKioqgj4KPBemrrXt3V0FHy1UVUWlti3/t5q0biGlpNQ837JHR238dIkkac3UfLXvd7jaHttT5UWl+tETN+j0iSPV9piekqSuP+mv9OwmOn3iSJ3w8DVKb9Y07msdfO6J+urVmY6/w3hhygbhRc/sIhu4EqauNWYXKNm0TeXbiyRJsfJKVVXGJHYBoAY9s4ts7CIbu8gGroSpa9ynAYlHz+wiG7gSpq5xnwYkHj2zi2zsIhu7yAauhKlr3KcBiUfP7CIbuBKmrnGfBiQePbOLbOwim2ClB30A3wy+7h0tX7Mt6GPokE4tNOnR04I+BoBaZLbKifvblMp3FCuzRXbNYympu/6lrHTrTjU5oLli5RVqffhBmnT6zcps2UynPXebXj/lRmXntlbJxq16e+goff+Ks3Tkrwdr/oMTv/3klBR1OeM4zX/oZfffJBAR035xn7Z/XRD0MRqkeddcDfzriKCPAURaY3aBamlNM5V381DNumWsJLELAAFjFwgXK3lFOYO9IRsAdeE+DfCHldf9hmBHAILHfRrgD3aBcLGUV5RzqA3ZAKgL92mAPyy97tcX+wEQPO7TAH+wC4SLpbyinENtopgNbxpOsOVrtumL5YVBHwOAYWVbdyqzRbOaX2fkZKlsW1HNr6uqdn1sZotslXyzVaWFO7Rh7iJV7Cz59v+KSpWRk6XSLTu0dsZ8SdLaGfPU59aLaz43t//3tWnBClXsLHH1rQGRs/3rAhUuWRP0MQCETGN2AUlKSUvVDx+7Xgsfn6TCRaskiV0ACBi7QLiQl11kA6Au3KcB/uB1H0BjcJ8G+INdIFzIyy6yAVAX7tMAf/C6D6AxuE8D/MEuEC7kZVcUs0kN+gDwW2ZmpoYPH67MzMygjwLPhalrG/OXqn2/w5WSlqrmXXNVunlb3L99bV2yRgfmdZckdRrYR+tnf6lv8peqxcHfU0paqjKaZyujeZbKdxSrYNZCtTn6EElSm6MP0bYV62p+n4PPPVFfvTozgO8wXpiyQXjRM7vIBq6EqWuN2QUkacCDV+nf736mVVPm1nwsuwDwLXpmF9nYRTZ2kQ1cCVPXuE8DEo+e2UU2cCVMXeM+DUg8emYX2dhFNnaRDVwJU9e4TwMSj57ZRTZwJUxd4z4NSDx6ZhfZ2EU2weInDSOpMjMzdeWVVwZ9DERAmLpWVrhDS1+YpkGv3a2qqpg+vvUpdTw5T5mtcrTitQ/06ejnNeDBq5SSnqbV/5yrHas2SJIWP/u2znh1lFLT0/XJXc9KkpZNmKEBD16lH7/ye1WWlmvmbx6VJKVmpqvDCb308a1PBfq9KmTZILzomV1kA1fC1LXG7AIdT85T18HHK6dzO3U7Z4A2L1yhOXeOZxcA/oOe2UU2dpGNXWQDV8LUNe7TgMSjZ3aRDVwJU9e4TwMSj57ZRTZ2kY1dZANXwtQ17tOAxKNndpENXAlT17hPAxKPntlFNnaRTbB40zCSqri4WL/73e90//33KysrK+jjwGNh69qS56ZqyXNTa3695YuVNf97+9cFmnLeyD0+Z/nL72n5y+/FPRYrq9DM6x7d42NjZRX6W79rEn7uxghbNggnemYX2cCVsHWtobvA2hnz9dzBF+/x+7ALAN+iZ3aRjV1kYxfZwJWwdY37NCCx6JldZANXwtY17tOAxKJndpGNXWRjF9nAlbB1jfs0ILHomV1kA1fC1jXu04DEomd2kY1dZBOs1KAPAL9VVlZq9uzZqqysDPoo8Bxds4ts4AI9s4ts4Apds4ts4AI9s4ts7CIbu8gGrtA1u8gGLtAzu8gGrtA1u8gGLtAzu8jGLrKxi2zgCl2zi2zgAj2zi2zgCl2zi2zgAj2zi2zsIptg8ZOGAQAAAAAAgP844eFr1H3YyZKkWGWlitcXat2HC5Q/+nkVFWwO+niRRz4AAAAAAAC2cF9jG/kAAAAAAADYw52NXb5kw08aBgAAAAAAAHZT8PEXmnDUcL1y7FV6/5qH1ebIrjrpf28M+lj4D/IBAAAAAACwhfsa28gHAAAAAADAHu5s7PIhG940jKRq0qSJbrvtNjVp0iToo8BzdM0usoEL9MwusoErdM0usoEL9MyusGYTK6tQ8cZCFRVs1vqPv9Ti56aq3Q8OVUZOVtBHS5iwZqMI5BPmbBAudM0usoEL9MwusoErdM0usoEL9MyusGbj+32NQpyNIpBPmLNBuNA1u8gGLtAzu8gGrtA1u8gGLtAzu8KcDXc2dvmQTXrQB4DfMjIyNGTIkKCPgQiga3aRDVygZ3aRDVyha3aRDVygZ3b5kE1W+wPU9ex+ilVUqqoyFvRxEsaHbORpPr5kA/voml1kAxfomV1kA1foml1kAxfomV0+ZOPjfY08yUae5uNLNrCPrtlFNnCBntlFNnCFrtlFNnCBntnlSzbc2dgV1mz4ScNIqqKiIg0bNkxFRUVBHwWeo2t2kQ1coGd2kQ1coWt2kQ1coGd2hTWb3OOP0MXLntUlXz2vYfPHKrf/Efpi7BuqKC6VJGXnttb5nzyupm1aSJLSsjJ17oePqtVhXQI+ef2FNRvVI5+Txt6onpecWvPxrY/spiHvP6y0JhkBnrr+wpwNwoWu2UU2cIGe2UU2cIWu2UU2cIGe2RXWbLhPs437NCAx6JpdZAMX6JldZANX6JpdZAMX6JldYc7G9zs1n7MJw31aqN80/Nlnn+mcc85Ry5Yt1aJFCw0ZMkTr1q1T8+bNdcEFFwR9PEiKxWJasWKFYrHwvJMe4UTX7CIbuEDP7CIbuELX7CIbuEDP7AprNhvzl2rSqTdr8qARmv/Qy9owd7HmjXmx5vmigs364snJ+sGoX0qS8m4cqpVvzVbholUBnrphwpqN6pHPnDvGqdd1P1WT1s2llBT1v+8Kzb7taVWWlgd67voKczYIF7pmF9nABXpmF9nAFbpmF9nABXpmV1iz4T7NNu7TgMSga3aRDVygZ3aRDVyha3aRDVygZ3aFORvf79R8ziYM92npQR+gsaZNm6azzz5bBx10kG6//XZlZWVp/PjxGjRokHbs2KG8vLygj9ggU8cOUkZ6qk667A1VVe16/O+PnKqO7bLV/9J/qKKial+/BRqgSevm6v27C9Tlxz9QkwOaq2j9Zv3rT69p6fNTgz4aPNC+3+E64r8Gq/WRXZXTqa3yx7yofz38t6CPhd0wA5BsHU/prWNuvUgte3RS8YYt+uLpN/XFk5ODPhZ2wxxAMrEL2McMQLKxC4RfZUmZtn9dIEma/8AENe+aq773XK6Pbnqi5mO+fPotnT1ljA4ffqYOOrOvJg28KcATR0td+RQVbNbCJyfr2Dsu1TfzlmnrV+u07oPPAz51+PH6iWRih7aPGYBkY4e2jzmAZGIXsI8ZgGRjFwg/7tNs4z4tGLx+IpnYocOBOYBkYoe2jxmAZGIXCAfmAJKJXcAP3KnZ5cN9WijfNLxx40YNGzZMffr00dSpU5WVlSVJuvTSS9WtWzdJCt2bhn9x+3v61yvn6pbLjtJ9T/9LknTl+YfqtH4d1WfY33nDcAKlZzfVoNfuUtG6zXrv6oe1c/VGZbU/QFSu9lcAAI8mSURBVClpof7B2zAkPbupCpeu1levzdRxd/0q6OPgO5gBSLY2Rx+igeNv0YInJum9qx9W29491H/MlaosLtPiZ94O+nhgDsABdgHbmAFINnYBP83/4wT99P1HtPjZd7Tps+WSpKpYTHNHjtcZr47S9MvuV0VxadDHjKza8lk0borOemO0Ogw4Uv8YNCLoI4Yer59INnZo25gBSDZ2aPuYA0g2dgHbmAFINnYBP3GfZhv3acnH6yeSjR3aPuYAkokd2j5mAJKNXcA+5gCSiV3AX9yp2RXG+7RQvml4zJgx2rJli8aNG1fzhmFJatmypfr06aNp06aF7k3Da9cX6ao/fKhnR/9IUz5cq6KSCj10c1/d/NAcLf56a9DHa7SmTZvqkUceUdOmTYM+So0jrx6s9KwmmvrzexUrq5Ak7VizMehjYT9Z6tra6fO0dvo8SdKxt18S9HECZykbMQO8ZalnR1x5tr6Zv1z5o1+QJG1dulatDu2sXtcOieS/iFnKphpzwE+WusYuEM9SNmIGeMtSz9gF4lnKZn9sX1Gg1e98oj4jLtQ7F/6h5vGOA3urqGCzDjisi1a9NSfQMzaUL9lob/lUVWnxM+/owKMPVummbUEfsUEsZsPrp58sdY0dOp6lbMQM8JalnrFDx7OUTTXmgJ8sdY1dIJ6lbMQM8JalnrELxLOUzf7gPs027tOSj9dPP1nqGjt0PEvZVGMO+MdSz9ih41nKphozwE+WusYuEM9SNtWYA/6x1DN2gXiWstlfvt2peZ+N8fu0UP41FS+99JJOPPFE9ezZs9bn27dvr9zc3Jpfv/HGG+rTp4+aNWum3NxcPfDAAw5PW38T/7lCE/+5Qs/f+yM9f++P9P6nBXpswpdBH2u/pKenq3///kpPt/P+9IPO6qf1cxbpuFG/1ND5Y/XTmY/o2DsuVVpWZtBHw36w2DV8y1o2zAA/WepZu+MO09oZ8+IeWztjvnI6t1N2h9aBnSsolrKpxhzwk8Wu4VvWsmEG+MlSz9gF4lnKZn8teGySOp6Up9z+R0iSWh3WRV3OOE6TB41Qj4sGKqdLu6CP2CA+ZaNa8pEkxWKqilUFeaxGsZgNr59+stg1fMtaNswAP1nqGTt0PEvZVGMO+Mli1/Ata9kwA/xkqWfsAvEsZbO/uE+zjfu05OL1008Wu4ZvWcyGOeAfSz1jh45nKZtqzAA/WewavmUxG+aAfyz1jF0gnqVsEsGnOzXfs5Fs36eF7p96QUGB1q5dq2HDhu3xXCwW0+eff67evXvXPPb222/ryiuv1DPPPKMf/ehHKioq0qpVq+r99SoqKlRQUFD/jy8vr/fH1ubae2dp7dQLFItV6exr32n071NRXq41a9bs11nqsnPnznp9zNChQzVx4kQ1a9Zsnx+b6POWl1fU+njzg9qrRddcff3Gx5r2i/uU3f4A9R19ubJyW2vmNY8k9AxRVF5ekfAsrXZtbx2zLNH5WM2mWm0ZMQOSK0ozQHvpWFa7VireWBj3WPGGLf957gAVrducsK/fGInMyHI2YhcITJTmALuA3WyqsQu4F6UZIHYB09nUpr5z+4Pf/qXWxzd+sljjO5xf8+v+Y67U3JHjVVSwWfPuf0l977lc0y69t17niPqdzXc15DW1vvk09hxRz4YdOhhRev1kh7abTTV2aPeiNAPEDm06G7ELBCZKc4BdwG421dgF3IvSDBC7gOlsamPlPk0O7m18zUZJvk8T2bBDByRKr5/s0HazqcYccC9KM0Ds0KazETMgMFGaA+wCdrOpxhxwL0ozQOwCprOpTTLubKz+N2pks39naej3m5ub2+A3X4fuTcPVpUpJSdnjuddff10bNmxQXl5ezWN33HGH7rjjDg0cOFCS1KJFCx155JH1/noFBQXq3Llz/Q/YY5TUtGP9P/47LjnrEKUoRdlN03TM9w/UmzNXN+r3WbJkiTp3vrDR56iP4cOH1/kxZWVlKioq0sSJE5WZue+/FeWpp55K4OmkP7Q5TR0zWuzxeEpqqkq3bNcHv/2LqioqtUlSaka6Tn7qJs3+f0+rrHBHQs8RNUuWLNHQhvyZqQerXdtbxyxLdD5Ws6lWW0bMgOSK0gwQc8B0NmIXCEyU5kDUZ4AMZ1ONXcC9KM0AMQdMZ1ObRObV4+JTVfLNVq2Zli9JWv7ye+px4SnqcmZfrXpz9j4/Nxl/Tr4rytnsD7Jhhw5KlF4/rfx5bwh2aGZAskVpBog5YDobsQsEJkpzIOozQIazqcYu4F6UZoCYA6azqY2V+zQ5uLeJcjb7K+rZsEMHI0qvn5b+vNcXO/S3mAPJE6UZIOaA6WzEDAhMlOZA1GeADGdTjTngXpRmgJgDprOpTaLzsvzfqEU9m/3RmGxWr16tTp06NehzQvem4c6dOystLU3vvfde3OMrV67UddddJ0k1bxreuXOn5s6dq0GDBumwww7Tli1b1LdvXz3yyCPq1q1bIOffl8O6tdT9Nxyn6+//WN8/uJWe+v0J6nXeq9pUWBr00bxSvGGLdqzeqKqKyprHCpd8++bsnE5ttZkFDPAaMwDJVryhUFltW8U91vQ/v67+W5wQLOYAEG3MACQbu0A0LH1+qpY+PzXusSnnjgzsPKjdsonvatnEd4M+hhd4/QSijRmAZGOHto85AEQbMwDJxi4QDdynhQP3aYnD6ycA5gCSiR3aPmYAAOYAkoldIDq4U7PP8n1a6N40nJmZqZ///OcaN26czjnnHJ111llavXq1xo4dq/bt22vt2rU1bxresmWLqqqq9Le//U1TpkxRu3bt9Nvf/lbnnnuu8vPza/1pxd+Vm5ur1avr/9N+B/76Ay1ZVfeP2P6u9PQUPXfvSZo6e62e+ttiNclM02n9O+rJOwfo/P+e3uDfr2fPnpo2vXE/pbi+li1bVufH7Ny5U88884yGDh1a548SHzkysYNr1tD7tHNFwR6Pr5/9pXKPP1IpaamqqoxJkloe8j1J0o7VGxJ6hijq2bOnVk/8v4T+nla7treOWZbofKxmU622jJgByRWlGaC9dGzDnEX63kl5+ux/Xql5rOPJedqxeoOK1m1O2NdurERmZDkbsQsEJkpzgF3AbjbV2AXci9IMELuA6WxqY2VuJ+PPyXeRTeOQDTt0UKL0+mnlz3tDsEMzA5ItSjNA7NCmsxG7QGCiNAfYBexmU41dwL0ozQCxC5jOpjaW5nay723IpvGing07dDCi9Ppp6c97fbFDf4s5kDxRmgFihzadjZgBgYnSHGAXsJtNNeaAe1GaAWIXMJ1NbSzN7ajf2XxX2LPJzc1t8NcJ3ZuGJelPf/qTMjIy9Prrr2v69Onq37+/XnvtNd11111atmyZevbsKUlq3ry5JOn6669X165dJUmjR49W27ZttXr1anXp0qXOr5Went6gH9+cnpHRqO/prquPUaf2zTTo6n9KkkrLKnXJre9qzguDdelPuuvZf9T9h+m752joj51uqHXr1tX5MU2bNtWLL76oNm3aKC0tbZ8fm+jzZmTUXu8Fj09S158cr373XaEvnvyHstodoGPv/LmWTXxXZVsb/oZvxMvIaNifmfqw2rW9dSw9u6ladPt2IKdmpCurbSu1PqKryneWaPvXwb7IJDofq9lUqy0jZkByRWkGaC8dW/i/k3XWP+5R7xEX6qtX3tOBvXvo8MsGae7v/5qwr7s/EpmR5WzELhCYKM0BdgG72VRjF3AvSjNA7AKms6nN3ua2a8n4c/JdZNM4ZMMOHZQovX6yQ9vNpho7tHtRmgFihzadjdgFAhOlOcAuYDebauwC7kVpBohdwHQ2tbFyZyMH9zZk03hRz4YdOhhRev1kh7abTTXmgHtRmgFihzadjZgBgYnSHGAXsJtNNeaAe1GaAWIXMJ1NbbiziUc2tXPx36gprG8azsnJ0ZNPPqknn3wy7vEFCxaoV69eSk1NlSS1bNlSBx10UL1+onCQBvRur5t/2Us/vWGqNm4uqXn8s8WbNfKxfP3pln56d+46rS4I33KQmpqq9u3b12RiwZYvVmrqJaN1zP+7WIPf+aOKNxbq63/M0rw/Tgj6aNgPlrp24NGH6IxXR9X8+vDLBunwywap4KOFmnJecv/2C4ssZSNmgLcs9WzTZ8s1/Vf3q8+tF+nIXw9W8cZC5Y95UYufeTvoowXCUjbVmAN+stQ1doF4lrIRM8BblnrGLhDPUjaIRzZ2WcyG108/WeoaO3Q8S9mIGeAtSz1jh45nKZtqzAE/Weoau0A8S9mIGeAtSz1jF4hnKRvEIxu7LGbD66efLHWNHTqepWyqMQf8Y6ln7NDxLGVTjRngJ0tdYxeIZymbaswB/1jqGbtAPEvZIB7ZBCuUbxquTWFhodasWaOzzjor7vFf//rXeuSRR3T66aerbdu2uuOOO3TMMcfU66cMu/LhvPXK6DOu1ufue/pfuu/pfzk/U6Ls3LlTp5xyiqZPn66cnJygj1Nj3Qefa/KgEUEfAwlkqWsFsxZqfIfzAz2DJZayqcYM8I+1nq2Zlq810/KDPoYJ1rKpxhzwj6WusQvEs5RNNWaAf6z1jF1gF2vZYBeysctqNrx++sdS19ih41nKphozwD/WesYOvYu1bKoxB/xjqWvsAvEsZVONGeAfaz1jF9jFWjbYhWzsspoNr5/+sdQ1duh4lrLZHXPAL9Z6xg69i7VsqjED/GOpa+wC8SxlszvmgF+s9YxdYBdr2WAXsgmWN28a/vzzzyVJeXl5cY//7ne/05YtW9SnTx/FYjGdcMIJevXVVwM6JQAAAAAAAAAAAAAAAAAAAAAAAAAAAJB43r9pODU1VWPGjNGYMWMCOhkAAAAAAACs6XHRQPW44BRVVcU065axKly0qua5nC7tNOChq5Waka5Vb83RwicmqVXPTur/wH+pKlalqopKfXjj49qxaoMkqde1Q9ThxKOUmp6m/DEv6pt5y3T6S3fU/H5tj+2pCUcNV9nWnYF8r2G2r5zybhyq7hecrK1L1+idi+7Z5+ccfcP56nBCL0lS8265WvCX1/Xl028G8j0BAAAAAACEEfdp4cB9GgAAAAAAgA3cp4WDr/dp3rxp+Oqrr9bVV18d9DEAAAAAAABgXGarHB36i9P1xlm3qflB7dX/viv0z5+Nqnn+2NsvVf69L2jjp0t0xqujtPKNj1WyaZumXnKvyrcXqePJeTr6hvP14Q2PqeMpvZWW1URvD7sr7mtMOW+kJKn1EV11zO2XcCHbCHXltPjZt7Xs5XfV/74r6vycz/7nFX32P69Ikn7y9v1a+cbHgXxPAAAAAAAAYcR9WjhwnwYAAAAAAGAD92nh4PN9WmqgXx3ea9asmaZPn65mzZoFfRR4jq7ZRTZwgZ7ZRTZwha7ZRTZwgZ7ZZTWbtr27q+CjhaqqqNS25f9Wk9YtpJSUmudb9uiojZ8ukSStmZqv9v0OV8mmbSrfXiRJipVXqqoyJknq+pP+Ss9uotMnjtQJD1+j9GZN477WweeeqK9enen0+6sPq9nsrq6cijcUSrGqBn1Oq56dVLZ1p4oKNjv9XhoiDNnAD3TNLrKBC/TMLrKBK3TNLrKBC/TMLqvZcJ9mN5vdcZ9mNxv4ga7ZRTZwgZ7ZRTZwha7ZRTZwgZ7ZZTUb7tPsZrM7n+/TeNMwkioWi2n9+vWKxWJBHwWeo2t2kQ1coGd2kQ1coWt2kQ1coGd2Wc0ms1VO3N+sWL6jWJktsmt+nZK66xKvdOtONTmgec2v05pmKu/mofriqTclSdm5rVVVXqm3h47S5oVf68hfD971hVJS1OWM47TyzdnJ/6YayGo2u6srp8Z8zsHn/VBfvfZBkk6cGGHIBn6ga3aRDVygZ3aRDVyha3aRDVygZ3ZZzYb7NLvZ7I77NLvZwA90zS6ygQv0zC6ygSt0zS6ygQv0zC6r2XCfZjeb3fl8n8abhpFUxcXFuvDCC1VcXBz0UeA5umYX2cAFemYX2cAVumYX2cAFemaX1WzKtu5UZotdf4NhRk6WyrYV1fy6are/HDCzRbZKt2yXJKWkpeqHj12vhY9PUuGiVZKk0i07tHbGfEnS2hnzdMD3D6r53Nz+39emBStUsbPExbfVIFaz2V1dOTXmcw46s69WTp6VpBMnRhiygR/oml1kAxfomV1kA1foml1kAxfomV1Ws+E+zW42u+M+zW428ANds4ts4AI9s4ts4Apds4ts4AI9s8tqNtyn2c1mdz7fp6UHfQAAAIAoO+Hha9R92MmSpFhlpYrXF2rdhwuUP/p5FRVsDvp4AADAAfYB9zbmL1XeTUOVkpaqnM7tVLp5W9xN7NYla3RgXnd9M3+ZOg3sow//+zFJ0oAHr9K/3/1Mq6bMrfnYglkL1eboQ2r+320r1tU8d/C5J+qrV2c6/u78UVdODf2cdscdpsKla+q82AUAAPaxQwMAEG3sAu5xnxYO3KcBAIC9YYcGACDa2AXc4z4tHHy+T+NNwwAAAAEr+PgLvXflQ0pJS1Xzru3Vb/RwnfS/N+rNwf8v6KMBAABH2AfcKivcoaUvTNOg1+5WVVVMH9/6lDqenKfMVjla8doH+nT08xrw4FVKSU/T6n/O1Y5VG9Tx5Dx1HXy8cjq3U7dzBmjzwhWac+d4LZswQwMevEo/fuX3qiwt18zfPCpJSs1MV4cTeunjW58K+tsNrbpy6nnJqTrkZz9Sy+4ddfqEOzXzN4+qeP2WPT6n2reX5B8E+j0BAIDEYYcGACDa2AXc4j4tHLhPAwAA+8IODQBAtLELuMV9Wjj4fJ/Gm4aRdM2aNavHRwH7j67ZRTZwIcw9i5VVqHhjoSSpqGCzFj83Vf3uuVwZOVkq31Ec9PH2W5izQbjQNbvIBi6EvWc+7wNWs1ny3FQteW5qza+3fLGy5n9v/7pAU84bGffxa2fM13MHX7zH7xMrq9DM6x6t9fG/9bsm4edOJKvZ7G5fOX33uboe/3jE2CSeNLHCkA38QNfsIhu4EPaesUMD+4+u2UU2cCHsPWMXcI/7NLvZ7I77NCC56JpdZAMXwt4zdmhg/9E1u8gGLoS9Z+wC7nGfZjeb3fl6n8abhpFUOTk5mjFjRtDHQATQNbvIBi741LOs9geo69n9FKuoVFVlLOjj7DefsoFtdM0usoELvvXMp33At2x8QjZ2kQ1coWt2kQ1c8K1n7NBAw9E1u8gGLvjWM3YBuEA2dpENXKFrdpENXPCtZ+zQQMPRNbvIBi741jN2AbhANsFKDfoA8FtFRYVmzZqlioqKoI8Cz9E1u8gGLoS9Z7nHH6GLlz2rS756XsPmj1Vu/yP0xdg3VFFcKknKzm2t8z95XE3btJAkpWVl6twPH1Wrw7rs8zkLwp4NwoOu2UU2cMGHntW1D5w09kb1vOTUmo9vfWQ3DXn/4b0+ntYkI5Dv47t8yMZXZGMX2cAVumYX2cAFH3rm652aD9kgHOiaXWQDF3zoGfdpcI1s7CIbuELX7CIbuOBDz7hPA/YPXbOLbOCCDz3jPg2ukU2w+EnDCXZIpxZBH0EydI6SkhJdf/31mj59unJycoI+DjwWRNead8118nUSKYgzMwfgQth7tjF/qT64/s9Ka5KhroOP1/dOPErzxrxY83xRwWZ98eRk/WDULzXz2j8p78ahWvnWbBUuWiVJ+3wuaGHPBuHBLlA/7ALwlQ89q2sfmHPHOA16/W6tfHO2SrfsUP/7rtDs257W1mVra328srQ80O+nmqVsrMxtK+cgmz1ZOYelbOA3duj6YYeGr3zoma93aj5kg3BgF6gfdgH4yoeecZ+WfJbmtoWzkE3tLJzFUjbwGzt0/bBDw1c+9Iz7NGD/sAvUD7sAfOVDz7hPSz5Lc9vCWcimdq7OwpuGE2zSo6cFfQQAjgz864igjwDAE5UlZdr+dYEkaf4DE9S8a6763nO5PrrpiZqP+fLpt3T2lDE6fPiZOujMvpo08KZ6PQcgedgFACRSXftAUcFmLXxyso6941J9M2+Ztn61Tus++FyS9vo44jG37SIbIDr48w4gkbhTA8KHXQBAInGflnzMbbvIBogO/rwDSCTu04DwYRcAkEjcpyUfc9uuKGaTGvQBAAAAEG/+Hyeo+7CT1eboQ2oeq4rFNHfkePW9+zJ9cvezqigurddzAAAgnGrbBxaNm6JWh3ZWr2uHaO6ov9b5OAAAABAl3KkBABBt3KcBAAAADcN9GgAA0cZ9GuA33jSMpEpNTVW3bt2UmkrVkFx0zS6ygQu+9Wz7igKtfucT9RlxYdzjHQf2VlHBZh1wWJc9PmdfzwXJt2xgF12zi2zggo89q3UfqKrS4mfe0Zpp+SrdtK3uxw3wMRtfkI1dZANX6JpdZAMXfOyZL3dqPmYDm+iaXWQDF3zsGfdpSDaysYts4Apds4ts4IKPPeM+DWgYumYX2cAFH3vGfRqSjWyCxT91JFV2drYmTJig7OzsoI8Cz9E1u8gGLvjYswWPTVLHk/KU2/8ISVKrw7qoyxnHafKgEepx0UDldGlX87H7ei5oPmYDm+iaXWQDF3zt2Xf3AUlSLKaqWNWeH7y3xwPmazY+IBu7yAau0DW7yAYu+NozH+7UfM0G9tA1u8gGLvjaM+7TkExkYxfZwBW6ZhfZwAVfe8Z9GlB/dM0usoELvvaM+zQkE9kEizcNI6nKy8v197//XeXl5UEfBZ6ja3aRDVwIc88++O1f9Pawu/Z4fOMnizW+w/kqmLVQktR/zJWaO3K8igo2a979L6nvPZfXfOy+ngtamLNBuNA1u8gGLoS9Z/XdB8Io7Nn4jGzsIhu4QtfsIhu4EPae+XynFvZsEB50zS6ygQth7xn3aQgC2dhFNnCFrtlFNnAh7D3jPg3Yf3TNLrKBC2HvGfdpCALZBIs3DSOpSktLNXr0aJWWlgZ9FHiOrtlFNnDB9571uPhUlXyzVWum5UuSlr/8njKaNVWXM/vu8zkLfM8GdtA1u8gGLtAzu8jGLrKxi2zgCl2zi2zgQhR6FtY7tShkAxvoml1kAxfomV1kYxfZ2EU2cIWu2UU2cCEKPeM+Ddg3umYX2cAFemYX2dhFNsFKD/oAAAAA2Lelz0/V0uenxj025dyRcc/v7TkAAOCXZRPf1bKJ79b7cQAAACCquFMDAADiPg0AAACoN+7TAACAuE8DvMFPGgYAAAAAAAAAAAAAAAAAAAAAAAAAAABCjjcNI+l69+4d9BEQEXTNLrKBC/TMLrKBK3TNLrKBC/TMLrKxi2zsIhu4QtfsIhu4QM/sIhu4QtfsIhu4QM/sIhu7yMYusoErdM0usoEL9MwusoErdM0usoEL9MwusrGLbILDm4aRdPPmzQv6CIgIumYX2cAFemYX2cAVumYX2cAFemYX2dhFNnaRDVyha3aRDVygZ3aRDVyha3aRDVygZ3aRjV1kYxfZwBW6ZhfZwAV6ZhfZwBW6ZhfZwAV6ZhfZ2EU2weFNwwAAAAAAAAAAAAAAAAAAAAAAAAAAAEDI8aZhAAAAAAAAAAAAAAAAAAAAAAAAAAAAIOR40zCSKj09XYMHD1Z6enrQR4Hn6JpdZAMX6JldZANX6JpdZAMX6JldZGMX2dhFNnCFrtlFNnCBntlFNnCFrtlFNnCBntlFNnaRjV1kA1foml1kAxfomV1kA1foml1kAxfomV1kYxfZBIt/6kiqpk2b6vbbbw/6GIgAumYX2cCFsPWsx0UD1eOCU1RVFdOsW8aqcNGqmudyurTTgIeuVmpGula9NUcLn5gkSWpz1MHqc9vFSk1P04a5izRvzEuSpF7XDlGHE49Sanqa8se8qG/mLdPpL91R8/u1PbanJhw1XGVbdwbwnYYvG4QXXbOLbOBCGHvW0H2gVc9O6v/Af6kqVqWqikp9eOPj2rFqg2R8HwhjNlFBNnaRDVyha3aRDVwIY8+icqcWxmwQTnTNLrKBC2HsGfdpCBrZ2EU2cIWu2UU2cCGMPeM+DUgsumYX2cCFMPaM+zQEjWyCxU8aRlKVlJToD3/4g0pKSoI+CjxH1+wiG7gQpp5ltsrRob84XW+de6c+/O/H1ffuX8U9f+ztlyr/3hf01jm3q/PpxyinczulZqSrz4gLNeOyB/TP839fcxnb8ZTeSstqoreH3aUp543UhjmLFCuv0JTzRmrKeSM1585xKvhoYWBvGFbIskG40TW7yAYuhK1njdkHSjZt09RL7tWUn96pBY+9rqNvOF8KwT4QtmyihGzsIhu4QtfsIhu4ELaeRelOLWzZILzoml1kAxfC1jPu02AB2dhFNnCFrtlFNnAhbD3jPg1IPLpmF9nAhbD1jPs0WEA2weJNw0iqiooKTZo0SRUVFUEfBZ6ja3aRDVwIU8/a9u6ugo8WqqqiUtuW/1tNWreQUlJqnm/Zo6M2frpEkrRmar7a9ztcbY/tqfKiUv3oiRt0+sSRantMT0lS15/0V3p2E50+caROePgapTdrGve1Dj73RH316kzH32G8MGWDcKNrdpENXAhbzxqzD5Rs2qby7UWSpFh5paoqY1II9oGwZRMlZGMX2cAVumYX2cCFsPUsSndqYcsG4UXX7CIbuBC2nnGfBgvIxi6ygSt0zS6ygQth6xn3aUDi0TW7yAYuhK1n3KfBArIJVnrQBwCAsJr2i/u0/euCoI/RIM275mrgX0cEfQwg0jJb5cT9TUrlO4qV2SK75rGU1F3/Qla6daeaHNBcsfIKtT78IE06/WZltmym0567Ta+fcqOyc1urZONWvT10lL5/xVk68teDNf/Bid9+ckqKupxxnOY/9LL7bxKICHYBAI3VmH2gWlrTTOXdPFSzbhkrSewDDWBlbjOL90Q2QHRY+fPeEMwGwAbu1AA/sAsAaCzu04JhaW4zj+ORDRAdlv681xdzAbCB+zTAD+wCABqL+7RgWJrbzON4UcyGNw0DQCNt/7pAhUvWBH0MACFTtnWnMls0q/l1Rk6WyrYV1fy6qmrXx2a2yFbJN1tVWrhDG+YuUsXOkm//r6hUGTlZKt2yQ2tnzJckrZ0xT31uvbjmc3P7f1+bFqxQxc4SV98aEDnsAgAaqzH7gCSlpKXqh49dr4WPT1LholWSxD7QAMxtu8gGiA7+vANoLO7UAD+wCwBoLO7TgsHctotsgOjgzzuAxuI+DfADuwCAxuI+LRjMbbuimE1q0AeA3zIzMzV8+HBlZmYGfRR4jq7ZRTZwIUw925i/VO37Ha6UtFQ175qr0s3b4v7Na+uSNTowr7skqdPAPlo/+0t9k79ULQ7+nlLSUpXRPFsZzbNUvqNYBbMWqs3Rh0iS2hx9iLatWFfz+xx87on66tWZAXyH8cKUDcKNrtlFNnAhbD1rzD4gSQMevEr/fvczrZoyt+Zjre8DYcsmSsjGLrKBK3TNLrKBC2HrWZTu1MKWDcKLrtlFNnAhbD3jPg0WkI1dZANX6JpdZAMXwtYz7tOAxKNrdpENXAhbz7hPgwVkEyx+0jCSKjMzU1deeWXQx0AE0DW7yAYuhKlnZYU7tPSFaRr02t2qqorp41ufUseT85TZKkcrXvtAn45+XgMevEop6Wla/c+52rFqgyRp8bNv64xXRyk1PV2f3PWsJGnZhBka8OBV+vErv1dlablm/uZRSVJqZro6nNBLH9/6VKDfq0KWDcKNrtlFNnAhbD1rzD7Q8eQ8dR18vHI6t1O3cwZo88IVmnPnePP7QNiyiRKysYts4Apds4ts4ELYehalO7WwZYPwomt2kQ1cCFvPuE+DBWRjF9nAFbpmF9nAhbD1jPs0IPHoml1kAxfC1jPu02AB2QSLNw0jqYqLi/W73/1O999/v7KysoI+DjxG1+wiG7gQtp4teW6qljw3tebXW75YWfO/t39doCnnjdzjc5a//J6Wv/xe3GOxsgrNvO7RPT42Vlahv/W7JuHnboywZYPwomt2kQ1cCGPPGroPrJ0xX88dfPEev4/1fSCM2UQF2dhFNnCFrtlFNnAhjD2Lyp1aGLNBONE1u8gGLoSxZ9ynIWhkYxfZwBW6ZhfZwIUw9oz7NCCx6JpdZAMXwtgz7tMQNLIJVmrQB4DfKisrNXv2bFVWVgZ9FHiOrtlFNnCBntlFNnCFrtlFNnCBntlFNnaRjV1kA1foml1kAxfomV1kA1foml1kAxfomV1kYxfZ2EU2cIWu2UU2cIGe2UU2cIWu2UU2cIGe2UU2dpFNsHjTMAAAAAAAAAAAAAAAAAAAAAAAAAAAABBy6UEfAAAAAAAAALDihIevUfdhJ0uSYpWVKl5fqHUfLlD+6OdVVLA56ONFHvkAAAAAAADYwn2NbeQDAAAAAABgD3c2dvmSDT9pGEnVpEkT3XbbbWrSpEnQR4Hn6JpdZAMX6JldZANX6JpdZAMX6JldYc2m4OMvNOGo4Xrl2Kv0/jUPq82RXXXS/94Y9LESKqzZKAL5hDkbhAtds4ts4AI9s4ts4Apds4ts4AI9syus2fh+X6MQZ6MI5BPmbBAudM0usoEL9MwusoErdM0usoEL9MyuMGfDnY1dPmTDTxpGUmVkZGjIkCFBHwMRQNfsIhu4QM/sIhu4QtfsIhu4QM/sCms2sbIKFW8slCQVFWzW4uemqt89lysjJ0vlO4qDPl5ChDUbRSCfMGeDcKFrdpENXKBndpENXKFrdpENXKBndoU1G9/vaxTibBSBfMKcDcKFrtlFNnCBntlFNnCFrtlFNnCBntkV5my4s7HLh2z4ScNIqqKiIg0bNkxFRUVBHwWeo2t2kQ1coGd2kQ1coWt2kQ1coGd2+ZBNVvsD1PXsfopVVKqqMhb0cRLGh2zkaT6+ZAP76JpdZAMX6JldZANX6JpdZAMX6JldPmTj432NPMlGnubjSzawj67ZRTZwgZ7ZRTZwha7ZRTZwgZ7Z5Us23NnYFdZs+EnDSKpYLKYVK1YoFgvPHwqEE12zi2zgAj2zi2zgCl2zi2zgAj2zK6zZ5B5/hC5e9qxSUlOVntVEkrTg8UmqKC6VJGXnttaZk+/R5B/fopJN25SWlalzpj6o6Zc/oMJFqwI+ff2ENRvVI5+Txt6of7/3mZY8N1WS1PrIbvrhY9frH6fdrMrS8kDPXh9hzgbhQtfsIhu4QM/sIhu4QtfsIhu4QM/sCms23KfZxn0akBh0zS6ygQv0zC6ygSt0zS6ygQv0zK4wZ+P7nZrP2YThPi3UP2n4s88+0znnnKOWLVuqRYsWGjJkiNatW6fmzZvrggsuCPp4AAAAAAAACKGN+Us16dSbNXnQCM1/6GVtmLtY88a8WPN8UcFmffHkZP1g1C8lSXk3DtXKt2aH4jLWB3XlM+eOcep13U/VpHVzKSVF/e+7QrNve9rMhSwAAAAAAIBvuE+zjfs0AAAAAAAAe7hTs8uH+7TQ/qThadOm6eyzz9ZBBx2k22+/XVlZWRo/frwGDRqkHTt2KC8vL+gjwqjz5zymnM7t9nh8y+LVev2kGwI5E/zT8ZTeOubWi9SyRycVb9iiL55+U188OTnoY4EZAEfa9ztcR/zXYLU+sqtyOrVV/pgX9a+H/xb0sfAfzAG4wC5gFzMALrALhF9lSZm2f10gSZr/wAQ175qrvvdcro9ueqLmY758+i2dPWWMDh9+pg46s68mDbwpwBNHS135FBVs1sInJ+vYOy7VN/OWaetX67Tug88DPnW48foJF9ihbWMOINnYoW1jBsAFdgHbmANINnaB8OM+zTbu09zjtRMusEPbxhxAsrFD28YMgAvsArYxB5Bs7AJ+4E7NLh/u00L5puGNGzdq2LBh6tOnj6ZOnaqsrCxJ0qWXXqpu3bpJEm8aNqJp06Z65JFH1LRp06CPUuMfg0YoNXXXD9lOb9ZU50x/UCte/zDQc2H/WOpam6MP0cDxt2jBE5P03tUPq23vHuo/5kpVFpdp8TNvB3085yxlI2aAt6z1LD27qQqXrtZXr83UcXf9KujjBMpaNmIOeMtS19gF4lnKRswAb1nrGbvALtayaaz5f5ygn77/iBY/+442fbZcklQVi2nuyPE649VRmn7Z/aooLg36mA3iSzbaSz6Lxk3RWW+MVocBR+ofg0YEfcQGsZgNr59+stQ1duh4lrKpxhzwj7WesUPvYi0bMQO8Zalr7ALxLGVTjTngH2s9YxfYxVo2jcV9mm3cpyUfr51+stQ1duh4lrKpxhzwj7WesUPvYi0bMQO8Zalr7ALxLGVTjTngH2s9YxfYxVo2+8O3OzXfs7F+nxbKNw2PGTNGW7Zs0bhx42reMCxJLVu2VJ8+fTRt2jTeNGxEenq6+vfvH/Qx4pRu2hb36x6nn6rU9DQtfX5qYGfC/rPUtSOuPFvfzF+u/NEvSJK2Ll2rVod2Vq9rh0TyX8QsZSNmgLes9Wzt9HlaO32eJOnY2y8J+jiBspaNmAPestQ1doF4lrIRM8Bb1nrGLrCLtWwaa/uKAq1+5xP1GXGh3rnwDzWPdxzYW0UFm3XAYV206q05gZ6xoXzJRnvLp6pKi595RwceffAes986i9nw+uknS11jh45nKZtqzAH/WOsZO/Qu1rIRM8BblrrGLhDPUjbVmAP+sdYzdoFdrGXTWNyn2cZ9WvLx2uknS11jh45nKZtqzAH/WOsZO/Qu1rIRM8BblrrGLhDPUjbVmAP+sdYzdoFdrGWzP3y7U/M+G+P3aaF80/BLL72kE088UT179qz1+fbt2ys3N1eSlJOTE/dcaWmpDj/8cP3rX/+q19eqqKhQQUFBAk7tn507d9brY4YOHaqJEyeqWbNm+/zYNWvWJPB0Unl5Rb0+7tBLT9Pqdz5V8YbChH79qCovr0h4lla7treOtTvuMC19YVrcY2tnzNeRV5+j7A6tVbRuc0K+fmMkOh+r2VSrzxxgBiRWlGaAGvBaY0kiM7KcjdgFAhOlOcAuYDebauwC7kVpBohdwHQ2tdnfvBY8Nkln/eMe5fY/QgWzFqrVYV3U5YzjNHnQCJ35j3u0/G/va8eqDfU6R7K/16hlo1rykSTFYqqKVTXoHFHPhh06GFF6/WSHtptNNeaAe1GaAWKHNp2NmAGBidIcYBewm0015oB7UZoBYhcwnU1trNynycG9TdSyUYLu00Q2vHYGJEqvn+zQdrOpxhxwL0ozQOzQprMRMyAwUZoD7AJ2s6nGHHAvSjNA7AKms6lNMu5srP43amTj9j4tNzdX6ekNextw6N40XFBQoLVr12rYsGF7PBeLxfT555+rd+/eNY/t2LEj7mOOOuooXXDBBQ36ep07d97PU/tp+PDhdX5MWVmZioqKNHHiRGVmZu7zY5966qkEnk76Q5vT1DGjxT4/ps3Rh+jAow9R/n0vJPRrR9mSJUs0NMF/Zqx2bW8dy2rXSsUb4xf64g1b/vPcAYH+i1ii87GaTbW65gAzIPGiNANUz9caaxKZkeVsxC4QmCjNAXYBu9lUYxdwL0ozQOwCprOpTX3z+uC3f6n18Y2fLNb4DufX/Lr/mCs1d+R4FRVs1rz7X1Lfey7XtEvvrfP3T8afk+/yNRs1IJ/GIJv/396dh1dVnu3fP5PshCQERFCJMiMgDmigVkjRVkStiCJVC461dWqdH2utw2vFoQ7YarX+nAoW6oSgdaCoiAzOCGgABWUUmUoACWHInOy8f9hMEMjA3ve61lrfz3H0eMzeO+TeOc/c6/J+XIQZ2ithun4yQ9vNpgr7gHth2gPEDG06G7EHeCZM+wCzgN1sqrAPuBemPUDMAqazqY+V8zQ5OLcJajaK83mayIZrp0fCdP1khrabTRX2AffCtAeIGdp0NmIP8EyY9gFmAbvZVGEfcC9Me4CYBUxnU594nNlY/W/UyKb5mpPN2rVr1bFjxyZ9TmIT1+W5qjvRExISdnvuzTff1KZNm5SVlVXv586dO1dff/21fv3rX8d9nfCHwy4+RTtWb9R/31/o9VIAeIA9AAD7ABBu7AEAmqvnhSer+PttWjcjR5K08pUPlNwyVZ1P7+/10oC44/oJgH0ACDf2AADsAwCag/M0hBnXTgDsA0C4sQcAYB8A0FycqWFf+O43DXfq1ElJSUn64IMP6jy+evVqXXfddZK0x5uGn332WQ0ZMkSHHHJIo79eZmam1q5du4+rDqYVK1Y0+JqCggI999xzGjFiRIO/SnzUqFExXJ00e8SDKliVu8fnkzPS1G34QH356L9j+nXDrlevXlo76Z8x/TOtdm1PHSvalK+0A9vUeSz1fx9X/S1OXol1PlazqbK3fYA9ID7CtAeoEdcai2KZkeVsxCzgmTDtA8wCdrOpwizgXpj2ADELmM6mPrHMa/mL07X8xel1Hpt6duPWH4+fk12FOZvaVkx6Xysmvd/o15MNM7RXwnT9ZIa2m00V9gH3wrQHiBnadDZiD/BMmPYBZgG72VRhH3AvTHuAmAVMZ1MfK+dpcnBuE+ZsamvqeZrIhmunR8J0/WSGtptNFfYB98K0B4gZ2nQ2Yg/wTJj2AWYBu9lUYR9wL0x7gJgFTGdTn1jnZfm/UQt7NlVcnadlZmY2cWU+vGk4JSVFv/rVrzRu3DidddZZGjp0qNauXasxY8aoffv2Wr9+fb03DRcUFOjll1/Wc88916SvF4lEmvzrm8Niw4YNDb4mNTVVEyZMULt27ZSUlLTX18b6+5ycvPd6dz/np0pMjmj5y7Ni+nXDLjk59j8zVru2p45tmrtEh5yYpYV/e7X6sQ6DsrRz7SYVbsiLyddurljnYzWbKnvbB9gD4iNMe4Aaca2xKJYZWc5GzAKeCdM+wCxgN5sqzALuhWkPELOA6WzqYyWvePyc7IpsmodsmKG9EqbrJzO03WyqsA+4F6Y9QIau+00RphmaPcAbYdoHmAXsZlOFfcC9MO0BYhYwnU19LOUV73Mbsmm+sGfDtdMbYbp+MkPbzaYK+4B7YdoDZOy631hhmqHZA7wRpn2AWcBuNlXYB9wL0x4gZgHT2dTHUl5hP7PZVZiyqZIY968QB3//+9915ZVXas6cObrppps0Z84cvf766zrkkEOUnp6uXr167fY5r7zyitLT0zV06FBP1hxWiYmJat++vRIT7VXtsItP0Zqp81T8/Tavl4IYsNS1xf+YogP79lDfW8/Xfj0O0aG//JkOv3SIvvp/b3i9NE9YyqY29oBgsdazSHqq2h7ZVW2P7KrE5IjSDmyjtkd2VauuTf8bXvzOWja1sQ8Ei6WuMQvUZSmb2tgDgsVaz5gFaljLBjXIxi7L2XD9DBZLXWOGrstSNrtiHwgOaz1jhq5hLZva2AOCxVLXmAXqspTNrtgHgsNaz5gFaljLBjXIxi7L2XDtDBZLXWOGrstSNrtiHwgOaz1jhq5hLZva2AOCxVLXmAXqspTNrtgHgsNaz5gFaljLBjXIxlu+/K5nZGTomWeeUW5urnbs2KFp06YpOztbixYtUp8+feot09ixY3XJJZcoErFzZ3gYFBQU6KSTTlJBQYHXS6njwH491fbIrlr2/HteLwUxYqlrWxau1MzfPKROJ/9Iw6Y/rL5/PE85oydo6XPTvF6aJyxlU4U9IHis9eyAYw7VsOl/1bDpf1V6ZlsdfukQDZv+Vw18+Cqvl+actWyqsA8Ej6WuMQvUZSmbKuwBwWOtZ8wCNaxlgxpkY5fVbLh+Bo+lrjFD12Upm9rYB4LFWs+YoWtYy6YKe0DwWOoas0BdlrKpjX0gWKz1jFmghrVsUINs7LKaDdfO4LHUNWbouixlUxv7QLBY6xkzdA1r2VRhDwgeS11jFqjLUja1sQ8Ei7WeMQvUsJYNapCNtwJzB21+fr7WrVtX728SXrp0qT799FONGzfOk7XBns05yzX+4HO9XgYCbN2MHK2bkeP1MrAH7AGIt9zZi+mYcewDiDdmAdvYAxBvzAIAgojrJ+KNGdo+9gHEEzO0fewBiDdmAfvYBxBPzAIAgohrJ+KNGdo+9gHEEzO0fewBiDdmAfvYBxBPzAIAGhKYm4a/+uorSVJWVtZuzz377LM64YQT1LNnTw9WBgAAAAAAAGt6XjBYPc87SZWVUc2+ZYzyl6ypfi6j80Ea+MjVSkyOaM07c7X46clq06ujsv/yW1VGK1VZXqFPbnpKO9dskiT1uXa4Dj7haCVGkpQzeoK+n79Cp778p+o/78Bje2ni0ZerdBt/a2JT7S2nrJtGqMd5g7Rt+Tq9d8F9e/2cY248Vwcf30eS1KpbphY98aa+efZtT94TAAAAAACAH3Ge5g+cpwEAAAAAANjAeZo/BPU8LRQ3DT/00EMerAgAAAAAAAAWpbTJ0GGXnKq3ht6uVl3aK/vBK/TuL++ufv7YOy5WzgMvafMXy3Taa3dr9VufqXjLdk2/6AGV7ShUh0FZOubGc/XJjU+qw0l9lZTWQtNG3lPna0w9Z5Qkqe2RXfWjOy7iQLYZGspp6fPTtOKV95X94BUNfs7Cv72qhX97VZJ05rSHtPqtzzx5TwAAAAAAAH7EeZo/cJ4GAAAAAABgA+dp/hDk87RET796DF199dWqrKzUgAEDvF4KamnZsqVmzpypli1ber0UBBxds4ts4AI9s4ts4Apds4ts4AI9s8tqNgf27aHcTxersrxC21f+Vy3atpYSEqqf369nB23+Ypkkad30HLUfcLiKt2xX2Y5CSVK0rEKVFVFJUtczsxVJb6FTJ43S8Y9eo0jL1Dpfq/vZJ+jb1z5y+v4aw2o2tTWUU9GmfCla2aTPadOro0q3FagwN8/pe2kKP2SDYKBrdpENXKBndpENXKFrdpENXKBndlnNhvM0u9nUxnma3WwQDHTNLrKBC/TMLrKBK3TNLrKBC/TMLqvZcJ5mN5vagnyeFpibhmFTNBrVxo0bFY1GvV4KAo6u2UU2cIGe2UU2cIWu2UU2cIGe2WU1m5Q2GXX+ZsWynUVKaZ1e/XFCYs0hXsm2ArXYv1X1x0mpKcq6eYS+Hvu2JCk9s60qyyo0bcTdylv8nY763bCaL5SQoM6nHafVb8+J/5tqIqvZ1NZQTs35nO7n/FTfvv5xnFYcG37IBsFA1+wiG7hAz+wiG7hC1+wiG7hAz+yymg3naXazqY3zNLvZIBjoml1kAxfomV1kA1foml1kAxfomV1Ws+E8zW42tQX5PI2bhhFXRUVFOv/881VUVOT1UhBwdM0usoEL9MwusoErdM0usoEL9Mwuq9mUbitQSuuav8EwOSNNpdsLqz+urPWXA6a0TlfJ1h2SpISkRP30yRu0+KnJyl+yRpJUsnWn1s9aIElaP2u+9j+iS/XnZmYfoS2LVqm8oNjF22oSq9nU1lBOzfmcLqf31+ops+O04tjwQzYIBrpmF9nABXpmF9nAFbpmF9nABXpml9VsOE+zm01tnKfZzQbBQNfsIhu4QM/sIhu4QtfsIhu4QM/sspoN52l2s6ktyOdpEa8XAABhd/yj16jHyEGSpGhFhYo25mvDJ4uUc/+Lnv86egAA4AbzAAC4tTlnubL+MEIJSYnK6HSQSvK21zmJ3bZsnQ7I6qHvF6xQx8H99Mnvn5QkDXz4Kv33/YVaM3Ve9WtzZy9Wu2MOrf6/21dtqH6u+9kn6NvXPnL87oKjoZya+jkHHddb+cvXNXiwC8A+5mcAAMA8AABucZ7mD5ynAdgT5mcAAMA8AABucZ7mD0E+T+OmYQAwIPezr/XBlY8oISlRrbq214D7L9eJ/7hJbw/7/7xeGgAAcIR5AADcKc3fqeUvzdCQ1+9VZWVUn902Vh0GZSmlTYZWvf6xvrj/RQ18+ColRJK09t152rlmkzoMylLXYT9RRqeD1O2sgcpbvEpz7xyvFRNnaeDDV+nnr96lipIyfXT945KkxJSIDj6+jz67bazXb9e3Gsqp10Un69Bf/kz79eigUyfeqY+uf1xFG7fu9jlVfjgk/9jT9wQgdpifAQAA8wAAuMN5mj9wngZgb5ifAQAA8wAAuMN5mj8E+TyNm4YRdy1btmzEq4B95+euRUvLVbQ5X5JUmJunpS9M14D7LlNyRprKdhZ5vbx95uds4B/0zC6ygSt+71qQ5wG/ZwN/oGd2Wc1m2QvTteyF6dUfb/16dfU/7/guV1PPGVXn9etnLdAL3S/c7c+Jlpbro+ser/fxfw+4JubrjiWr2dS2t5x2fa6hxz+7dUwcVxpbfsgGweDnrgV5fpbPs4F/0DO7yAau+L1rQZ4H/J4N/IGe2WU1G87T7GZTG+dpQHz5uWtBnp/l82zgH/TMLrKBK37vWpDnAb9nA3+gZ3ZZzYbzNLvZ1BbU8zRuGkZcZWRkaNasWV4vAyEQpK6ltd9fXc8YoGh5hSorol4vZ58FKRvYRc/sIhu4ErSuBWkeCFo2sIme2UU2dpGNXWQDV4LUtSDNzwpYNrCLntlFNnAlaF0L0jwQtGxgEz2zi2zsIhu7yAauBKlrQZqfFbBsYBc9s4ts4ErQuhakeSBo2cAmemYX2dhFNt5K9HoBCLby8nLNnj1b5eXlXi8FAef3rmX+5EhduOJ5XfTtixq5YIwys4/U12PeUnlRiSQpPbOtzv38KaW2ay1JSkpL0dmfPK42vTvv9TkL/J4N/IGe2UU2cCUIXWtoHjhxzE3qddHJ1a9ve1Q3Df/w0T0+ntQi2ZP3sasgZAP76JldZGMX2dhFNnDF713jPA3YN/TMLrKBK0HoGudpQPPRM7vIxi6ysYts4Irfu8Z5GrBv6JldZANXgtA1ztOA5qNndpGNXWTjLW4aRlwVFxfrhhtuUHFxsddLQcD5vWubc5Zr8sk3a8qQW7XgkVe0ad5SzR89ofr5wtw8ff3MFP347l9LkrJuGqHV78xR/pI1e33OAr9nA3+gZ3aRDVwJQtcamgfm/mmc+lz3C7Vo20pKSFD2g1dozu3P7vHxipIyT99PlSBkA/vomV1kYxfZ2EU2cMXvXeM8Ddg39MwusoErQega52lA89Ezu8jGLrKxi2zgit+7xnkasG/omV1kA1eC0DXO04Dmo2d2kY1dZOOtiNcLAABIFcWl2vFdriRpwV8mqlXXTPW/7zJ9+oenq1/zzbPv6Iypo3X45aery+n9NXnwHxr1HID4adU10+slNJkf1wyERUPzQGFunhY/M0XH/ulifT9/hbZ9u0EbPv5Kkvb4OID48uN11Y9rjhUr793KOiyx8j2xsg4AjcN5GuBPfrze+nHNQFhwngb4jx+vq35cc6xYeu+W1mKBpe+HpbUA2DvO0wB/8uO11o9rBsKC8zTAf/x4XfXjmmPF0nu3tBYLLH0/XK2Fm4YBwKAFf52oX3z4mJY+/562LFwpSaqMRjVv1Hid9trdmnnpQyovKql+/d6eAxA/g/91q9dLABBg9c0DS8ZN1dC37tfBA4/Sf4bU7EF7ehxAfDEL+At52UU2AGKB8zTAH7juA4gnztMA+5gF/IW87CIbALHAeRrgD1z3AcQT52mAfcwC/kJedoUxm0SvF4BgS0xMVLdu3ZSYSNUQX0Hr2o5VuVr73ufqd+v5dR7vMLivCnPztH/vzrt9zt6e81LQsoFN9MwusoErQexavfNAZaWWPvee1s3IUcmW7Q0/bkAQs4E99MwusrGLbOwiG7gStK5xngY0DT2zi2zgShC7xnka0Hj0zC6ysYts7CIbuBK0rnGeBjQNPbOLbOBKELvGeRrQePTMLrKxi2y8xXcdcZWenq6JEycqPT3d66Ug4ILYtUVPTlaHE7OUmX2kJKlN787qfNpxmjLkVvW8YLAyOh9U/dq9Pee1IGYDe+iZXWQDV4LatV3nAUlSNKrKaOXuL97T4x4LajawhZ7ZRTZ2kY1dZANXgtg1ztOAxqNndpENXAlq1zhPAxqHntlFNnaRjV1kA1eC2DXO04DGo2d2kQ1cCWrXOE8DGoee2UU2dpGNt7hpGHFVVlamN954Q2VlZV4vBQHn5659/H9PaNrIe3Z7fPPnSzX+4HOVO3uxJCl79JWaN2q8CnPzNP+hl9X/vsuqX7u357zm52zgH/TMLrKBK37vWmPnAT/yezbwB3pmF9nYRTZ2kQ1c8XPXOE8D9h09s4ts4Irfu8Z5GrBv6JldZGMX2dhFNnDFz13jPA3Yd/TMLrKBK37vGudpwL6hZ3aRjV1k4y1uGkZclZSU6P7771dJSYnXS0HABb1rPS88WcXfb9O6GTmSpJWvfKDklqnqfHr/vT5nQdCzgQ30zC6ygSt0zS6ygQv0zC6ysYts7CIbuBL0rnGeBuwdPbOLbOAKXbOLbOACPbOLbOwiG7vIBq4EvWucpwF7R8/sIhu4QtfsIhu4QM/sIhu7yMZbEa8XAABo2PIXp2v5i9PrPDb17FF1nt/TcwAAIFhWTHpfKya93+jHAQAAgDDiPA0AAFThPA0AAABoGOdpAACgCudpAAD4H79pGAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA5bhpGXCUlJal///5KSkryeikIOLpmF9nABXpmF9nAFbpmF9nABXpmF9nYRTZ2kQ1coWt2kQ1coGd2kQ1coWt2kQ1coGd2kY1dZGMX2cAVumYX2cAFemYX2cAVumYX2cAFemYX2dhFNt7ipmHEVVJSkvr06cMPOOKOrtlFNnCBntlFNnCFrtlFNnCBntlFNnaRjV1kA1foml1kAxfomV1kA1foml1kAxfomV1kYxfZ2EU2cIWu2UU2cIGe2UU2cIWu2UU2cIGe2UU2dpGNt7hpGHFVWlqqsWPHqrS01OulIODoml1kAxfomV1kA1foml1kAxfomV1kYxfZ2EU2cIWu2UU2cIGe2UU2cIWu2UU2cIGe2UU2dpGNXWQDV+iaXWQDF+iZXWQDV+iaXWQDF+iZXWRjF9l4i5uGAQAAAAAAAAAAAAAAAAAAAAAAAAAAAJ/jpmEAAAAAAAAAAAAAAAAAAAAAAAAAAADA57hpGHEViUQ0bNgwRSIRr5eCgKNrdpENXKBndpENXKFrdpENXKBndpGNXWRjF9nAFbpmF9nABXpmF9nAFbpmF9nABXpmF9nYRTZ2kQ1coWt2kQ1coGd2kQ1coWt2kQ1coGd2kY1dZOMtvuuIq9TUVN1xxx1eLwMh4Leu9bxgsHqed5IqK6OafcsY5S9ZU/1cRueDNPCRq5WYHNGad+Zq8dOTJUntju6ufrdfqMRIkjbNW6L5o1+WJPW5drgOPuFoJUaSlDN6gr6fv0Knvvyn6j/vwGN7aeLRl6t0W4EH79R/2cCf6JldZANX/Na1ps4CbXp1VPZffqvKaKUqyyv0yU1PaeeaTRKzACDRM9PIxi6ysYts4IrfusZ5GhBb9MwusoErfusa52lAbNEzu8jGLrKxi2zgit+6xnkaEFv0zC6ygSt+6xrnaUBs0TO7yMYusvEWv2kYcVVcXKw///nPKi4u9nopCDg/dS2lTYYOu+RUvXP2nfrk90+p/72/qfP8sXdcrJwHXtI7Z92hTqf+SBmdDlJickT9bj1fsy79i949967qA9kOJ/VVUloLTRt5j6aeM0qb5i5RtKxcU88ZpannjNLcO8cp99PFnv1LmHyWDfyLntlFNnDFT11rzixQvGW7pl/0gKb+4k4tevJNHXPjuRKzAFCNntlFNnaRjV1kA1f81DXO04DYo2d2kQ1c8VPXOE8DYo+e2UU2dpGNXWQDV/zUNc7TgNijZ3aRDVzxU9c4TwNij57ZRTZ2kY23uGkYcVVeXq7JkyervLzc66Ug4PzUtQP79lDup4tVWV6h7Sv/qxZtW0sJCdXP79ezgzZ/sUyStG56jtoPOFwHHttLZYUl+tnTN+rUSaN04I96SZK6npmtSHoLnTpplI5/9BpFWqbW+Vrdzz5B3772keN3WJefsoF/0TO7yAau+KlrzZkFirdsV9mOQklStKxClRVRiVkAqEbP7CIbu8jGLrKBK37qGudpQOzRM7vIBq74qWucpwGxR8/sIhu7yMYusoErfuoa52lA7NEzu8gGrvipa5ynAbFHz+wiG7vIxlsRrxcQNMOue08r1233ehk6tGNrTX78FK+XAaAeKW0y6vxtSmU7i5TSOr36sYTEmn8pK9lWoBb7t1K0rFxtD++iyaferJT9WuqUF27XmyfdpPTMtirevE3TRtytI64YqqN+N0wLHp70wycnJKjzacdpwSOvuH+TQEjMuORB7fgu1+tlNEmrrpka/K9bvV4GEGrNmQWqJKWmKOvmEZp9yxhJYhYAPMYs4C9W8gpzBntCNgAawnkaEBxWrvtNwYwAeI/zNCA4mAX8xVJeYc6hPmQDoCGcpwHBYem631jMB4D3OE8DgoNZwF8s5RXmHOoTxmy4aTjGVq7brq9X5nu9DACGlW4rUErrltUfJ2ekqXR7YfXHlZU1r01pna7i77epJH+nNs1bovKC4h/+V1ii5Iw0lWzdqfWzFkiS1s+ar363XVj9uZnZR2jLolUqLyh29daA0NnxXa7yl63zehkAfKY5s4AkJSQl6qdP3qDFT01W/pI1ksQsAHiMWcBfyMsusgHQEM7TgODgug+gOThPA4KDWcBfyMsusgHQEM7TgODgug+gOThPA4KDWcBfyMuuMGaT6PUCEGwpKSm6/PLLlZKS4vVSEHB+6trmnOVqP+BwJSQlqlXXTJXkba/zb1/blq3TAVk9JEkdB/fTxjnf6Puc5Wrd/RAlJCUquVW6klulqWxnkXJnL1a7Yw6VJLU75lBtX7Wh+s/pfvYJ+va1jzx4h3X5KRv4Fz2zi2zgip+61pxZQJIGPnyV/vv+Qq2ZOq/6tcwCwA/omV1kYxfZ2EU2cMVPXeM8DYg9emYX2cAVP3WN8zQg9uiZXWRjF9nYRTZwxU9d4zwNiD16ZhfZwBU/dY3zNCD26JldZGMX2XiL3zSMuEpJSdGVV17p9TIQAn7qWmn+Ti1/aYaGvH6vKiuj+uy2seowKEspbTK06vWP9cX9L2rgw1cpIZKkte/O0841myRJS5+fptNeu1uJkYg+v+d5SdKKibM08OGr9PNX71JFSZk+uv5xSVJiSkQHH99Hn9021tP3Kp9lA/+iZ3aRDVzxU9eaMwt0GJSlrsN+ooxOB6nbWQOVt3iV5t45nlkA+B96ZhfZ2EU2dpENXPFT1zhPA2KPntlFNnDFT13jPA2IPXpmF9nYRTZ2kQ1c8VPXOE8DYo+e2UU2cMVPXeM8DYg9emYX2dhFNt7ipmHEVVFRkf74xz/qoYceUlpamtfLQYD5rWvLXpiuZS9Mr/5469erq/95x3e5mnrOqN0+Z+UrH2jlKx/UeSxaWq6Prnt8t9dGS8v17wHXxHzdzeG3bOBP9MwusoErfutaU2eB9bMW6IXuF+725zALAD+gZ3aRjV1kYxfZwBW/dY3zNCC26JldZANX/NY1ztOA2KJndpGNXWRjF9nAFb91jfM0ILbomV1kA1f81jXO04DYomd2kY1dZOOtRK8XgGCrqKjQnDlzVFFR4fVSEHB0zS6ygQv0zC6ygSt0zS6ygQv0zC6ysYts7CIbuELX7CIbuEDP7CIbuELX7CIbuEDP7CIbu8jGLrKBK3TNLrKBC/TMLrKBK3TNLrKBC/TMLrKxi2y8xW8aBgAAAAAAAP7n+EevUY+RgyRJ0YoKFW3M14ZPFinn/hdVmJvn9fJCj3wAAAAAAABs4bzGNvIBAAAAAACwhzMbu4KSDb9pGAAAAAAAAKgl97OvNfHoy/XqsVfpw2seVbujuurEf9zk9bLwP+QDAAAAAABgC+c1tpEPAAAAAACAPZzZ2BWEbLhpGHHVokUL3X777WrRooXXS0HA0TW7yAYu0DO7yAau0DW7yAYu0DO7/JpNtLRcRZvzVZibp42ffaOlL0zXQT8+TMkZaV4vLWb8mo1CkI+fs4G/0DW7yAYu0DO7yAau0DW7yAYu0DO7/JpN0M9r5ONsFIJ8/JwN/IWu2UU2cIGe2UU2cIWu2UU2cIGe2eXnbDizsSsI2US8XgCCLTk5WcOHD/d6GQgBumYX2cAFemYX2cAVumYX2cAFemZXELJJa7+/up4xQNHyClVWRL1eTswEIRsFNJ+gZAP76JpdZAMX6JldZANX6JpdZAMX6JldQcgmiOc1Ckg2Cmg+QckG9tE1u8gGLtAzu8gGrtA1u8gGLtAzu4KSDWc2dvk1G37TMOKqsLBQI0eOVGFhoddLQcDRNbvIBi7QM7vIBq7QNbvIBi7QM7v8mk3mT47UhSue10XfvqiRC8YoM/tIfT3mLZUXlUiS0jPb6tzPn1Jqu9aSpKS0FJ39yeNq07uzxytvPL9mo0bkc+KYm9TropOrX9/2qG4a/uGjSmqR7OGqG8/P2cBf6JpdZAMX6JldZANX6JpdZAMX6Jldfs2G8zTbOE8DYoOu2UU2cIGe2UU2cIWu2UU2cIGe2eXnbIJ+phbkbPxwnubrm4YXLlyos846S/vtt59at26t4cOHa8OGDWrVqpXOO+88r5cHSdFoVKtWrVI06p876eFPdM0usoEL9MwusoErdM0usoEL9Mwuv2azOWe5Jp98s6YMuVULHnlFm+Yt1fzRE6qfL8zN09fPTNGP7/61JCnrphFa/c4c5S9Z4+Gqm8av2agR+cz90zj1ue4XatG2lZSQoOwHr9Cc259VRUmZp+tuLD9nA3+ha3aRDVygZ3aRDVyha3aRDVygZ3b5NRvO02zjPA2IDbpmF9nABXpmF9nAFbpmF9nABXpml5+zCfqZWpCz8cN5WsTrBTTXjBkzdMYZZ6hLly664447lJaWpvHjx2vIkCHauXOnsrKyvF5ik0wfM0TJkUSdeOlbqqysefyNx05Wh4PSlX3xf1ReXrm3PwKNlZCgY/7vHB36y58pPbOtivO2a80785Rz/4vVd/wD+6L9gMN15G+Hqe1RXZXR8UDljJ6gLx/9t9fLQhX2ADjQ4aS++tFtF2i/nh1VtGmrvn72bX39zBSvl4Uq7AOIM2YB49gD4ACzgP9VFJdqx3e5kqQFf5moVl0z1f++y/TpH56ufs03z76jM6aO1uGXn64up/fX5MF/8HDF4dJQPoW5eVr8zBQd+6eL9f38Fdr27QZt+Pgrj1ftc1w/EWfM0MaxB8ABZmjj2AcQZ8wCxrEHwAFmAf/jPM02ztM8wPUTccYM7QPsA4gzZmjj2AMQZ8wCPsA+gDhjFggGztTsCsJ5mi9vGt68ebNGjhypfv36afr06UpLS5MkXXzxxerWrZsk+e6m4Uvu+EBfvnq2brn0aD347JeSpCvPPUynDOigfiPf4IbhGDryd2fqyKuG6ZMbn9CWhd+qdY9DdPzfrlFSi4hm//EfXi8PARBJT1X+8rX69vWPdNw9v/F6OdgFewDird0xh2rw+Fu06OnJ+uDqR3Vg357KHn2lKopKtfS5aV4vD+wDcIBZwDb2AMQbs0AwLfjrRP3iw8e09Pn3tGXhSklSZTSqeaPG67TX7tbMSx/i/6njofryWTJuqoa+db8OHniU/jPkVq+X6HtcPxFvzNC2sQcg3pih7WMfQLwxC9jGHoB4YxYIJs7TbOM8Lf64fiLemKHtYx9APDFD28cegHhjFrCPfQDxxCwQXJyp2eXH8zRf3jQ8evRobd26VePGjau+YViS9ttvP/Xr108zZszw3U3D6zcW6qo/f6Ln7/+Zpn6yXoXF5Xrk5v66+ZG5WvrdNq+X12ypqal67LHHlJqa6vVSqrU/rrf+++GXWv3WHEnSznWb9e0bH+vggX28Xhr2gaWurZ85X+tnzpckHXvHRV4vx3OWshF7QGBZ6tmRV56h7xesVM79L0mSti1frzaHdVKfa4eH8l/ELGVThX0gmCx1jVmgLkvZiD0gsCz1jFmgLkvZ7Isdq3K19r3P1e/W8/Xe+X+ufrzD4L4qzM3T/r07a807cz1dY1MFJRvtKZ/KSi197j0dcEx3lWzZ7vUSm8RiNlw/g8lS15ih67KUjdgDAstSz5ih67KUTRX2gWCy1DVmgbosZSP2gMCy1DNmgbosZbMvOE+zjfO0+OP6GUyWusYMXZelbKqwDwSPpZ4xQ9dlKZsq7AHBZKlrzAJ1WcqmCvtA8FjqGbNAXZay2VdBO1MLfDbGz9MSvV5Ac7z88ss64YQT1KtXr3qfb9++vTIzMyVJGzZs0DnnnKMDDjhA7dq10/Dhw7Vu3TrHK26cSe+u0qR3V+nFB36mFx/4mT78IldPTvzG62Xtk0gkouzsbEUidu5P3zhnidr/+DDtf3gXSVJG54PUcXA/rZvxhddLwz6w2DX8wFo27AHBZKlnBx3XW+tnza/z2PpZC5TR6SClH9zWs3V5xVI2VdgHgsli1/ADa9mwBwSTpZ4xC9RlKZt9tejJyepwYpYys4+UJLXp3VmdTztOU4bcqp4XDFZG54O8XmKTBCkb1ZOPJCkaVWW00stlNYvFbLh+BpPFruEH1rJhDwgmSz1jhq7LUjZV2AeCyWLX8ANr2bAHBJOlnjEL1GUpm33FeZptnKfFF9fPYLLYNfzAYjbsA8FjqWfM0HVZyqYKe0AwWewafmAxG/aB4LHUM2aBuixlEwtBOlMLejaS7fM0333Xc3NztX79eo0cOXK356LRqL766iv17du3+rGrr75a5eXlWrVqlZKSknTFFVfo0ksv1bRpjfvbE8rLy5Wbm9vo9ZWXlTX6tfW59oHZWj/9PEWjlTrj2vea/eeUl5XF/ebogoKCRr1mxIgRmjRpklq2bLnX18Z6vWVl5fU+vvjpyUpKTdaZ0x6SKiuVmBzR0hfe0/zRL8f064dVWVl5zLO02rU9dcyyWOdjNZsq9WXEHhBfYdoDtIeOpR3URkWb8+s8VrRp6/+e21+FG/Ji9vWbI5YZWc5GzAKeCdM+wCxgN5sqzALuhWkPELOA6Wzq09h9++P/e6Lexzd/vlTjDz63+uPs0Vdq3qjxKszN0/yHXlb/+y7TjIsfaNQ6wn5ms6umXFMbm09z1xH2bJihvRGm6ycztN1sqjBDuxemPUDM0KazEbOAZ8K0DzAL2M2mCrOAe2HaA8QsYDqb+lg5T5ODc5ugZqM4n6eJbJihPRKm6ycztN1sqrAPuBemPUDM0KazEXuAZ8K0DzAL2M2mCvuAe2HaA8QsYDqb+sTjzMbqf6NGNvu2lqa+38zMzCbffO27m4arSpWQkLDbc2+++aY2bdqkrKys6sdWrlypP/zhD2rVqpUk6YILLtBll13W6K+Xm5urTp06NX6BPe+WUjs0/vW7uGjooUpQgtJTk/SjIw7Q2x+tbdafs2zZMnXqdH6z19EYl19+eYOvKS0tVWFhoSZNmqSUlJS9vnbs2LExXJ3053anqENy690e73JGtnpf8nN9fOMTylv0nfY79BAdd/ev1ffW8zX/wQkxXUMYLVu2TCOa8jPTCFa7tqeOWRbrfKxmU6W+jNgD4itMe4DYB0xnI2YBz4RpHwj7HiDD2VRhFnAvTHuA2AdMZ1OfWObV88KTVfz9Nq2bkSNJWvnKB+p5/knqfHp/rXl7zl4/Nx4/J7sKczb7gmyYob0SpuunlZ/3pmCGZg+ItzDtAWIfMJ2NmAU8E6Z9IOx7gAxnU4VZwL0w7QFiHzCdTX2snKfJwblNmLPZV2HPhhnaG2G6flr6eW8sZugfsA/ET5j2ALEPmM5G7AGeCdM+EPY9QIazqcI+4F6Y9gCxD5jOpj6xzsvyf6MW9mz2RXOyWbt2rTp27Nikz/HdTcOdOnVSUlKSPvjggzqPr169Wtddd50k1blp+Pe//71effVVDRs2TElJSXr++ed15plnOl93Y/Tutp8euvE43fDQZzqiexuNvet49TnnNW3JL/F6aYHy47t+pa/Hvq1vX/1QkpS/ZI2S0lJ0/CNX68u/vaqKkn37bdEAbGMPQLwVbcpX2oFt6jyW+r+Pq/4WJ3iLfQAIN/YAxBuzQDgsf3G6lr84vc5jU88e5dl6UL8Vk97Xiknve72MQOD6CYQbewDijRnaPvYBINzYAxBvzALhwHmaP3CeFjtcPwGwDyCemKHtYw8AwD6AeGIWCA/O1OyzfJ7mu5uGU1JS9Ktf/Urjxo3TWWedpaFDh2rt2rUaM2aM2rdvr/Xr19e5afj444/XP//5T7Vt21YJCQk6+uijNW3atEZ/vczMTK1d2/jf9jv4dx9r2ZqGf8X2riKRBL3wwImaPme9xv57qVqkJOmU7A565s6BOvf3M5v85/Xq1UszZjbvtxQ31ooVKxp8TUFBgZ577jmNGDGiwV8lPmpUbDeu2SMeVMGq3N0ej6SlqjIarfNYZUVUSkj44X/YJ7169dLaSf+M6Z9ptWt76phlsc7HajZV6suIPSC+wrQHaA8d2zR3iQ45MUsL//Zq9WMdBmVp59pNKtyQF7Ov3VyxzMhyNmIW8EyY9gFmAbvZVGEWcC9Me4CYBUxnUx8r+3Y8fk52RTbNQzbM0F4J0/XTys97UzBDswfEW5j2ADFDm85GzAKeCdM+wCxgN5sqzALuhWkPELOA6WzqY2nfjve5Ddk0X9izYYb2Rpiun5Z+3huLGfoH7APxE6Y9QMzQprMRe4BnwrQPMAvYzaYK+4B7YdoDxCxgOpv6WNq3w35msyu/Z5OZmdnkr+O7m4Yl6e9//7uSk5P15ptvaubMmcrOztbrr7+ue+65RytWrFCvXr0kSdFoVCeffLLOPvtsvf3220pKStJDDz2kE088UQsWLFBycnKDXysSiTTp1zdHGvFn1ueeq3+kju1basjV70qSSkordNFt72vuS8N08Zk99Px/Gv5h2nUdTf210021YcOGBl+TmpqqCRMmqF27dkpKStrra2O93uTk+uu9ZupcHXXVMO34Lld5X61S6x6HqN8t52v9zPmqKC6N6RrCKDm5aT8zjWG1a3vqWCQ9Va27/bAhJyZHlHZgG7U9sqvKCoq14ztvLzKxzsdqNlXqy4g9IL7CtAdoDx1b/I8pGvqf+9T31vP17asf6IC+PXX4pUM0765/xezr7otYZmQ5GzELeCZM+wCzgN1sqjALuBemPUDMAqazqc+e9m3X4vFzsiuyaR6yYYb2Spiun8zQdrOpwgztXpj2ADFDm85GzAKeCdM+wCxgN5sqzALuhWkPELOA6WzqY+XMRg7Obcim+cKeDTO0N8J0/WSGtptNFfYB98K0B4gZ2nQ2Yg/wTJj2AWYBu9lUYR9wL0x7gJgFTGdTH85s6iKb+rn4b9Tk15uGMzIy9Mwzz+iZZ56p8/iiRYvUp08fJSYmSpLy8vK0evVqXX/99crIyJAk/f73v9ddd92llStXqnfv3p6sf1cD+7bXzb/uo1/cOF2b84qrH1+4NE+jnszR328ZoPfnbdDa3Kb/BmOvJSYmqn379tWZWDD3jn+qNH+nfjzqEqW3319FW7Zp3XtfKGf0y14vDfvAUtcOOOZQnfba3dUfH37pEB1+6RDlfrpYU8+J799+YZGlbMQeEFiWerZl4UrN/M1D6nfbBTrqd8NUtDlfOaMnaOlz07xemicsZVOFfSCYLHWNWaAuS9mIPSCwLPWMWaAuS9mgLrKxy2I2XD+DyVLXmKHrspSN2AMCy1LPmKHrspRNFfaBYLLUNWaBuixlI/aAwLLUM2aBuixlg7rIxi6L2XD9DCZLXWOGrstSNlXYB4LHUs+YoeuylE0V9oBgstQ1ZoG6LGVThX0geCz1jFmgLkvZoC6y8ZYvbxquT35+vtatW6ehQ4dWP3bAAQeoR48eeuKJJ3TPPfcoKSlJjz32mPbff3917drV0/XW9sn8jUruN67e5x589ks9+OyXztcUKwUFBTrppJM0c+bM6hu3vVZeVKLP731en9/7vNdLQQxZ6lru7MUaf/C5nq7BEkvZiD0gsKz1bN2MHK2bkeP1Mkywlo3YBwLLUteYBeqylI3YAwLLWs+YBWpYywY1yMYui9lw/QwmS11jhq7LUjZiDwgsaz1jhq5hLRuxDwSWpa4xC9RlKRuxBwSWtZ4xC9Swlg1qkI1dFrPh+hlMlrrGDF2XpWyqsA8Ej7WeMUPXsJaN2AMCy1LXmAXqspRNFfaB4LHWM2aBGtayQQ2y8VZgbtX+6quvJElZWVl1Hn/zzTf11VdfqWPHjmrfvr3effddTZkyRampqR6tFAAAAAAAAAAAAAAAAAAAAAAAAAAAAIitwPym4T3dNHzEEUdo6tSpHq0KAAAAAAAAFvW8YLB6nneSKiujmn3LGOUvWVP9XEbngzTwkauVmBzRmnfmavHTk9WmV0dl/+W3qoxWqrK8Qp/c9JR2rtkkSepz7XAdfMLRSowkKWf0BH0/f4VOfflP1X/egcf20sSjL1fptgJP3quf7S2nrJtGqMd5g7Rt+Tq9d8F9e/2cY248Vwcf30eS1KpbphY98aa+efZtT94TAAAAAACAH3Ge5g+cpwEAAAAAANjAeZo/BPU8LTA3DV999dW6+uqrvV4GAAAAAAAAjEtpk6HDLjlVbw29Xa26tFf2g1fo3V/eXf38sXdcrJwHXtLmL5bptNfu1uq3PlPxlu2aftEDKttRqA6DsnTMjefqkxufVIeT+ioprYWmjbynzteYes4oSVLbI7vqR3dcxIFsMzSU09Lnp2nFK+8r+8ErGvychX97VQv/9qok6cxpD2n1W5958p4AAAAAAAD8iPM0f+A8DQAAAAAAwAbO0/whyOdpiZ5+dQRey5YtNXPmTLVs2dLrpSDg6JpdZAMX6JldZANX6JpdZAMX6JldVrM5sG8P5X66WJXlFdq+8r9q0ba1lJBQ/fx+PTto8xfLJEnrpueo/YDDVbxlu8p2FEqSomUVqqyISpK6npmtSHoLnTpplI5/9BpFWqbW+Vrdzz5B3772kdP31xhWs6mtoZyKNuVL0comfU6bXh1Vuq1Ahbl5Tt9LU/ghGwQDXbOLbOACPbOLbOAKXbOLbOACPbPLajacp9nNpjbO0+xmg2Cga3aRDVygZ3aRDVyha3aRDVygZ3ZZzYbzNLvZ1Bbk8zRuGkZcRaNRbdy4UdFo1OulIODoml1kAxfomV1kA1foml1kAxfomV1Ws0lpk1Hnb1Ys21mklNbp1R8nJNYc4pVsK1CL/VtVf5yUmqKsm0fo67FvS5LSM9uqsqxC00bcrbzF3+mo3w2r+UIJCep82nFa/fac+L+pJrKaTW0N5dScz+l+zk/17esfx2nFseGHbBAMdM0usoEL9MwusoErdM0usoEL9Mwuq9lwnmY3m9o4T7ObDYKBrtlFNnCBntlFNnCFrtlFNnCBntllNRvO0+xmU1uQz9O4aRhxVVRUpPPPP19FRUVeLwUBR9fsIhu4QM/sIhu4QtfsIhu4QM/ssppN6bYCpbSu+RsMkzPSVLq9sPrjylp/OWBK63SVbN0hSUpIStRPn7xBi5+arPwlayRJJVt3av2sBZKk9bPma/8julR/bmb2EdqyaJXKC4pdvK0msZpNbQ3l1JzP6XJ6f62eMjtOK44NP2SDYKBrdpENXKBndpENXKFrdpENXKBndlnNhvM0u9nUxnma3WwQDHTNLrKBC/TMLrKBK3TNLrKBC/TMLqvZcJ5mN5vagnyeFvF6AQAAAGF2/KPXqMfIQZKkaEWFijbma8Mni5Rz/4sqzM3zenkAAMAB5gH3NucsV9YfRighKVEZnQ5SSd72Oiex25at0wFZPfT9ghXqOLifPvn9k5KkgQ9fpf++v1Brps6rfm3u7MVqd8yh1f93+6oN1c91P/sEffvaR47fXXA0lFNTP+eg43orf/m6Bg92AQCAfczQAACEG7OAe5yn+QPnaQAAYE+YoQEACDdmAfc4T/OHIJ+ncdMwAACAx3I/+1ofXPmIEpIS1aprew24/3Kd+I+b9Paw/8/rpQEAAEeYB9wqzd+p5S/N0JDX71VlZVSf3TZWHQZlKaVNhla9/rG+uP9FDXz4KiVEkrT23XnauWaTOgzKUtdhP1FGp4PU7ayBylu8SnPvHK8VE2dp4MNX6eev3qWKkjJ9dP3jkqTElIgOPr6PPrttrNdv17cayqnXRSfr0F/+TPv16KBTJ96pj65/XEUbt+72OVV+OCT/2NP3BAAAYocZGgCAcGMWcIvzNH/gPA0AAOwNMzQAAOHGLOAW52n+EOTzNG4aRty1bNmyEa8C9h1ds4ts4IKfexYtLVfR5nxJUmFunpa+MF0D7rtMyRlpKttZ5PXy9pmfs4G/0DW7yAYu+L1nQZ4HrGaz7IXpWvbC9OqPt369uvqfd3yXq6nnjKrz+vWzFuiF7hfu9udES8v10XWP1/v4vwdcE/N1x5LVbGrbW067PtfQ45/dOiaOK40tP2SDYKBrdpENXPB7z5ihgX1H1+wiG7jg954xC7jHeZrdbGrjPA2IL7pmF9nABb/3jBka2Hd0zS6ygQt+7xmzgHucp9nNpragnqdx0zDiKiMjQ7NmzfJ6GQgBumYX2cCFIPUsrf3+6nrGAEXLK1RZEfV6OfssSNnANrpmF9nAhaD1LEjzQNCyCRKysYts4Apds4ts4ELQesYMDTQdXbOLbOBC0HrGLAAXyMYusoErdM0usoELQesZMzTQdHTNLrKBC0HrGbMAXCAbbyV6vQAEW3l5uWbPnq3y8nKvl4KAo2t2kQ1c8HvPMn9ypC5c8bwu+vZFjVwwRpnZR+rrMW+pvKhEkpSe2Vbnfv6UUtu1liQlpaXo7E8eV5venff6nAV+zwb+QdfsIhu4EISeNTQPnDjmJvW66OTq17c9qpuGf/joHh9PapHsyfvYVRCyCSqysYts4Apds4ts4EIQehbUM7UgZAN/oGt2kQ1cCELPOE+Da2RjF9nAFbpmF9nAhSD0jPM0YN/QNbvIBi4EoWecp8E1svEWv2k4xg7t2NrrJUiG1lFcXKwbbrhBM2fOVEZGhtfLQYB50bVWXTOdfJ1Y8mLN7ANwwe8925yzXB/f8P+U1CJZXYf9RIeccLTmj55Q/Xxhbp6+fmaKfnz3r/XRtX9X1k0jtPqdOcpfskaS9vqc1/yeDfyDWaBxmAUQVEHoWUPzwNw/jdOQN+/V6rfnqGTrTmU/eIXm3P6stq1YX+/jFSVlnr6fKpaysbJvW1kH2ezOyjosZYNgY4ZuHGZoBFUQehbUM7UgZAN/YBZoHGYBBFUQesZ5WvxZ2rctrIVs6mdhLZayQbAxQzcOMzSCKgg94zwN2DfMAo3DLICgCkLPOE+LP0v7toW1kE39XK2Fm4ZjbPLjp3i9BACODP7XrV4vAUBAVBSXasd3uZKkBX+ZqFZdM9X/vsv06R+ern7NN8++ozOmjtbhl5+uLqf31+TBf2jUcwDih1kAQCw1NA8U5uZp8TNTdOyfLtb381do27cbtOHjryRpj4+jLvZtu8gGCA9+3gHEEmdqgP8wCwCIJc7T4o992y6yAcKDn3cAscR5GuA/zAIAYonztPhj37YrjNkker0AAAAA1LXgrxPVY+QgtTvm0OrHKqNRzRs1Xv3vvVSf3/u8yotKGvUcAADwp/rmgSXjpqrNYZ3U59rhmnf3vxp8HAAAAAgTztQAAAg3ztMAAACApuE8DQCAcOM8DQg2bhpGXCUmJqpbt25KTKRqiC+6ZhfZwIWg9WzHqlytfe9z9bv1/DqPdxjcV4W5edq/d+fdPmdvz3kpaNnALrpmF9nAhSD2rN55oLJSS597T+tm5Khky/aGHzcgiNkEBdnYRTZwha7ZRTZwIYg9C8qZWhCzgU10zS6ygQtB7BnnaYg3srGLbOAKXbOLbOBCEHvGeRrQNHTNLrKBC0HsGedpiDey8RbfdcRVenq6Jk6cqPT0dK+XgoCja3aRDVwIYs8WPTlZHU7MUmb2kZKkNr07q/Npx2nKkFvV84LByuh8UPVr9/ac14KYDWyia3aRDVwIas92nQckSdGoKqOVu794T497LKjZBAHZ2EU2cIWu2UU2cCGoPQvCmVpQs4E9dM0usoELQe0Z52mIJ7Kxi2zgCl2zi2zgQlB7xnka0Hh0zS6ygQtB7RnnaYgnsvEWNw0jrsrKyvTGG2+orKzM66Ug4OiaXWQDF/zcs4//7wlNG3nPbo9v/nypxh98rnJnL5YkZY++UvNGjVdhbp7mP/Sy+t93WfVr9/ac1/ycDfyFrtlFNnDB7z1r7DzgR37PJsjIxi6ygSt0zS6ygQt+71mQz9T8ng38g67ZRTZwwe894zwNXiAbu8gGrtA1u8gGLvi9Z5ynAfuOrtlFNnDB7z3jPA1eIBtvcdMw4qqkpET333+/SkpKvF4KAo6u2UU2cCHoPet54ckq/n6b1s3IkSStfOUDJbdMVefT++/1OQuCng3soGt2kQ1coGd2kY1dZGMX2cAVumYX2cCFMPTMr2dqYcgGNtA1u8gGLtAzu8jGLrKxi2zgCl2zi2zgQhh6xnkasHd0zS6ygQv0zC6ysYtsvBXxegEAAADYu+UvTtfyF6fXeWzq2aPqPL+n5wAAQLCsmPS+Vkx6v9GPAwAAAGHFmRoAABDnaQAAAECjcZ4GAADEeRoQGPymYQAAAAAAAAAAAAAAAAAAAAAAAAAAAMDnuGkYcde3b1+vl4CQoGt2kQ1coGd2kQ1coWt2kQ1coGd2kY1dZGMX2cAVumYX2cAFemYX2cAVumYX2cAFemYX2dhFNnaRDVyha3aRDVygZ3aRDVyha3aRDVygZ3aRjV1k4x1uGkbczZ8/3+slICToml1kAxfomV1kA1foml1kAxfomV1kYxfZ2EU2cIWu2UU2cIGe2UU2cIWu2UU2cIGe2UU2dpGNXWQDV+iaXWQDF+iZXWQDV+iaXWQDF+iZXWRjF9l4h5uGAQAAAAAAAAAAAAAAAAAAAAAAAAAAAJ/jpmEAAAAAAAAAAAAAAAAAAAAAAAAAAADA57hpGHEViUQ0bNgwRSIRr5eCgKNrdpENXKBndpENXKFrdpENXKBndpGNXWRjF9nAFbpmF9nABXpmF9nAFbpmF9nABXpmF9nYRTZ2kQ1coWt2kQ1coGd2kQ1coWt2kQ1coGd2kY1dZOMtvuuIq9TUVN1xxx1eLwMhQNfsIhu44Lee9bxgsHqed5IqK6OafcsY5S9ZU/1cRueDNPCRq5WYHNGad+Zq8dOTJUntju6ufrdfqMRIkjbNW6L5o1+WJPW5drgOPuFoJUaSlDN6gr6fv0Knvvyn6j/vwGN7aeLRl6t0W4EH79R/2cC/6JpdZAMX/Nizps4DbXp1VPZffqvKaKUqyyv0yU1PaeeaTZLxecCP2YQF2dhFNnCFrtlFNnDBjz0Ly5maH7OBP9E1u8gGLvixZ5ynwWtkYxfZwBW6ZhfZwAU/9ozzNCC26JpdZAMX/NgzztPgNbLxFr9pGHFVXFysP//5zyouLvZ6KQg4umYX2cAFP/UspU2GDrvkVL1z9p365PdPqf+9v6nz/LF3XKycB17SO2fdoU6n/kgZnQ5SYnJE/W49X7Mu/YvePfeu6sPYDif1VVJaC00beY+mnjNKm+YuUbSsXFPPGaWp54zS3DvHKffTxZ7dMCyfZQN/o2t2kQ1c8FvPmjMPFG/ZrukXPaCpv7hTi558U8fceK7kg3nAb9mECdnYRTZwha7ZRTZwwW89C9OZmt+ygX/RNbvIBi74rWecp8ECsrGLbOAKXbOLbOCC33rGeRoQe3TNLrKBC37rGedpsIBsvMVNw4ir8vJyTZ48WeXl5V4vBQFH1+wiG7jgp54d2LeHcj9drMryCm1f+V+1aNtaSkiofn6/nh20+YtlkqR103PUfsDhOvDYXiorLNHPnr5Rp04apQN/1EuS1PXMbEXSW+jUSaN0/KPXKNIytc7X6n72Cfr2tY8cv8O6/JQN/I2u2UU2cMFvPWvOPFC8ZbvKdhRKkqJlFaqsiEo+mAf8lk2YkI1dZANX6JpdZAMX/NazMJ2p+S0b+Bdds4ts4ILfesZ5GiwgG7vIBq7QNbvIBi74rWecpwGxR9fsIhu44LeecZ4GC8jGWxGvFwAAABAmKW0y6vxNSmU7i5TSOr36sYTEmn8hK9lWoBb7t1K0rFxtD++iyaferJT9WuqUF27XmyfdpPTMtirevE3TRtytI64YqqN+N0wLHp70wycnJKjzacdpwSOvuH+TAABgr5ozD1RJSk1R1s0jNPuWMZLEPNAEMy55UDu+y/V6GWrVNVOD/3Wr18swhWwAAEBDOFMDACDcOE/zhpUzG3FusxuyAQAADeE8DQCAcOM8zRuc2dgVxmy4aRgAAMCh0m0FSmndsvrj5Iw0lW4vrP64srLmtSmt01X8/TaV5O/UpnlLVF5Q/MP/CkuUnJGmkq07tX7WAknS+lnz1e+2C6s/NzP7CG1ZtErlBcWu3hoAAGik5swDkpSQlKifPnmDFj81WflL1kgS80AT7PguV/nL1nm9DNSDbAAAQEM4UwMAINw4T/MGZzZ2kQ0AAGgI52kAAIQb52ne4MzGrjBmk+j1AhBsKSkpuvzyy5WSkuL1UhBwdM0usoELfurZ5pzlaj/gcCUkJapV10yV5G2v829e25at0wFZPSRJHQf308Y53+j7nOVq3f0QJSQlKrlVupJbpalsZ5FyZy9Wu2MOlSS1O+ZQbV+1ofrP6X72Cfr2tY88eId1+Skb+Btds4ts4ILfetaceUCSBj58lf77/kKtmTqv+rXW5wG/ZRMmZGMX2cAVumYX2cAFv/UsTGdqfssG/kXX7CIbuOC3nnGeBgvIxi6ygSt0zS6ygQt+6xnnaUDs0TW7yAYu+K1nnKfBArLxFr9pGHGVkpKiK6+80utlIAToml1kAxf81LPS/J1a/tIMDXn9XlVWRvXZbWPVYVCWUtpkaNXrH+uL+1/UwIevUkIkSWvfnaedazZJkpY+P02nvXa3EiMRfX7P85KkFRNnaeDDV+nnr96lipIyfXT945KkxJSIDj6+jz67bayn71U+ywb+RtfsIhu44LeeNWce6DAoS12H/UQZnQ5St7MGKm/xKs29c7z5ecBv2YQJ2dhFNnCFrtlFNnDBbz0L05ma37KBf9E1u8gGLvitZ5ynwQKysYts4Apds4ts4ILfesZ5GhB7dM0usoELfusZ52mwgGy8xU3DiKuioiL98Y9/1EMPPaS0tDSvl4MAo2t2kQ1c8FvPlr0wXctemF798davV1f/847vcjX1nFG7fc7KVz7Qylc+qPNYtLRcH133+G6vjZaW698Dron5upvDb9nAv+iaXWQDF/zYs6bOA+tnLdAL3S/c7c+xPg/4MZuwIBu7yAau0DW7yAYu+LFnYTlT82M28Ce6ZhfZwAU/9ozzNHiNbOwiG7hC1+wiG7jgx55xngbEFl2zi2zggh97xnkavEY23kr0egEItoqKCs2ZM0cVFRVeLwUBR9fsIhu4QM/sIhu4QtfsIhu4QM/sIhu7yMYusoErdM0usoEL9MwusoErdM0usoEL9MwusrGLbOwiG7hC1+wiG7hAz+wiG7hC1+wiG7hAz+wiG7vIxlvcNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAD4XMTrBQAAAAAAAABWHP/oNeoxcpAkKVpRoaKN+drwySLl3P+iCnPzvF5e6JEPAAAAAACALZzX2EY+AAAAAAAA9nBmY1dQsuE3DSOuWrRoodtvv10tWrTweikIOLpmF9nABXpmF9nAFbpmF9nABXpml1+zyf3sa008+nK9euxV+vCaR9XuqK468R83eb2smPJrNgpBPn7OBv5C1+wiG7hAz+wiG7hC1+wiG7hAz+zyazZBP6+Rj7NRCPLxczbwF7pmF9nABXpmF9nAFbpmF9nABXpml5+z4czGriBkw28aRlwlJydr+PDhXi8DIUDX7CIbuEDP7CIbuELX7CIbuEDP7PJrNtHSchVtzpckFebmaekL0zXgvsuUnJGmsp1FXi8vJvyajUKQj5+zgb/QNbvIBi7QM7vIBq7QNbvIBi7QM7v8mk3Qz2vk42wUgnz8nA38ha7ZRTZwgZ7ZRTZwha7ZRTZwgZ7Z5edsOLOxKwjZ8JuGEVeFhYUaOXKkCgsLvV4KAo6u2UU2cIGe2UU2cIWu2UU2cIGe2RWEbNLa76+uZwxQtLxClRVRr5cTM0HIRgHNJyjZwD66ZhfZwAV6ZhfZwBW6ZhfZwAV6ZlcQsgnieY0Cko0Cmk9QsoF9dM0usoEL9MwusoErdM0usoEL9MyuoGTDmY1dfs2G3zSMuIpGo1q1apWiUf/8UMCf6JpdZAMX6JldZANX6JpdZAMX6Jldfs0m8ydH6sIVzyshMVGRtBaSpEVPTVZ5UYkkKT2zrU6fcp+m/PwWFW/ZrqS0FJ01/WHNvOwvyl+yxuPVN45fs1Ej8jlxzE367wcLteyF6ZKktkd100+fvEH/OeVmVZSUebr2xvBzNvAXumYX2cAFemYX2cAVumYX2cAFemaXX7PhPM02ztOA2KBrdpENXKBndpENXKFrdpENXKBndvk5m6CfqQU5Gz+cp/n6Nw0vXLhQZ511lvbbbz+1bt1aw4cP14YNG9SqVSudd955Xi8PAAAAAAAAPrQ5Z7kmn3yzpgy5VQseeUWb5i3V/NETqp8vzM3T189M0Y/v/rUkKeumEVr9zhxfHMYGQUP5zP3TOPW57hdq0baVlJCg7Aev0JzbnzVzIAsAAAAAABA0nKfZxnkaAAAAAACAPZyp2RWE8zTf/qbhGTNm6IwzzlCXLl10xx13KC0tTePHj9eQIUO0c+dOZWVleb1EGBZJa6FjbjxXXYf9ROnt99f2VRu04OFXtPqtz7xeGgAH2AMQb+0HHK4jfztMbY/qqoyOBypn9AR9+ei/vV4WamEfAMKNPQDxxizgfxXFpdrxXa4kacFfJqpV10z1v+8yffqHp6tf882z7+iMqaN1+OWnq8vp/TV58B88XHG4NJRPYW6eFj8zRcf+6WJ9P3+Ftn27QRs+/srjVfsf108g3NgDEG/M0PaxDwDhxh6AeGMW8D/O02zjPM0bXD+BcGMPQLwxQ9vHPgCEG3sA4o1ZIBg4U7MrCOdpvvxNw5s3b9bIkSPVr18/zZ8/XzfffLOuvfZazZgxQ2vW/HC3PDcN25CamqrHHntMqampXi+ljuy//k5dzszWp398Rm+ceKOWvjBdP3vq/3TIz47xemloJqtdg81s2AOCx1rPIumpyl++Vp/f+7wKN271ejmespZNFfaB4LHaNdjMhj0geKz1jFmghrVsmmvBXyeqx8hBanfModWPVUajmjdqvPrfe6k+v/d5lReVeLrGpgpKNtpDPkvGTVWbwzqpz7XDNe/uf3m6vqaymg3Xz+Cx2jXYzIY9IHis9YwZuoa1bKqwDwSP1a7BZjbsAcFjrWfMAjWsZdNcnKfZxnmaG1w/g8dq12AzG/aA4LHWM2boGtayqcI+EDxWuwab2bAHBI+1njEL1LCWzb4I2pla0LOxfp7my5uGR48era1bt2rcuHFKS0urfny//fZTv379JG4aNiMSiSg7O1uRiJ1fap3UIlndzszW/AcnaMOHX2rH6o1a8s93tG7GfB19w9leLw/NZLFr+IG1bNgDgslaz9bPnK+c+1/Sd5M/VbS0zOvleMpaNmIfCCyLXcMPrGXDHhBM1nrGLFDDWjbNtWNVrta+97n63Xp+ncc7DO6rwtw87d+7s2dra66gZKM95VNZqaXPvad1M3JUsmW7l8trMovZcP0MJotdww+sZcMeEEzWesYMXcNaNmIfCCyLXcMPrGXDHhBM1nrGLFDDWjbNxXmabZynxR/Xz2Cy2DX8wFo27AHBZK1nzNA1rGUj9oHAstg1/MBaNuwBwWStZ8wCNaxlsy+CdqYW+GyMn6f58rv+8ssv64QTTlCvXr3qfb59+/bKzMyUJK1atUrXX3+9Pv30U0UiEV166aW67777lJjYuPuly8vLlZubG9P1B0VBQUGjXjNixAhNmjRJLVu23Otr161bF8PVSWVl5fU+nhBJUkJSoipKSus8XlFcqgMHZSkhkqTK8oqYriVMysrKY56l9a6FmfVs6tsH2APiK2x7wJ6uNZbFMiPL2YhZwDNh2wfCzno2zALuhW0PYBawm0199jWvRU9O1tD/3KfM7COVO3ux2vTurM6nHacpQ27V6f+5Tyv//aF2rtnUqHXE+72GLRvVk48kKRpVZbSySesIezbM0N4I2/Uz7KxnwwztXtj2AGZou9mIWcAzYdsHws56NswC7oVtD2AWsJtNfaycp8nBuU3YslGMztNENszQHgnb9TPsrGfDDO1e2PYAZmi72YhZwDNh2wfCzno2zALuhW0PYBawm0194nFmY/W/USMbt+dpmZmZTb752nc3Defm5mr9+vUaOXLkbs9Fo1F99dVX6tu3rySpoqJCZ555pn7+85/r1Vdf1aZNm3TGGWeoTZs2uuWWWxr99Tp16hTz9xEEl19+eYOvKS0tVWFhoSZNmqSUlJS9vnbs2LExXJ3053anqENy690eLy8o1qZ5S3X0Decob9F32rn+e3UYlKVOPz9WSS2Sldq2lYo25cd0LWGybNkyjYjxz4z1roWZ9Wzq2wfYA+IrbHvAnq41lsUyI8vZiFnAM2HbB8LOejbMAu6FbQ9gFrCbTX0am9fH//dEvY9v/nypxh98bvXH2aOv1LxR41WYm6f5D72s/vddphkXP9Dgnx+Pn5NdBTUbNSGf5iAbZmivhO36GXbWs2GGdi9sewAztN1sxCzgmbDtA2FnPRtmAffCtgcwC9jNpj5WztPk4NwmqNkozudpIhtmaI+E7foZdtazYYZ2L2x7ADO03WzELOCZsO0DYWc9G2YB98K2BzAL2M2mPvE4s7H636iRTfM1J5u1a9eqY8eOTfqcxv26XUOq7kRPSEjY7bk333xTmzZtUlZWliRp6dKl+uabb/TnP/9ZLVq0UKdOnXTjjTfq6aefdr5u2PLhtY+pdFuBzpnzhH615mUde+evtPylGZLU5Dv8AfgPewAA9gEg3NgDAOyrnheerOLvt2ndjBxJ0spXPlByy1R1Pr2/10sD4obrJxBu7AEA2AeAcGMPALCvOE9DGHH9BMKNPQAA+wAQbuwBAGKBMzXsi4TKykpfXXFKS0uVnp6uvn37at68edWPr169WgMHDtT69es1YcIEnXfeeVq8eLH69OmjnTt3Kj09XZI0btw4XXrppdq2bZtat274DvHy8nLl5ubG9T351YoVKxp8TUFBgc444wxNmTKlwV8l3qNHjxiuTpo94kEVrNp7dklpKUpp3VJFG7fqR3dcpMMuPkUv9f615K8fC1NadstU9qRbY/pnWu9amFnPpqF9gD0g9sK2BzTmWnPu3Ce17KUZ+vLRf8fs6+6LWGZkORsxC3gmbPtA2FnPhlnAvbDtAcwCdrOpT2PyciEePye7IpvmIRtmaK+E7foZdtazYYZ2L2x7ADO03WzELOCZsO0DYWc9G2YB98K2BzAL2M2mPlbObOTg3IZsmi/s2TBDeyNs18+ws54NM7R7YdsDmKHtZiNmAc+EbR8IO+vZMAu4F7Y9gFnAbjb14cymLrKpX3OyyczMVCQSadLnNO3VBqSkpOhXv/qVxo0bp7POOktDhw7V2rVrNWbMGLVv317r16+v/k3Dhx12mA499FDdfvvteuCBB5Sbm6u//e1vkqTt27c36qbhSCTS5F/fHBYbNmxo8DWpqamaMGGC2rVrp6SkpL2+Ntbf5+TkhutdUVSqoqJSJSZH1PWMbK2ZOo8BbB8lJ8f+Z8Z618LMejYN7QPsAbEXtj2gMdcaa2KZkeVsxCzgmbDtA2FnPRtmAffCtgcwC9jNpj5W8orHz8muyKZ5yIYZ2ithu36GnfVsmKHdC9seYOW63xRhmqGZBbwRtn0g7KxnwyzgXtj2AGYBu9nUx1Je8T63IZvmC3s2zNDeCNv1M+ysZ8MM7V7Y9gBL1/3GCtMMzSzgjbDtA2FnPRtmAffCtgcwC9jNpj6W8gr7mc2uwpRNFTvvuAn+/ve/Kzk5WW+++aZmzpyp7Oxsvf7667rnnnu0YsUK9erVS/rfDb//+c9/dOONN6pLly5q27atLrvsMt1yyy3af//9vX4boZCYmKj27dsrMTHR66XUcfBPj1ZSckT5y9epZYcD1PfmkUpKTVHOAy95vTQ0k9WuwWY27AHBY61nkfRUte6WKUlKTI4o7cA2antkV5UVFGvHdzb+hhpXrGVThX0geKx2DTazYQ8IHms9YxaoYS0b1CAbu6xmw/UzeKx2DTazYQ8IHms9Y4auYS2bKuwDwWO1a7CZDXtA8FjrGbNADWvZoAbZ2GU1G66fwWO1a7CZDXtA8FjrGTN0DWvZVGEfCB6rXYPNbNgDgsdaz5gFaljLBjXIxlu+/K5nZGTomWeeUW5urnbs2KFp06YpOztbixYtUp8+feqUqXfv3nrnnXe0adMmLVmyROnp6frxj3/c4K+1RmwUFBTopJNOUkFBgddLqSOlVZqOu+c3+sWHj2nQ2JtVuCFPb51xmwpz87xeGprJatdgMxv2gOCx1rMDjjlUw6b/VcOm/1XpmW11+KVDNGz6XzXw4au8Xppz1rKpwj4QPFa7BpvZsAcEj7WeMQvUsJYNapCNXVaz4foZPFa7BpvZsAcEj7WeMUPXsJZNFfaB4LHaNdjMhj0geKz1jFmghrVsUINs7LKaDdfP4LHaNdjMhj0geKz1jBm6hrVsqrAPBI/VrsFmNuwBwWOtZ8wCNaxlgxpk4y1f/qbh+uTn52vdunUaOnRonce//PJLde/eXampqZo1a5buu+8+/etf//JsnbBh9VtztPqtOV4vA4BH2AMQb7mzF2v8wed6vQzsBfsAEG7sAYg3ZgEAQcT1Ewg39gDEGzO0fewDQLixByDemAUABBHXTyDc2AMQb8zQ9rEPAOHGHoB4YxYA0JDA3DT81VdfSZKysrLqPP7KK6/oySefVHFxsXr37q0xY8bolFNO8WiVAAAAAAAAsKDnBYPV87yTVFkZ1exbxih/yZrq5zI6H6SBj1ytxOSI1rwzV4ufnqw2vToq+y+/VWW0UpXlFfrkpqe0c80mSVKfa4fr4BOOVmIkSTmjJ+j7+St06st/qv7zDjy2lyYefblKt/G3JjbV3nLKummEepw3SNuWr9N7F9y318855sZzdfDxfSRJrbplatETb+qbZ9/25D0BAAAAAAD4Eedp/sB5GgAAAAAAgA2cp/lDUM/TAn/T8L333qt7773Xo1UBAAAAAADAmpQ2GTrsklP11tDb1apLe2U/eIXe/eXd1c8fe8fFynngJW3+YplOe+1urX7rMxVv2a7pFz2gsh2F6jAoS8fceK4+ufFJdTipr5LSWmjayHvqfI2p54ySJLU9sqt+dMdFHMg2Q0M5LX1+mla88r6yH7yiwc9Z+LdXtfBvr0qSzpz2kFa/9Zkn7wkAAAAAAMCPOE/zB87TAAAAAAAAbOA8zR+CfJ6W6OlXj6Grr75alZWVGjBggNdLQS0tW7bUzJkz1bJlS6+XgoCja3aRDVygZ3aRDVyha3aRDVygZ3ZZzebAvj2U++liVZZXaPvK/6pF29ZSQkL18/v17KDNXyyTJK2bnqP2Aw5X8ZbtKttRKEmKllWosiIqSep6ZrYi6S106qRROv7RaxRpmVrna3U/+wR9+9pHTt9fY1jNpraGciralC9FK5v0OW16dVTptgIV5uY5fS9N4YdsEAx0zS6ygQv0zC6ygSt0zS6ygQv0zC6r2XCeZjeb2jhPs5sNgoGu2UU2cIGe2UU2cIWu2UU2cIGe2WU1G87T7GZTW5DP0wJz0zBsikaj2rhxo6LRqNdLQcDRNbvIBi7QM7vIBq7QNbvIBi7QM7usZpPSJqPO36xYtrNIKa3Tqz9OSKw5xCvZVqAW+7eq/jgpNUVZN4/Q12PfliSlZ7ZVZVmFpo24W3mLv9NRvxtW84USEtT5tOO0+u058X9TTWQ1m9oayqk5n9P9nJ/q29c/jtOKY8MP2SAY6JpdZAMX6JldZANX6JpdZAMX6JldVrPhPM1uNrVxnmY3GwQDXbOLbOACPbOLbOAKXbOLbOACPbPLajacp9nNprYgn6dx0zDiqqioSOeff76Kioq8XgoCjq7ZRTZwgZ7ZRTZwha7ZRTZwgZ7ZZTWb0m0FSmld8zcYJmekqXR7YfXHlbX+csCU1ukq2bpDkpSQlKifPnmDFj81WflL1kiSSrbu1PpZCyRJ62fN1/5HdKn+3MzsI7Rl0SqVFxS7eFtNYjWb2hrKqTmf0+X0/lo9ZXacVhwbfsgGwUDX7CIbuEDP7CIbuELX7CIbuEDP7LKaDedpdrOpjfM0u9kgGOiaXWQDF+iZXWQDV+iaXWQDF+iZXVaz4TzNbja1Bfk8jZuGAQAAAAAAECqbc5ar/YDDlZCUqFZdM1WSt73OSey2Zet0QFYPSVLHwf20cc43kqSBD1+l/76/UGumzqt+be7sxWp3zKGSpHbHHKrtqzZUP9f97BP07WsfOXxnwdJQTk39nIOO66385esaPNgFAAAAAABAXZyn+QPnaQAAAAAAADZwnuYPQT5Pi3i9AAAAAAAAAMCl0vydWv7SDA15/V5VVkb12W1j1WFQllLaZGjV6x/ri/tf1MCHr1JCJElr352nnWs2qcOgLHUd9hNldDpI3c4aqLzFqzT3zvFaMXGWBj58lX7+6l2qKCnTR9c/LklKTIno4OP76LPbxnr9dn2roZx6XXSyDv3lz7Rfjw46deKd+uj6x1W0cetun1Plh0Pyjz19TwAAAAAAAH7EeZo/cJ4GAAAAAABgA+dp/hDk8zRuGkbctWzZshGvAvYdXbOLbOACPbOLbOAKXbOLbOACPbPLajbLXpiuZS9Mr/5469erq/95x3e5mnrOqDqvXz9rgV7ofuFuf060tFwfXfd4vY//e8A1MV93LFnNpra95bTrcw09/tmtY+K40tjyQzYIBrpmF9nABXpmF9nAFbpmF9nABXpml9VsOE+zm01tnKcB8UXX7CIbuEDP7CIbuELX7CIbuEDP7LKaDedpdrOpLajnadw0jLjKyMjQrFmzvF4GQoCu2UU2cIGe2UU2cIWu2UU2cIGe2UU2dpGNXWQDV+iaXWQDF+iZXWQDV+iaXWQDF+iZXWRjF9nYRTZwha7ZRTZwgZ7ZRTZwha7ZRTZwgZ7ZRTZ2kY23Er1eAIKtvLxcs2fPVnl5uddLQcDRNbvIBi7QM7vIBq7QNbvIBi7QM7vIxi6ysYts4Apds4ts4AI9s4ts4Apds4ts4AI9s4ts7CIbu8gGrtA1u8gGLtAzu8gGrtA1u8gGLtAzu8jGLrLxFjcNI66Ki4t1ww03qLi42OulIODoml1kAxfomV1kA1foml1kAxfomV1kYxfZ2EU2cIWu2UU2cIGe2UU2cIWu2UU2cIGe2UU2dpGNXWQDV+iaXWQDF+iZXWQDV+iaXWQDF+iZXWRjF9l4K+L1AoB4adU10+slhBLfd1hCH90L2/fcj+/Xj2turjC9V0v4vsMS+uhe2L7nfny/flxzrFh571bWYYmV74mVdXiJ74E3+L7DEvroXti+5358v35cc3OF6b1awvcdltBH98L2Pffj+/XjmmPF0nu3tBYLLH0/LK3FC2F//17h+w5L6KN7Yfue+/H9+nHNzRWm92oJ33dYQh/dC9v33I/v149rjhVL793SWiyw9P1wtRZuGkZgDf7XrV4vAYDH2AcQb3TMNvIBwD6AeKNj/kJedpGNHWQBgH0A8UbHbCMfAOwDiDc65i/kZRfZ2EEWANgHEG90zDbyAcA+gHijY/5CXnaFMZtErxeAYEtMTFS3bt2UmEjVEF90zS6ygQv0zC6ygSt0zS6ygQv0zC6ysYts7CIbuELX7CIbuEDP7CIbuELX7CIbuEDP7CIbu8jGLrKBK3TNLrKBC/TMLrKBK3TNLrKBC/TMLrKxi2y8xW8aRlylp6dr4sSJXi8DIUDX7CIbuEDP7CIbuELX7CIbuEDP7CIbu8jGLrKBK3TNLrKBC/TMLrKBK3TNLrKBC/TMLrKxi2zsIhu4QtfsIhu4QM/sIhu4QtfsIhu4QM/sIhu7yMZb3KqNuCorK9Mbb7yhsrIyr5eCgKNrdpENXKBndpENXKFrdpENXKBndpGNXWRjF9nAFbpmF9nABXpmF9nAFbpmF9nABXpmF9nYRTZ2kQ1coWt2kQ1coGd2kQ1coWt2kQ1coGd2kY1dZOMtbhpGXJWUlOj+++9XSUmJ10tBwNE1u8gGLtAzu8gGrtA1u8gGLtAzu8jGLrKxi2zgCl2zi2zgAj2zi2zgCl2zi2zgAj2zi2zsIhu7yAau0DW7yAYu0DO7yAau0DW7yAYu0DO7yMYusvEWNw0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsdNwwAAAAAAAAAAAAAAAAAAAAAAAAAAAIDPcdMw4iopKUn9+/dXUlKS10tBwNE1u8gGLtAzu8gGrtA1u8gGLtAzu8jGLrKxi2zgCl2zi2zgAj2zi2zgCl2zi2zgAj2zi2zsIhu7yAau0DW7yAYu0DO7yAau0DW7yAYu0DO7yMYusvFWQmVlZaXXiwAAAAAAAAAAAAAAAAAAAAAAAAAAAADQfPymYQAAAAAAAAAAAAAAAAAAAAAAAAAAAMDnuGkYAAAAAAAAAAAAAAAAAAAAAAAAAAAA8DluGgYAAAAAAAAAAAAAAAAAAAAAAAAAAAB8jpuGAQAAAAAAAAAAAAAAAAAAAAAAAAAAAJ/jpmEAAAAAAAAAAAAAAAAAAAAAAAAAAADA57hpGAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA5bhoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAfI6bhgEAAAAAAAAAAAAAAAAAAAAAAAAAAACf46ZhAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOe4aRgAAAAAAAAAAAAAAAAAAAAAAAAAAADwOW4aBgAAAAAAAAAAAAAAAAAAAAAAAAAAAHyOm4YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAn+OmYQAAAAAAAAAAAAAAAAAAAAAAAAAAAMDnuGkYAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Ln/H3hL1IyMHzIKAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "combine_slices(noisy_slices, include_barriers=True).draw(\"mpl\", fold=100, scale=0.8)" ] }, { "cell_type": "markdown", "id": "10b88555-0263-4cdb-a4c1-6895d7e55a5b", "metadata": {}, "source": [ "### Simulating a noisy expectation value\n", "\n", "At this point, classically simulating the expectation value works exactly the same as before, just" ] }, { "cell_type": "code", "execution_count": 11, "id": "0e3ecb85-08c4-4fda-85e2-1000983c8842", "metadata": {}, "outputs": [], "source": [ "vacuum_state_noisy_obs, _, metadata = backpropagate(obs, noisy_slices)" ] }, { "cell_type": "code", "execution_count": 12, "id": "a74e9e88-2f1c-4d40-873d-bf4524e2b7fe", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "np.complex128(-0.7230801696448901+7.082755280463563e-19j)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vacuum_state_noisy_obs.coeffs[~vacuum_state_noisy_obs.paulis.x.any(axis=1)].sum()" ] }, { "cell_type": "markdown", "id": "7a4d2ff5-7c49-463e-8515-6fc9daa951ad", "metadata": {}, "source": [ "We point out again, that multiple performance concerns should be considered.\n", "Please go back to the [corresponding section above](#some-notes-on-performance)." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.12" } }, "nbformat": 4, "nbformat_minor": 5 }