Overview of operator classes
Package versions
The code on this page was developed using the following requirements. We recommend using these versions or newer.
qiskit[all]~=1.3.1
qiskit-ibm-runtime~=0.34.0
qiskit-aer~=0.15.1
qiskit-serverless~=0.18.1
qiskit-ibm-catalog~=0.2
qiskit-addon-sqd~=0.8.1
qiskit-addon-utils~=0.1.0
qiskit-addon-mpf~=0.2.0
scipy~=1.14.1
qiskit-addon-aqc-tensor~=0.1.2
qiskit-addon-obp~=0.1.0
scipy~=1.14.1
pyscf~=2.7.0
In Qiskit, quantum operators are represented using classes from the quantum_info
module. The most important operator class is SparsePauliOp
, which represents a general quantum operator as a linear combination of Pauli strings. SparsePauliOp
is the class most commonly used to represent quantum observables. The rest of this page explains how to use SparsePauliOp
and other operator classes.
import numpy as np
from qiskit.quantum_info.operators import Operator, Pauli, SparsePauliOp
SparsePauliOp
The SparsePauliOp
class represents a linear combination of Pauli strings. There are several ways to initialize a SparsePauliOp
, but the most flexible way is to use the from_sparse_list
method, as demonstrated in the following code cell. The from_sparse_list
accepts a list of (pauli_string, qubit_indices, coefficient)
triplets.
op1 = SparsePauliOp.from_sparse_list(
[("ZX", [1, 4], 1.0), ("YY", [0, 3], -1 + 1j)], num_qubits=5
)
op1
Output:
SparsePauliOp(['XIIZI', 'IYIIY'],
coeffs=[ 1.+0.j, -1.+1.j])
SparsePauliOp
supports arithmetic operations, as demonstrated in the following code cell.
op2 = SparsePauliOp.from_sparse_list(
[("XXZ", [0, 1, 4], 1 + 2j), ("ZZ", [1, 2], -1 + 1j)], num_qubits=5
)
# Addition
print("op1 + op2:")
print(op1 + op2)
print()
# Multiplication by a scalar
print("2 * op1:")
print(2 * op1)
print()
# Operator multiplication (composition)
print("op1 @ op2:")
print(op1 @ op2)
print()
# Tensor product
print("op1.tensor(op2):")
print(op1.tensor(op2))
Output:
op1 + op2:
SparsePauliOp(['XIIZI', 'IYIIY', 'ZIIXX', 'IIZZI'],
coeffs=[ 1.+0.j, -1.+1.j, 1.+2.j, -1.+1.j])
2 * op1:
SparsePauliOp(['XIIZI', 'IYIIY'],
coeffs=[ 2.+0.j, -2.+2.j])
op1 @ op2:
SparsePauliOp(['YIIYX', 'XIZII', 'ZYIXZ', 'IYZZY'],
coeffs=[ 1.+2.j, -1.+1.j, -1.+3.j, 0.-2.j])
op1.tensor(op2):
SparsePauliOp(['XIIZIZIIXX', 'XIIZIIIZZI', 'IYIIYZIIXX', 'IYIIYIIZZI'],
coeffs=[ 1.+2.j, -1.+1.j, -3.-1.j, 0.-2.j])
Pauli
The Pauli
class represents a single Pauli string with an optional phase coefficient from the set . A Pauli
can be initialized by passing a string of characters from the set {"I", "X", "Y", "Z"}
, optionally prefixed by one of {"", "i", "-", "-i"}
to represent the phase coefficient.
op1 = Pauli("iXX")
op1
Output:
Pauli('iXX')
The following code cell demonstrates the use of some attributes and methods.
print(f"Dimension of {op1}: {op1.dim}")
print(f"Phase of {op1}: {op1.phase}")
print(f"Matrix representation of {op1}: \n {op1.to_matrix()}")
Output:
Dimension of iXX: (4, 4)
Phase of iXX: 3
Matrix representation of iXX:
[[0.+0.j 0.+0.j 0.+0.j 0.+1.j]
[0.+0.j 0.+0.j 0.+1.j 0.+0.j]
[0.+0.j 0.+1.j 0.+0.j 0.+0.j]
[0.+1.j 0.+0.j 0.+0.j 0.+0.j]]
Pauli
objects possess a number of other methods to manipulate the operators such as determining its adjoint, whether it (anti)commutes with another Pauli
, and computing the dot product with another Pauli
. Refer to the API documentation for more info.
Operator
The Operator
class represents a general linear operator. Unlike SparsePauliOp
, Operator
stores the linear operator as a dense matrix. Because the memory required to store a dense matrix scales exponentially with the number of qubits, the Operator
class is only suitable for use with a small number of qubits.
You can initialize an Operator
by directly passing a Numpy array storing the matrix of the operator. For example, the following code cell creates a two-qubit Pauli XX operator:
XX = Operator(
np.array(
[
[0, 0, 0, 1],
[0, 0, 1, 0],
[0, 1, 0, 0],
[1, 0, 0, 0],
]
)
)
XX
Output:
Operator([[0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
[0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]],
input_dims=(2, 2), output_dims=(2, 2))
The operator object stores the underlying matrix, and the input and output dimension of subsystems.
data
: To access the underlying Numpy array, you can use theOperator.data
property.dims
: To return the total input and output dimension of the operator, you can use theOperator.dim
property. Note: the output is returned as a tuple(input_dim, output_dim)
, which is the reverse of the shape of the underlying matrix.
XX.data
Output:
array([[0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
[0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]])
input_dim, output_dim = XX.dim
input_dim, output_dim
Output:
(4, 4)
The operator class also keeps track of subsystem dimensions, which can be used for composing operators together. These can be accessed using the input_dims
and output_dims
functions.
For by operators, the input and output dimensions are automatically assumed to be M-qubit and N-qubit:
op = Operator(np.random.rand(2**1, 2**2))
print("Input dimensions:", op.input_dims())
print("Output dimensions:", op.output_dims())
Output:
Input dimensions: (2, 2)
Output dimensions: (2,)
If the input matrix is not divisible into qubit subsystems, then it will be stored as a single-qubit operator. For example, for a matrix:
op = Operator(np.random.rand(6, 6))
print("Input dimensions:", op.input_dims())
print("Output dimensions:", op.output_dims())
Output:
Input dimensions: (6,)
Output dimensions: (6,)
The input and output dimension can also be manually specified when initializing a new operator:
# Force input dimension to be (4,) rather than (2, 2)
op = Operator(np.random.rand(2**1, 2**2), input_dims=[4])
print("Input dimensions:", op.input_dims())
print("Output dimensions:", op.output_dims())
Output:
Input dimensions: (4,)
Output dimensions: (2,)
# Specify system is a qubit and qutrit
op = Operator(np.random.rand(6, 6), input_dims=[2, 3], output_dims=[2, 3])
print("Input dimensions:", op.input_dims())
print("Output dimensions:", op.output_dims())
Output:
Input dimensions: (2, 3)
Output dimensions: (2, 3)
You can also extract just the input or output dimensions of a subset of subsystems using the input_dims
and output_dims
functions:
print("Dimension of input system 0:", op.input_dims([0]))
print("Dimension of input system 1:", op.input_dims([1]))
Output:
Dimension of input system 0: (2,)
Dimension of input system 1: (3,)
Next steps
- Learn how to specify observables in the Pauli basis.
- See an example of using operators in the Combine error mitigation options with the estimator primitive tutorial.
- Read more in-depth coverage of the Operator class.
- Explore the Operator API reference.